BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Dai R, Wei Q, Li W, Zhu G, Chi H, Guo Z, Wang L, Cui C, Xu J, Ma K. Dual-Functionalized Janus Mesoporous Silica Nanoparticles with Active Targeting and Charge Reversal for Synergistic Tumor-Targeting Therapy. ACS Appl Mater Interfaces 2019;11:44582-92. [DOI: 10.1021/acsami.9b15434] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020;9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
2 Liu Y, Wang J, Shao Y, Deng R, Zhu J, Yang Z. Recent advances in scalable synthesis and performance of Janus polymer/inorganic nanocomposites. Progress in Materials Science 2022;124:100888. [DOI: 10.1016/j.pmatsci.2021.100888] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
3 Zhou M, Xing Y, Li W, Li X, Zhang X, Du X. Thioether-bridged mesoporous organosilica nanocapsules with weak acid-triggered charge reversal for drug delivery. Microporous and Mesoporous Materials 2020;302:110242. [DOI: 10.1016/j.micromeso.2020.110242] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
4 Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021;193:457-73. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Reference Citation Analysis]
5 Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020;12:E527. [PMID: 32521802 DOI: 10.3390/pharmaceutics12060527] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
6 Chen Y, Yu Z, Zheng K, Ren Y, Wang M, Wu Q, Zhou F, Liu C, Liu L, Song J, Qu J. Degradable mesoporous semimetal antimony nanospheres for near-infrared II multimodal theranostics. Nat Commun 2022;13:539. [PMID: 35087022 DOI: 10.1038/s41467-021-27835-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Shao D, Wang Z, Chang Z, Chen L, Dong W, Leong KW. Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. Current Opinion in Biomedical Engineering 2021;19:100294. [DOI: 10.1016/j.cobme.2021.100294] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. Nanomaterials (Basel) 2020;10:E916. [PMID: 32397449 DOI: 10.3390/nano10050916] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
9 Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, Akbarzadeh A, Marjani A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. Journal of Molecular Liquids 2021;328:115417. [DOI: 10.1016/j.molliq.2021.115417] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhou Y, Chang C, Liu Z, Zhao Q, Xu Q, Li C, Chen Y, Zhang Y, Lu B. Hyaluronic Acid-Functionalized Hollow Mesoporous Silica Nanoparticles as pH-Sensitive Nanocarriers for Cancer Chemo-Photodynamic Therapy. Langmuir 2021;37:2619-28. [PMID: 33586432 DOI: 10.1021/acs.langmuir.0c03250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Ashley BK, Sui J, Javanmard M, Hassan U. Functionalization of hybrid surface microparticles for in vitro cellular antigen classification. Anal Bioanal Chem 2021;413:555-64. [PMID: 33156401 DOI: 10.1007/s00216-020-03026-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano 2021;15:6147-91. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 33.0] [Reference Citation Analysis]
13 Loukanov A. Light-triggered Janus nanomotor for targeting and photothermal lysis of pathogenic bacteria. Microsc Res Tech 2021;84:967-75. [PMID: 33247480 DOI: 10.1002/jemt.23657] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Ma K, Li W, Zhu G, Chi H, Yin Y, Li Y, Zong Y, Guo Z, Wang L, Xu W, Cui C, Zhou H, Xu J. PEGylated DOX-coated nano graphene oxide as pH-responsive multifunctional nanocarrier for targeted drug delivery. J Drug Target 2021;29:884-91. [PMID: 33571019 DOI: 10.1080/1061186X.2021.1887200] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Radhakrishnan D, Mohanan S, Choi G, Choy J, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. Science and Technology of Advanced Materials. [DOI: 10.1080/14686996.2022.2052181] [Reference Citation Analysis]
16 Chi H, Zhu G, Yin Y, Diao H, Liu Z, Sun S, Guo Z, Xu W, Xu J, Cui C, Xing X, Ma K. Dual-Responsive multifunctional “core-shell” magnetic nanoparticles promoting Fenton reaction for tumor ferroptosis therapy. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121898] [Reference Citation Analysis]
17 Lv H, Xing Y, Du X, Xu T, Zhang X. Construction of dendritic Janus nanomotors with H 2 O 2 and NIR light dual-propulsion via a Pickering emulsion. Soft Matter 2020;16:4961-8. [DOI: 10.1039/d0sm00552e] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
18 Gu P, Cai G, Yang Y, Hu Y, Liu J, Wang D. Polyethylenimine-coated PLGA nanoparticles containing Angelica sinensis polysaccharide promote dendritic cells activation and associated molecular mechanisms. Int J Biol Macromol 2022;207:559-69. [PMID: 35288164 DOI: 10.1016/j.ijbiomac.2022.03.038] [Reference Citation Analysis]
19 Zhang M, Jiang Y, Qi K, Song Y, Li L, Zeng J, Wang C, Zhao Z. Precise engineering of acorn-like Janus nanoparticles for cancer theranostics. Acta Biomater 2021;130:423-34. [PMID: 34087438 DOI: 10.1016/j.actbio.2021.05.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020;41:2000106. [DOI: 10.1002/marc.202000106] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
21 Shi Y, Xu X, Yu H, Lin Z, Zuo H, Wu Y. Defined positive charge patterns created on DNA nanostructures determine cellular uptake efficiency. Nano Lett 2022. [PMID: 35729707 DOI: 10.1021/acs.nanolett.2c01316] [Reference Citation Analysis]