BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim D, Lim S, Shim J, Song JE, Chang JS, Jin KS, Cho EC. A Simple Evaporation Method for Large-Scale Production of Liquid Crystalline Lipid Nanoparticles with Various Internal Structures. ACS Appl Mater Interfaces 2015;7:20438-46. [DOI: 10.1021/acsami.5b06413] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Nogueira KAB, Martins JRP, Lima TS, Junior JWBA, do Carmo Aquino AL, de Lima LMF, Eloy JO, Petrilli R. Topical Drug Delivery Using Liposomes and Liquid Crystalline Phases for Skin Cancer Therapy. Advances in Novel Formulations for Drug Delivery 2023. [DOI: 10.1002/9781394167708.ch8] [Reference Citation Analysis]
2 Yu H, Dyett BP, Zhai J, Strachan JB, Drummond CJ, Conn CE. Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. J Colloid Interface Sci 2023;634:279-89. [PMID: 36542965 DOI: 10.1016/j.jcis.2022.12.028] [Reference Citation Analysis]
3 Shah S, Joga R, Kolipaka T, Sabnis Dushyantrao C, Khairnar P, Simran, Phatale V, Pandey G, Srivastava S, Kumar S. Paradigm of lyotropic liquid crystals in tissue regeneration. Int J Pharm 2023;634:122633. [PMID: 36690130 DOI: 10.1016/j.ijpharm.2023.122633] [Reference Citation Analysis]
4 Vitoria Pupo Silvestrini A, Wender Debiasi B, Garcia Praça F, Vitoria Lopes Badra Bentley M. Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. International Journal of Pharmaceutics 2022;628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Reference Citation Analysis]
5 Chavda VP, Dawre S, Pandya A, Vora LK, Modh DH, Shah V, Dave DJ, Patravale V. Lyotropic liquid crystals for parenteral drug delivery. J Control Release 2022;349:533-49. [PMID: 35792188 DOI: 10.1016/j.jconrel.2022.06.062] [Reference Citation Analysis]
6 Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-santos P, Botelho CM. A Versatile Nanocarrier—Cubosomes, Characterization, and Applications. Nanomaterials 2022;12:2224. [DOI: 10.3390/nano12132224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhao Y, Li L, Zhou E, Wang J, Wang Y, Guo L, Zhang X. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. Pharmaceutical Fronts 2022;04:e43-e60. [DOI: 10.1055/s-0042-1751036] [Reference Citation Analysis]
8 Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022;348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chountoulesi M, Pispas S, Tseti IK, Demetzos C. Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals 2022;15:429. [DOI: 10.3390/ph15040429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Bryant SJ, Bathke EK, Edler KJ. Bottom-up cubosome synthesis without organic solvents. J Colloid Interface Sci 2021;601:98-105. [PMID: 34058556 DOI: 10.1016/j.jcis.2021.05.072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Davoodabadi A, Ghasemi H. Evaporation in nano/molecular materials. Adv Colloid Interface Sci 2021;290:102385. [PMID: 33662599 DOI: 10.1016/j.cis.2021.102385] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wu H, Cui Z, Huo Y, Sun Y, Zhang X, Guan J, Mao S. Influence of drug-carrier compatibility and preparation method on the properties of paclitaxel-loaded lipid liquid crystalline nanoparticles. J Pharm Sci 2021;110:2800-7. [PMID: 33785353 DOI: 10.1016/j.xphs.2021.03.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
13 Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021;23:3693-706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
14 Rahnfeld L, Luciani P. Injectable Lipid-Based Depot Formulations: Where Do We Stand? Pharmaceutics 2020;12:E567. [PMID: 32575406 DOI: 10.3390/pharmaceutics12060567] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
15 Chountoulesi M, Perinelli DR, Pippa N, Chrysostomou V, Forys A, Otulakowski L, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Physicochemical, morphological and thermal evaluation of lyotropic lipidic liquid crystalline nanoparticles: The effect of stimuli-responsive polymeric stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;595:124678. [DOI: 10.1016/j.colsurfa.2020.124678] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
16 Waghule T, Rapalli VK, Singhvi G, Gorantla S, Khosa A, Dubey SK, Saha RN. Design of temozolomide-loaded proliposomes and lipid crystal nanoparticles with industrial feasible approaches: comparative assessment of drug loading, entrapment efficiency, and stability at plasma pH. J Liposome Res 2021;31:158-68. [PMID: 32290733 DOI: 10.1080/08982104.2020.1748648] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
17 Shegokar R, Nakach M. Large-scale manufacturing of nanoparticles—An industrial outlook. Drug Delivery Aspects 2020. [DOI: 10.1016/b978-0-12-821222-6.00004-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Chountoulesi M, Pippa N, Chrysostomou V, Pispas S, Chrysina ED, Forys A, Otulakowski L, Trzebicka B, Demetzos C. Stimuli-Responsive Lyotropic Liquid Crystalline Nanosystems with Incorporated Poly(2-Dimethylamino Ethyl Methacrylate)-b-Poly(Lauryl Methacrylate) Amphiphilic Block Copolymer.Polymers (Basel). 2019;11. [PMID: 31454966 DOI: 10.3390/polym11091400] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
19 Magana JR, Homs M, Esquena J, Freilich I, Kesselman E, Danino D, Rodríguez-abreu C, Solans C. Formulating stable hexosome dispersions with a technical grade diglycerol-based surfactant. Journal of Colloid and Interface Science 2019;550:73-80. [DOI: 10.1016/j.jcis.2019.04.084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
20 Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discovery Today 2019;24:1405-12. [DOI: 10.1016/j.drudis.2019.05.004] [Cited by in Crossref: 58] [Cited by in F6Publishing: 78] [Article Influence: 14.5] [Reference Citation Analysis]
21 Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019;58:2958-78. [PMID: 29926520 DOI: 10.1002/anie.201804067] [Cited by in Crossref: 211] [Cited by in F6Publishing: 218] [Article Influence: 42.2] [Reference Citation Analysis]
22 Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem 2019;131:2984-3006. [DOI: 10.1002/ange.201804067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
23 Kim H, Sung J, Chang Y, Alfeche A, Leal C. Microfluidics Synthesis of Gene Silencing Cubosomes. ACS Nano 2018;12:9196-205. [PMID: 30081623 DOI: 10.1021/acsnano.8b03770] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
24 Chountoulesi M, Pippa N, Pispas S, Chrysina ED, Forys A, Trzebicka B, Demetzos C. Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. Int J Pharm 2018;550:57-70. [PMID: 30121331 DOI: 10.1016/j.ijpharm.2018.08.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
25 Wang X, Zhang Y, Gui S, Huang J, Cao J, Li Z, Li Q, Chu X. Characterization of Lipid-Based Lyotropic Liquid Crystal and Effects of Guest Molecules on Its Microstructure: a Systematic Review. AAPS PharmSciTech 2018;19:2023-40. [PMID: 29869308 DOI: 10.1208/s12249-018-1069-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
26 Suga K, Otsuka Y, Okamoto Y, Umakoshi H. Gel-Phase-like Ordered Membrane Properties Observed in Dispersed Oleic Acid/1-Oleoylglycerol Self-Assemblies: Systematic Characterization Using Raman Spectroscopy and a Laurdan Fluorescent Probe. Langmuir 2018;34:2081-8. [DOI: 10.1021/acs.langmuir.7b04044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
27 Huang Y, Gui S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv 2018;8:6978-87. [DOI: 10.1039/c7ra12008g] [Cited by in Crossref: 64] [Cited by in F6Publishing: 70] [Article Influence: 12.8] [Reference Citation Analysis]
28 Singhvi G, Banerjee S, Khosa A. Lyotropic liquid crystal nanoparticles. Organic Materials as Smart Nanocarriers for Drug Delivery 2018. [DOI: 10.1016/b978-0-12-813663-8.00011-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
29 Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interface Sci 2017;249:331-45. [PMID: 28477868 DOI: 10.1016/j.cis.2017.04.006] [Cited by in Crossref: 135] [Cited by in F6Publishing: 137] [Article Influence: 22.5] [Reference Citation Analysis]
30 Brown R, Madrid E, Castaing R, Stone JM, Squires AM, Edler KJ, Takashina K, Marken F. Free-Standing Phytantriol Q 224 Cubic-Phase Films: Resistivity Monitoring and Switching. ChemElectroChem 2017;4:1172-80. [DOI: 10.1002/celc.201600735] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
31 Akbar S, Anwar A, Ayish A, Elliott JM, Squires AM. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci 2017;101:31-42. [PMID: 28137471 DOI: 10.1016/j.ejps.2017.01.035] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 8.5] [Reference Citation Analysis]
32 Akhlaghi SP, Ribeiro IR, Boyd BJ, Loh W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes. Colloids and Surfaces B: Biointerfaces 2016;145:845-53. [DOI: 10.1016/j.colsurfb.2016.05.091] [Cited by in Crossref: 53] [Cited by in F6Publishing: 57] [Article Influence: 7.6] [Reference Citation Analysis]
33 Younus M, Prentice RN, Clarkson AN, Boyd BJ, Rizwan SB. Incorporation of an Endogenous Neuromodulatory Lipid, Oleoylethanolamide, into Cubosomes: Nanostructural Characterization. Langmuir 2016;32:8942-50. [DOI: 10.1021/acs.langmuir.6b02395] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
34 Persad AH, Ward CA. Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation. Chem Rev 2016;116:7727-67. [DOI: 10.1021/acs.chemrev.5b00511] [Cited by in Crossref: 195] [Cited by in F6Publishing: 203] [Article Influence: 27.9] [Reference Citation Analysis]