BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wen C, Huang W, Zhu X, Li X, Zhang F, Jiang R. UGT74AN1, a Permissive Glycosyltransferase from Asclepias curassavica for the Regiospecific Steroid 3- O -Glycosylation. Org Lett 2018;20:534-7. [DOI: 10.1021/acs.orglett.7b03619] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Zou D, Wang Q, Chen T, Sang D, Yang T, Wang Y, Gao M, He F, Li Y, He L, Longzhu D. Bufadienolides originated from toad source and their anti-inflammatory activity. Front Pharmacol 2022;13:1044027. [DOI: 10.3389/fphar.2022.1044027] [Reference Citation Analysis]
2 Guo F, Zhang X, You C, Zhang C, Li F, Li N, Xia Y, Liu M, Qiu Z, Zheng X, Ma L, Zhang G, Luo L, Cao F, Feng Y, Zhao GR, Zhang W, Li S, Du L. Diversification of phenolic glucosides by two UDP-glucosyltransferases featuring complementary regioselectivity. Microb Cell Fact 2022;21:208. [PMID: 36217200 DOI: 10.1186/s12934-022-01935-w] [Reference Citation Analysis]
3 Song W, Zhang C, Wu J, Qi J, Hua X, Kang L, Yuan Q, Yuan J, Xue Z. Characterization of Three Paris polyphylla Glycosyltransferases from Different UGT Families for Steroid Functionalization. ACS Synth Biol 2022;11:1669-80. [PMID: 35286065 DOI: 10.1021/acssynbio.2c00103] [Reference Citation Analysis]
4 Zhang LJ, Wang DG, Zhang P, Wu C, Li YZ. Promiscuity Characteristics of Versatile Plant Glycosyltransferases for Natural Product Glycodiversification. ACS Synth Biol 2022;11:812-9. [PMID: 35076210 DOI: 10.1021/acssynbio.1c00489] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Huang W, He Y, Jiang R, Deng Z, Long F. Functional and Structural Dissection of a Plant Steroid 3- O -Glycosyltransferase Facilitated the Engineering Enhancement of Sugar Donor Promiscuity. ACS Catal 2022;12:2927-37. [DOI: 10.1021/acscatal.1c05729] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Liang Y, Zan X, Sun L, Fu X, Cui F, Tan M, Shao Z, Sun W. A uridine diphosphate-glycosyltransferase GFUGT88A1 derived from edible mushroom Grifola frondosa extends oligosaccharide chains. Process Biochemistry 2022;112:80-91. [DOI: 10.1016/j.procbio.2021.11.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Liu YN, Hong LL, Liu M, Guo QC, Kong JQ. Glycodiversifying Testosterone with a Promiscuous Glycosyltransferase OsSGT2 from Ornithogalum saundersiae. ACS Synth Biol 2021;10:3583-94. [PMID: 34846134 DOI: 10.1021/acssynbio.1c00532] [Reference Citation Analysis]
8 Wang Q, Chen T, Cui Y, Li S, Jiang X, Zhao G, Li Y, Zou D. The applicability of pH-zone-refining counter-current chromatography for preparative separation of biosynthesis products: Glycosylation products as example. J Chromatogr A 2021;1657:462582. [PMID: 34614468 DOI: 10.1016/j.chroma.2021.462582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zou D, Cui Y, Li S, Sang D, Liu W, Zhao T, Gu X, Chen T, Li Y. The applicability of high-speed counter-current chromatography for preparative separation of biosynthesis products: Glycosylation products as example. J Sep Sci 2021. [PMID: 34687498 DOI: 10.1002/jssc.202100544] [Reference Citation Analysis]
10 Li X, Yang X, Liu L, Zhang M, Ren Y, Zhan H, Xing R, Luo R, Chen T, Tang J. Three new steroidal sapogenins derived from the roots of Cynanchum otophyllum and their cytotoxic activities. Phytochemistry Letters 2021;45:105-9. [DOI: 10.1016/j.phytol.2021.08.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Liu Y, Xu W, Huang ZH, Guo J, Jiang RW. An Efficient Strategy for the Chemo-Enzymatic Synthesis of Bufalin Glycosides with Improved Water Solubility and Inhibition against Na+ , K+ -ATPase. Chem Biodivers 2020;17:e2000529. [PMID: 32939944 DOI: 10.1002/cbdv.202000529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Maharjan R, Fukuda Y, Shimomura N, Nakayama T, Okimoto Y, Kawakami K, Nakayama T, Hamada H, Inoue T, Ozaki SI. An Ambidextrous Polyphenol Glycosyltransferase PaGT2 from Phytolacca americana. Biochemistry 2020;59:2551-61. [PMID: 32525309 DOI: 10.1021/acs.biochem.0c00224] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
13 Zhang P, Zhang Z, Zhang L, Wang J, Wu C. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Comput Struct Biotechnol J 2020;18:1383-90. [PMID: 32637037 DOI: 10.1016/j.csbj.2020.06.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
14 Huang W, He Q, Zhou ZR, He HB, Jiang RW. Enzymatic Synthesis of Puerarin Glucosides Using Cyclodextrin Glucanotransferase with Enhanced Antiosteoporosis Activity. ACS Omega 2020;5:12251-8. [PMID: 32548408 DOI: 10.1021/acsomega.0c00950] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Maharjan R, Fukuda Y, Nakayama T, Nakayama T, Hamada H, Ozaki SI, Inoue T. Crown-ether-mediated crystal structures of the glycosyltransferase PaGT3 from Phytolacca americana. Acta Crystallogr D Struct Biol 2020;76:521-30. [PMID: 32496214 DOI: 10.1107/S2059798320005306] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
16 Xu YL, Kong JQ. OcUGT1-Catalyzing Glycodiversification of Steroids through Glucosylation and Transglucosylation Actions. Molecules 2020;25:E475. [PMID: 31979165 DOI: 10.3390/molecules25030475] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Lafite P, Marroun S, Coadou G, Montaut S, Marquès S, Schuler M, Rollin P, Tatibouët A, Daniellou R, Oulyadi H. S-glycosyltransferase UGT74B1 can glycosylate both S- and O-acceptors: mechanistic insights through substrate specificity. Molecular Catalysis 2019;479:110631. [DOI: 10.1016/j.mcat.2019.110631] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wen C, Huang W, He MM, Deng WL, Yu HH. Cloning and characterization of a glycosyltransferase from Catharanthus roseus for glycosylation of cardiotonic steroids and phenolic compounds. Biotechnol Lett 2020;42:135-42. [PMID: 31734772 DOI: 10.1007/s10529-019-02756-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
19 Pandey RP, Bashyal P, Parajuli P, Yamaguchi T, Sohng JK. Two Trifunctional Leloir Glycosyltransferases as Biocatalysts for Natural Products Glycodiversification. Org Lett 2019;21:8058-64. [PMID: 31550168 DOI: 10.1021/acs.orglett.9b03040] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
20 Huang W, Wen C, Zhou Z, Fu Z, Katz A, Plotnikov A, Karlish SJD, Jiang R. An Efficient One‐Pot Enzymatic Synthesis of Cardiac Glycosides with Varied Sugar Chain Lengths. Adv Synth Catal 2019;361:3114-9. [DOI: 10.1002/adsc.201900227] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
21 Fu Z, Wen C, Ye Q, Huang W, Liu X, Jiang R. An Efficient Strategy for the Glycosylation of Total Bufadienolides in Venenum Bufonis. ACS Omega 2019;4:6819-25. [DOI: 10.1021/acsomega.9b00386] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
22 Li Y, Lin H, Wang J, Yang J, Lai C, Wang X, Ma B, Tang J, Li Y, Li X, Guo J, Gao W, Huang L. Glucosyltransferase Capable of Catalyzing the Last Step in Neoandrographolide Biosynthesis. Org Lett 2018;20:5999-6002. [DOI: 10.1021/acs.orglett.8b02146] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]