1 |
Zhang X, Zhao Q, Yang J, Wang T, Chen F, Zhang K. Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coordination Chemistry Reviews 2023;484:215115. [DOI: 10.1016/j.ccr.2023.215115] [Reference Citation Analysis]
|
2 |
Hao Y, Chen M, Wu Y, Dong Z, Zhu Y, Wang C, Li Q, Yang Z, Liu Z, Feng L. CaCO3 based proton nanosponge to potentiate immune checkpoint blockade therapy by synergistically reversing tumor immunosuppression. Chemical Engineering Journal 2023;462:142206. [DOI: 10.1016/j.cej.2023.142206] [Reference Citation Analysis]
|
3 |
Chen J, Wan S, Fu Y, Zhou Y, Li X, Wang H. An implantable composite scaffold for amplified chemodynamic therapy and tissue regeneration. J Mater Chem B 2023. [PMID: 36930171 DOI: 10.1039/d2tb02699f] [Reference Citation Analysis]
|
4 |
Wu S, Liu C, Li W, Zhang C, Chen D, Xu C, Su L, Wang X. Second near-infrared photoactivatable nanomedicines for enhanced photothermal-chemodynamic therapy of cancer. J Mater Chem B 2023;11:2455-65. [PMID: 36810638 DOI: 10.1039/d2tb02769k] [Reference Citation Analysis]
|
5 |
Duan J, Liao T, Xu X, Liu Y, Kuang Y, Li C. Metal-polyphenol nanodots loaded hollow MnO(2) nanoparticles with a "dynamic protection" property for enhanced cancer chemodynamic therapy. J Colloid Interface Sci 2023;634:836-51. [PMID: 36565625 DOI: 10.1016/j.jcis.2022.12.088] [Reference Citation Analysis]
|
6 |
Wang X, Zhao L, Wang C, Wang L, Wu H, Song X, Wang W, Xu H, Dong X. Potent nanoreactor-mediated ferroptosis-based strategy for the reversal of cancer chemoresistance to Sorafenib. Acta Biomater 2023;159:237-46. [PMID: 36736851 DOI: 10.1016/j.actbio.2023.01.053] [Reference Citation Analysis]
|
7 |
Zhu Y, Gong P, Wang J, Cheng J, Wang W, Cai H, Ao R, Huang H, Yu M, Lin L, Chen X. Amplification of Lipid Peroxidation by Regulating Cell Membrane Unsaturation To Enhance Chemodynamic Therapy. Angew Chem Int Ed Engl 2023;62:e202218407. [PMID: 36708200 DOI: 10.1002/anie.202218407] [Reference Citation Analysis]
|
8 |
Asif K, Adeel M, Rahman MM, Caligiuri I, Perin T, Cemazar M, Canzonieri V, Rizzolio F. Iron nitroprusside as a chemodynamic agent and inducer of ferroptosis for ovarian cancer therapy. J Mater Chem B 2023. [PMID: 36883303 DOI: 10.1039/d2tb02691k] [Reference Citation Analysis]
|
9 |
Ma Y, Guo C, Qu F, Lin H. NIR-II driven photocatalytic hydrogen peroxide-supply on metallic copper-nickel selenide (Cu-Ni(0.85)Se) nanoparticle for synergistic therapy. J Colloid Interface Sci 2023;641:113-25. [PMID: 36924541 DOI: 10.1016/j.jcis.2023.02.118] [Reference Citation Analysis]
|
10 |
Cao Q, Yang C, Yao Y, Li B, Liu J, Cao Z, Liu J, Xiao M. Learning from human metabolism for nanomedicine: a convertible bismuth-agent for tumour-selective theranostics. Mater Horiz 2023. [PMID: 36876968 DOI: 10.1039/d3mh00077j] [Reference Citation Analysis]
|
11 |
Zhong Z, Li X, Liu J, Qin N, Duan H, Duan X. Disulfide Bond-Based SN38 Prodrug Nanoassemblies with High Drug Loading and Reduction-Triggered Drug Release for Pancreatic Cancer Therapy. IJN 2023;Volume 18:1281-1298. [DOI: 10.2147/ijn.s404848] [Reference Citation Analysis]
|
12 |
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano‐radiosensitizers in combination cancer therapy. Bioengineering & Transla Med 2023. [DOI: 10.1002/btm2.10498] [Reference Citation Analysis]
|
13 |
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023;11:1115440. [PMID: 36814542 DOI: 10.3389/fchem.2023.1115440] [Reference Citation Analysis]
|
14 |
Wang Z, Liu B, Tu J, Xiang J, Xiong H, Wu Y, Ding S, Zhu D, Zhu D, Liu F, Hu G, Yuan X. PLGA Nanoparticles Loaded with Sorafenib Combined with Thermosensitive Hydrogel System and Microwave Hyperthermia for Multiple Sensitized Radiotherapy. Pharmaceutics 2023;15. [PMID: 36839808 DOI: 10.3390/pharmaceutics15020487] [Reference Citation Analysis]
|
15 |
Hou YK, Zhang ZJ, Li RT, Peng J, Chen SY, Yue YR, Zhang WH, Sun B, Chen JX, Zhou Q. Remodeling the Tumor Microenvironment with Core-Shell Nanosensitizer Featuring Dual-Modal Imaging and Multimodal Therapy for Breast Cancer. ACS Appl Mater Interfaces 2023;15:2602-16. [PMID: 36622638 DOI: 10.1021/acsami.2c17691] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Kicheeva AG, Sushko ES, Bondarenko LS, Kydralieva KA, Pankratov DA, Tropskaya NS, Dzeranov AA, Dzhardimalieva GI, Zarrelli M, Kudryasheva NS. Functionalized Magnetite Nanoparticles: Characterization, Bioeffects, and Role of Reactive Oxygen Species in Unicellular and Enzymatic Systems. Int J Mol Sci 2023;24. [PMID: 36674650 DOI: 10.3390/ijms24021133] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Sang W, Dai Y. Metal Coordination Nanomedicine. Nanomedicine 2023. [DOI: 10.1007/978-981-16-8984-0_33] [Reference Citation Analysis]
|
18 |
Wang L, Fu H, Song L, Wu Z, Yu J, Guo Q, Chen C, Yang X, Zhang J, Wang Q, Duan Y, Yang Y. Overcoming AZD9291 Resistance and Metastasis of NSCLC via Ferroptosis and Multitarget Interference by Nanocatalytic Sensitizer Plus AHP-DRI-12. Small 2023;19:e2204133. [PMID: 36420659 DOI: 10.1002/smll.202204133] [Reference Citation Analysis]
|
19 |
Lu J, Yang Y, Xu Q, Lin Y, Feng S, Mao Y, Wang D, Wang S, Zhao Q. Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coordination Chemistry Reviews 2023;474:214861. [DOI: 10.1016/j.ccr.2022.214861] [Reference Citation Analysis]
|
20 |
Chang Y, Cui P, Zhou S, Qiu L, Jiang P, Chen S, Wang C, Wang J. Metal-phenolic network for cancer therapy. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104194] [Reference Citation Analysis]
|
21 |
Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov 2022;8:501. [PMID: 36581640 DOI: 10.1038/s41420-022-01297-7] [Reference Citation Analysis]
|
22 |
Yang J, Wang Y, Qin G, Tian T, Ran J, Wang H, Yang C. Photogeneration of Hydroxyl Radicals Based on Aggregation-Induced Emission Luminogen-Assembled Copper Cysteamine Nanoparticles for Photodynamic Therapy. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04646] [Reference Citation Analysis]
|
23 |
Liu S, Fang L, Ding H, Zhang Y, Li W, Liu B, Dong S, Tian B, Feng L, Yang P. Alternative Strategy to Optimize Cerium Oxide for Enhanced X-ray-Induced Photodynamic Therapy. ACS Nano 2022;16:20805-19. [PMID: 36378717 DOI: 10.1021/acsnano.2c08047] [Reference Citation Analysis]
|
24 |
Dzeranov A, Bondarenko L, Pankratov D, Prokof‘ev M, Dzhardimalieva G, Jorobekova S, Tropskaya N, Telegina L, Kydralieva K. Iron Oxides Nanoparticles as Components of Ferroptosis-Inducing Systems: Screening of Potential Candidates. Magnetochemistry 2022;9:3. [DOI: 10.3390/magnetochemistry9010003] [Reference Citation Analysis]
|
25 |
Mao H, Wen Y, Yu Y, Li H, Wang J, Sun B. Bioinspired nanocatalytic tumor therapy by simultaneous reactive oxygen species generation enhancement and glutamine pathway-mediated glutathione depletion. J Mater Chem B 2022;11:131-43. [PMID: 36484247 DOI: 10.1039/d2tb02194c] [Reference Citation Analysis]
|
26 |
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi M, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioactive Materials 2023;23:471-507. [DOI: 10.1016/j.bioactmat.2022.11.013] [Reference Citation Analysis]
|
27 |
Liu S, Xu X, Ye J, Wang J, Wang Q, Liu Z, Xu J, Fu Y. Metal-coordinated nanodrugs based on natural products for cancer theranostics. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140892] [Reference Citation Analysis]
|
28 |
Huang Z, Li D, Guo F, Xian T, Hu H, Xu J, Luo Y, Chen Z, Wang B, Zhang Y. Mitochondria-targeted photosensitizer based nanoplatform loading glutathione inhibitor for enhanced breast cancer photodynamic therapy. Colloids and Surfaces B: Biointerfaces 2022;220:112956. [DOI: 10.1016/j.colsurfb.2022.112956] [Reference Citation Analysis]
|
29 |
Ma X, Cai D, Zhang Z, Dai Q, Li X, Yu B, Ge B, Liu S, Wang X, Huang F. Peptidomimetic-liganded gold nanoclusters for controlled iron delivery and synergistic suppression of tumor growth. Nano Res 2022. [DOI: 10.1007/s12274-022-5103-y] [Reference Citation Analysis]
|
30 |
Pan Y, Zhu Y, Xu C, Pan C, Shi Y, Zou J, Li Y, Hu X, Zhou B, Zhao C, Gao Q, Zhang J, Wu A, Chen X, Li J. Biomimetic Yolk-Shell Nanocatalysts for Activatable Dual-Modal-Image-Guided Triple-Augmented Chemodynamic Therapy of Cancer. ACS Nano 2022;16:19038-52. [PMID: 36315056 DOI: 10.1021/acsnano.2c08077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Bilbao‐asensio M, Ruiz‐de‐angulo A, Arguinzoniz AG, Cronin J, Llop J, Zabaleta A, Michue‐seijas S, Sosnowska D, Arnold JN, Mareque‐rivas JC. Redox‐Triggered Nanomedicine via Lymphatic Delivery: Inhibition of Melanoma Growth by Ferroptosis Enhancement and a Pt(IV)‐Prodrug Chemoimmunotherapy Approach. Advanced Therapeutics 2022. [DOI: 10.1002/adtp.202200179] [Reference Citation Analysis]
|
32 |
Wang Y, Liang Z, Liang Z, Lv W, Chen M, Zhao Y. Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. Journal of Controlled Release 2022;351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Reference Citation Analysis]
|
33 |
Niu X, Wei P, Sun J, Lin Y, Chen X, Ding C, Zhu Y, Kang D. Biomineralized hybrid nanodots for tumor therapy via NIR-II fluorescence and photothermal imaging. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1052014] [Reference Citation Analysis]
|
34 |
Parsaei M, Akhbari K, Tylianakis E, Froudakis GE, White JM, Kawata S. Computational Study of Two Three-Dimensional Co(II)-Based Metal–Organic Frameworks as Quercetin Anticancer Drug Carriers. Crystal Growth & Design 2022. [DOI: 10.1021/acs.cgd.2c00900] [Reference Citation Analysis]
|
35 |
Zhou L, Feng W, Chen L, Huang H, Huang S, Chen Q, Zhang X, Chen Y. Targeting acidogenic metabolism by engineering self-catalytic siRNA nanocarriers/nanocatalysts for amplified tumor apoptosis/ferroptosis. Nano Today 2022;46:101623. [DOI: 10.1016/j.nantod.2022.101623] [Reference Citation Analysis]
|
36 |
Yu N, Ding M, Wang F, Zhou J, Shi X, Cai R, Li J. Near-infrared photoactivatable semiconducting polymer nanocomplexes with bispecific metabolism interventions for enhanced cancer immunotherapy. Nano Today 2022;46:101600. [DOI: 10.1016/j.nantod.2022.101600] [Reference Citation Analysis]
|
37 |
Liu B, Bian Y, Yuan M, Zhu Y, Liu S, Ding H, Gai S, Yang P, Cheng Z, Lin J. L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy. Biomaterials 2022;289:121746. [DOI: 10.1016/j.biomaterials.2022.121746] [Reference Citation Analysis]
|
38 |
Lu H, Xu S, Ge G, Guo Z, Zhao M, Liu Z. Boosting Chemodynamic Therapy by Tumor-Targeting and Cellular Redox Homeostasis-Disrupting Nanoparticles. ACS Appl Mater Interfaces 2022. [PMID: 36149803 DOI: 10.1021/acsami.2c11091] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022;15:132. [PMID: 36096856 DOI: 10.1186/s13045-022-01320-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
40 |
Zhai Y, Liu M, Yang T, Luo J, Wei C, Shen J, Song X, Ke H, Sun P, Guo M, Deng Y, Chen H. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J Control Release 2022;350:761-76. [PMID: 36063961 DOI: 10.1016/j.jconrel.2022.08.054] [Reference Citation Analysis]
|
41 |
Zhang F, Xin C, Dai Z, Hu H, An Q, Wang F, Hu Z, Sun Y, Tian L, Zheng X. Oncocyte Membrane-Camouflaged Multi-Stimuli-Responsive Nanohybrids for Synergistic Amplification of Tumor Oxidative Stresses and Photothermal Enhanced Cancer Therapy. ACS Appl Mater Interfaces 2022. [PMID: 36052606 DOI: 10.1021/acsami.2c11200] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
42 |
Li C, Li Z, Xiaofei C, Qinqin Z, Haojie Q, Xin Y, Qian X, Zhanwei T, Chenyang Z, Weitao M. Novel 3DOM CeO 2 Supported LaFeO 3 as an Effective Heterogeneous Fenton Catalyst for Degradation of Methylene Blue. J Environ Eng 2022;148:04022057. [DOI: 10.1061/(asce)ee.1943-7870.0002043] [Reference Citation Analysis]
|
43 |
Gao Y, Li Y, Cao H, Jia H, Wang D, Ren C, Wang Z, Yang C, Liu J. Hypertoxic self-assembled peptide with dual functions of glutathione depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. J Nanobiotechnology 2022;20:390. [PMID: 36045424 DOI: 10.1186/s12951-022-01604-5] [Reference Citation Analysis]
|
44 |
Liu Z, Zeng N, Yu J, Huang C, Huang Q. A novel dual MoS2/FeGA quantum dots endowed injectable hydrogel for efficient photothermal and boosting chemodynamic therapy. Front Bioeng Biotechnol 2022;10:998571. [DOI: 10.3389/fbioe.2022.998571] [Reference Citation Analysis]
|
45 |
Tang W, Li X, Liu Z, Meng L, Zhu D, Huang Q. CuS nanoparticles and camptothecin co-loaded thermosensitive injectable hydrogel with self-supplied H2O2 for enhanced chemodynamic therapy. Front Bioeng Biotechnol 2022;10:1003777. [DOI: 10.3389/fbioe.2022.1003777] [Reference Citation Analysis]
|
46 |
Li Q, Wang F, Shi L, Tang Q, Li B, Wang X, Jin Y. Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35968633 DOI: 10.1021/acsami.2c05944] [Reference Citation Analysis]
|
47 |
Liao K, Niu B, Dong H, He L, Zhou Y, Sun Y, Yang D, Wu C, Pan X, Quan G. A spark to the powder keg: Microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy. J Colloid Interface Sci 2022;628:189-203. [PMID: 35994900 DOI: 10.1016/j.jcis.2022.08.042] [Reference Citation Analysis]
|
48 |
Feng W, Shi W, Wang Z, Cui Y, Shao X, Liu S, Rong L, Liu Y, Zhang H. Enhancing Tumor Therapy of Fe(III)-Shikonin Supramolecular Nanomedicine via Triple Ferroptosis Amplification. ACS Appl Mater Interfaces 2022. [PMID: 35944147 DOI: 10.1021/acsami.2c11130] [Reference Citation Analysis]
|
49 |
Zhou G, Li M. Biodegradable copper telluride nanosheets for redox-homeostasis breaking-assisted chemodynamic cancer therapy boosted by mild-photothermal effect. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138348] [Reference Citation Analysis]
|
50 |
Han Y, Dong Z, Wang C, Li Q, Hao Y, Yang Z, Zhu W, Zhang Y, Liu Z, Feng L. Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. J Control Release 2022;348:346-56. [PMID: 35679965 DOI: 10.1016/j.jconrel.2022.06.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
|
51 |
Lin J, Zhang J, Wang K, Guo S, Yang W. Zwitterionic polymer coated sorafenib-loaded Fe3O4 composite nanoparticles induced ferroptosis for cancer therapy. J Mater Chem B 2022. [PMID: 35861050 DOI: 10.1039/d2tb01242a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
52 |
Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022;348:1066-88. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
53 |
Hong Y, Tao Q, Liu YY, Wang Z, Wang H, Sun L. Copper peroxide coated upconversion nanoparticle modified with glucose oxidase for H2O2 self-supplying starvation-enhanced chemodynamic therapy in vitro. Dalton Trans 2022. [PMID: 35838196 DOI: 10.1039/d2dt00163b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
54 |
Chong Y, Ning J, Min S, Ye J, Ge C. Emerging nanozymes for potentiating radiotherapy and radiation protection. Chinese Chemical Letters 2022;33:3315-24. [DOI: 10.1016/j.cclet.2022.03.054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
55 |
Deng B, Yang B, Chen J, Wang S, Zhang W, Guo Y, Han Y, Li H, Dang Y, Yuan Y, Dai X, Zang Y, Li Y, Li B. Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy. J Immunother Cancer 2022;10:e004037. [PMID: 35817479 DOI: 10.1136/jitc-2021-004037] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
56 |
Li J, Wei J, Gao Y, Zhao Q, Sun J, Ouyang J, Nana. Peptide-assembled siRNA nanomicelles confine MnO -loaded silicages for synergistic chemical and gene-regulated cancer therapy. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.07.005] [Reference Citation Analysis]
|
57 |
Wang Q, Jia X, Li X, He M, Hao JN, Guan M, Mao Y, Cao Y, Dai B, Li Y. One-pot fabrication of a polydopamine-based nanoplatform for GSH triggered trimodal ROS-amplification for cancer therapy. Biomater Sci 2022. [PMID: 35734909 DOI: 10.1039/d2bm00421f] [Reference Citation Analysis]
|
58 |
Hong Z, Zhong J, Gong S, Huang S, Zhong Q, Ding D, Bian H, Liang H, Huang FP. A triphenylphosphine coordinated cinnamaldehyde-derived copper(I) Fenton-like agent with mitochondrial aggregation damage for chemodynamic therapy. J Mater Chem B 2022. [PMID: 35730927 DOI: 10.1039/d2tb00789d] [Reference Citation Analysis]
|
59 |
Xu W, Wang T, Qian J, Wang J, Hou G, Wang Y, Cui X, Suo A, Wu D. Fe(II)-hydrazide coordinated all-active metal organic framework for photothermally enhanced tumor penetration and ferroptosis-apoptosis synergistic therapy. Chemical Engineering Journal 2022;437:135311. [DOI: 10.1016/j.cej.2022.135311] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
60 |
Chen T, Han G, Li X. Platinum–copper alloy nanoparticles armored with chloride ion transporter to promote electro-driven tumor inhibition. Bioactive Materials 2022;12:143-52. [DOI: 10.1016/j.bioactmat.2021.10.012] [Reference Citation Analysis]
|
61 |
Zhou Z, Liang H, Yang R, Yang Y, Dong J, Di Y, Sun M. Glutathione Depletion-Induced Activation of Dimersomes for Potentiating the Ferroptosis and Immunotherapy of "Cold" Tumor. Angew Chem Int Ed Engl 2022;61:e202202843. [PMID: 35238124 DOI: 10.1002/anie.202202843] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
62 |
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. Nano Convergence 2022;9. [DOI: 10.1186/s40580-022-00313-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
63 |
Yue S, Zhang P, Qin M, Zhu L, Qiao Y, Li Q, Lu Y, Wu H, Jiang N, Liu C, Winnik MA, Hou Y. An Enzyme‐Like Activity Nanoprobe Based on Fe(III)–Rutin Hydrate Biomineral for MR Imaging and Therapy of Triple Negative Breast Cancer. Adv Funct Materials. [DOI: 10.1002/adfm.202202848] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
64 |
Ala M. Sestrin2 in cancer: a foe or a friend? Biomark Res 2022;10. [DOI: 10.1186/s40364-022-00380-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
65 |
Jiang Q, Lu S, Xu X, Bai C, Yan Q, Fang M, Huang L, Jin C, Zhang Y, Sun J, He Z, Zhao C, Qin F, Wang Y, Zhang T. Inhibition of alanine-serine-cysteine transporter 2-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between V-9302 and photosensitizer. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.05.044] [Reference Citation Analysis]
|
66 |
Fujii S, Takano S, Nakazawa K, Sakurai K. Impact of Zwitterionic Polymers on the Tumor Permeability of Molecular Bottlebrush-Based Nanoparticles. Biomacromolecules 2022. [PMID: 35486537 DOI: 10.1021/acs.biomac.2c00216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
67 |
Zhang L, Dai Y, Pan S, Tan Y, Sun C, Cao M, Xu H. Copper-Selenocysteine Quantum Dots for NIR-II Photothermally Enhanced Chemodynamic Therapy. ACS Appl Bio Mater 2022. [PMID: 35389206 DOI: 10.1021/acsabm.2c00150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
68 |
Nan F, Jia Q, Xue X, Wang S, Liu W, Wang J, Ge J, Wang P. Iron phthalocyanine-derived nanozyme as dual reactive oxygen species generation accelerator for photothermally enhanced tumor catalytic therapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
69 |
Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022;2:20210238. [DOI: 10.1002/exp.20210238] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
|
70 |
Sankaranarayanan SA, Thomas A, Revi N, Ramakrishna B, Rengan AK. Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology 2022;70:103196. [DOI: 10.1016/j.jddst.2022.103196] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
71 |
Zhou Z, Liang H, Yang R, Yang Y, Dong J, Di Y, Sun M. Glutathione Depletion‐Induced Activation of Dimersomes for Potentiating the Ferroptosis and Immunotherapy of “Cold” Tumor. Angewandte Chemie. [DOI: 10.1002/ange.202202843] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
72 |
Zhou B, Liu J, Wang L, Wang M, Zhao C, Lin H, Liang Y, Towner RA, Chen WR. Iron oxide nanoparticles as a drug carrier reduce host immunosuppression for enhanced chemotherapy. Nanoscale 2022;14:4588-94. [PMID: 35253815 DOI: 10.1039/d1nr07750c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
73 |
Huang Y, Wu S, Zhang L, Deng Q, Ren J, Qu X. A Metabolic Multistage Glutathione Depletion Used for Tumor-Specific Chemodynamic Therapy. ACS Nano 2022;16:4228-38. [PMID: 35213138 DOI: 10.1021/acsnano.1c10231] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
|
74 |
Su J, Lu S, Wei Z, Li B, Li J, Sun J, Liu K, Zhang H, Wang F. Biocompatible Inorganic Nanoagent for Efficient Synergistic Tumor Treatment with Augmented Antitumor Immunity. Small 2022;:e2200897. [PMID: 35289484 DOI: 10.1002/smll.202200897] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
75 |
Chen J, Cao Y, Lin S, Niu H, Zhang H, Guan L, Shu C, Wu A, Bian Y, Zhu Y. A responsive microneedle system for efficient anti-melanoma by combining self-enhanced chemodynamic therapy with photothermal therapy. Chemical Engineering Journal 2022;431:133466. [DOI: 10.1016/j.cej.2021.133466] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
76 |
Jing X, Meng L, Yang T, Zhang N, Fan S, Chen Y, Yang H, Wang D, Ji W, She J. Biodegradable polyphosphazene-based nanodrug to regulate redox homeostasis for augmented chemo-photodynamic therapy. Dyes and Pigments 2022;199:110095. [DOI: 10.1016/j.dyepig.2022.110095] [Reference Citation Analysis]
|
77 |
Liu CY, Chen HL, Zhou HJ, Yu SM, Yao WH, Wang N, Lu AH, Qiao WH. Precise delivery of multi-stimulus-responsive nanocarriers based on interchangeable visual guidance. Biomater Adv 2022;134:112558. [PMID: 35525754 DOI: 10.1016/j.msec.2021.112558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
78 |
Yue R, Zhang C, Xu L, Wang Y, Guan G, Lei L, Zhang X, Song G. Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
79 |
Fu X, Zhang Y, Zhang G, Li X, Ni S, Cui J. Targeted delivery of Fenton reaction packages and drugs for cancer theranostics. Applied Materials Today 2022;26:101353. [DOI: 10.1016/j.apmt.2021.101353] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
80 |
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coordination Chemistry Reviews 2022;455:214360. [DOI: 10.1016/j.ccr.2021.214360] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
81 |
Mi W, Tang S, Guo S, Li H, Shao N. In situ synthesis of red fluorescent gold nanoclusters with enzyme-like activity for oxidative stress amplification in chemodynamic therapy. Chinese Chemical Letters 2022;33:1331-6. [DOI: 10.1016/j.cclet.2021.07.073] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
82 |
Zhang R, Ma Q, Hu G, Wang L. Acid-Triggered H2O2 Self-Supplying Nanoplatform for 19F-MRI with Enhanced Chemo-Chemodynamic Therapy. Anal Chem 2022;94:3727-34. [PMID: 35184546 DOI: 10.1021/acs.analchem.2c00023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
83 |
Wu Y, Li Y, Lv G, Bu W. Redox dyshomeostasis strategy for tumor therapy based on nanomaterials chemistry. Chem Sci 2022;13:2202-17. [PMID: 35310479 DOI: 10.1039/d1sc06315d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
84 |
Liu J, Yuan Y, Cheng Y, Fu D, Chen Z, Wang Y, Zhang L, Yao C, Shi L, Li M, Zhou C, Zou M, Wang G, Wang L, Wang Z. Copper-Based Metal-Organic Framework Overcomes Cancer Chemoresistance through Systemically Disrupting Dynamically Balanced Cellular Redox Homeostasis. J Am Chem Soc 2022. [PMID: 35192770 DOI: 10.1021/jacs.1c11856] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
85 |
Yang G, Wang D, Phua SZF, Bindra AK, Qian C, Zhang R, Cheng L, Liu G, Wu H, Liu Z, Zhao Y. Albumin-Based Therapeutics Capable of Glutathione Consumption and Hydrogen Peroxide Generation for Synergetic Chemodynamic and Chemotherapy of Cancer. ACS Nano 2022;16:2319-29. [PMID: 35129953 DOI: 10.1021/acsnano.1c08536] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
86 |
Shi Z, Tang J, Lin C, Chen T, Zhang F, Huang Y, Luan P, Xin Z, Li Q, Mei L. Construction of iron-mineralized black phosphorene nanosheet to combinate chemodynamic therapy and photothermal therapy. Drug Deliv 2022;29:624-36. [PMID: 35174748 DOI: 10.1080/10717544.2022.2039810] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
87 |
Liu Y, Chi S, Cao Y, Liu Z. Glutathione-Responsive Biodegradable Core–Shell Nanoparticles That Self-Generate H 2 O 2 and Deliver Doxorubicin for Chemo–Chemodynamic Therapy. ACS Appl Nano Mater 2022;5:2592-602. [DOI: 10.1021/acsanm.1c04277] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
88 |
Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Adv Sci (Weinh) 2022;9:e2103444. [PMID: 34927373 DOI: 10.1002/advs.202103444] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
|
89 |
Wang Y, Niu W, Qu X, Lei B. Bioactive Anti-Inflammatory Thermocatalytic Nanometal-Polyphenol Polypeptide Scaffolds for MRSA-Infection/Tumor Postsurgical Tissue Repair. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.1c21082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
90 |
Guo C, Su Y, Cheng Z, Chen Q, Guo H, Kong M, Chen D. Novel ROS-responsive marine biomaterial fucoidan nanocarriers with AIE effect and chemodynamic therapy. Int J Biol Macromol 2022:S0141-8130(22)00076-9. [PMID: 35041879 DOI: 10.1016/j.ijbiomac.2022.01.060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
91 |
Chen T, Su L, Lin L, Ge X, Bai F, Niu M, Wang C, Song J, Guo S, Yang H. Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Res . [DOI: 10.1007/s12274-021-3997-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
92 |
Luo S, Ma D, Wei R, Yao W, Pang X, Wang Y, Xu X, Wei X, Guo Y, Jiang X, Yuan Y, Yang R. A tumor microenvironment responsive nanoplatform with oxidative stress amplification for effective MRI-based visual tumor ferroptosis. Acta Biomater 2022;138:518-27. [PMID: 34775124 DOI: 10.1016/j.actbio.2021.11.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
|
93 |
Bonet-aleta J, Calzada-funes J, Hueso JL. Recent developments of iron-based nanosystems as enzyme-mimicking surrogates of interest in tumor microenvironment treatment. Nanomaterials for Biocatalysis 2022. [DOI: 10.1016/b978-0-12-824436-4.00006-x] [Reference Citation Analysis]
|
94 |
Trivedi S, Paunikar A, Raut N, Belgamwar V. Photodynamic therapy for cancer treatment. Photophysics and Nanophysics in Therapeutics 2022. [DOI: 10.1016/b978-0-323-89839-3.00010-5] [Reference Citation Analysis]
|
95 |
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022. [DOI: 10.1039/d1cs01145f] [Reference Citation Analysis]
|
96 |
Feng W, Shi W, Liu S, Liu H, Liu Y, Ge P, Zhang H. Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis. Adv Healthc Mater 2022;11:e2101926. [PMID: 34738742 DOI: 10.1002/adhm.202101926] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
97 |
Dai X, Li Y, Liu X, Lei Z, Yang L, Xu Q, Gao F. Biodegradable Fe(ii)/Fe(iii)-coordination-driven nanoassemblies for chemo/photothermal/chemodynamic synergistic therapy of bacterial infection. New J Chem 2022;46:20193-20203. [DOI: 10.1039/d2nj03803j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
98 |
Zhao F, Yao J, Tong Y, Su D, Xu Q, Ying Y, Li W, Li J, Zheng J, Qiao L, Cai W, Mou X, Che S, Yu J, Hou Y. H 2 O 2 -replenishable and GSH-depletive ROS ‘bomb’ for self-enhanced chemodynamic therapy. Mater Adv 2022;3:1191-9. [DOI: 10.1039/d1ma00646k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
99 |
Wang M, Chang M, Li C, Chen Q, Hou Z, Xing B, Lin J. Tumor-Microenvironment-Activated Reactive Oxygen Species Amplifier for Enzymatic Cascade Cancer Starvation/Chemodynamic /Immunotherapy. Adv Mater 2022;34:e2106010. [PMID: 34699627 DOI: 10.1002/adma.202106010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
|
100 |
Sang W, Dai Y. Metal Coordination Nanomedicine. Nanomedicine 2022. [DOI: 10.1007/978-981-13-9374-7_33-1] [Reference Citation Analysis]
|
101 |
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2022;451:214267. [DOI: 10.1016/j.ccr.2021.214267] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
|
102 |
Lee G, Kim CW, Choi JR, Min KH, Lee HJ, Kwack KH, Lee HW, Lee JH, Jeong SY, Chang K, Lee SC. Copper arsenite-complexed Fenton-like nanoparticles as oxidative stress-amplifying anticancer agents. J Control Release 2021;341:646-60. [PMID: 34921973 DOI: 10.1016/j.jconrel.2021.12.016] [Reference Citation Analysis]
|
103 |
Wang H, Yang W, Bian K, Zeng W, Jin X, Ouyang R, Xu Y, Dai C, Zhou S, Zhang B. Oxygen-Deficient BiOCl Combined with L-Buthionine-Sulfoximine Synergistically Suppresses Tumor Growth through Enhanced Singlet Oxygen Generation under Ultrasound Irradiation. Small 2021;:e2104550. [PMID: 34910856 DOI: 10.1002/smll.202104550] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
104 |
Yu J, Xiao H, Yang Z, Qiao C, Zhou B, Jia Q, Wang Z, Wang X, Zhang R, Yang Y, Wang Z, Li J. A Potent Strategy of Combinational Blow Toward Enhanced Cancer Chemo-Photodynamic Therapy via Sustainable GSH Elimination. Small 2021;:e2106100. [PMID: 34910845 DOI: 10.1002/smll.202106100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
105 |
Chen M, Wang Z, Suo W, Bao Z, Quan H. Injectable Hydrogel for Synergetic Low Dose Radiotherapy, Chemodynamic Therapy and Photothermal Therapy. Front Bioeng Biotechnol 2021;9:757428. [PMID: 34881231 DOI: 10.3389/fbioe.2021.757428] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
106 |
Lv S, Jing R, Liu X, Shi H, Shi Y, Wang X, Zhao X, Cao K, Lv Z. One-Step Microfluidic Fabrication of Multi-Responsive Liposomes for Targeted Delivery of Doxorubicin Synergism with Photothermal Effect. Int J Nanomedicine 2021;16:7759-72. [PMID: 34848958 DOI: 10.2147/IJN.S329621] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
107 |
Li S, Yang F, Sun X, Wang Y, Zhang X, Zhang S, Zhang H, Kan Q, Sun J, He Z, Luo C. Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy. Chemical Engineering Journal 2021;426:130838. [DOI: 10.1016/j.cej.2021.130838] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
108 |
Liang L, Wen L, Weng Y, Song J, Li H, Zhang Y, He X, Zhao W, Zhan M, Li Y, Lu L, Xin Y, Lu C. Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer. Chemical Engineering Journal 2021;425:131451. [DOI: 10.1016/j.cej.2021.131451] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
|
109 |
Li J, Zhang Y, Sun J, Ouyang J, Na N. SiRNA-templated 3D framework nucleic acids for chemotactic recognition, and programmable and visualized precise delivery for synergistic cancer therapy. Chem Sci 2021;12:15353-61. [PMID: 34976356 DOI: 10.1039/d1sc04249a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
110 |
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science 2021;123:101472. [DOI: 10.1016/j.progpolymsci.2021.101472] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
|
111 |
Ding Y, Dai Y, Wu M, Li L. Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chemical Engineering Journal 2021;426:128880. [DOI: 10.1016/j.cej.2021.128880] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
|
112 |
Yu H, Ma M, Liang K, Shen J, Lan Z, Chen H. A self-assembled metal-polyphenolic nanomedicine for mild photothermal-potentiated chemodynamic therapy of tumors. Applied Materials Today 2021;25:101235. [DOI: 10.1016/j.apmt.2021.101235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
113 |
Zhou Y, Fan S, Feng L, Huang X, Chen X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. Adv Mater 2021;33:e2104223. [PMID: 34580933 DOI: 10.1002/adma.202104223] [Cited by in Crossref: 38] [Cited by in F6Publishing: 47] [Article Influence: 19.0] [Reference Citation Analysis]
|
114 |
Zhan J, Wang Y, Ma S, Qin Q, Wang L, Cai Y, Yang Z. Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis. Bioact Mater 2022;9:120-33. [PMID: 34820560 DOI: 10.1016/j.bioactmat.2021.07.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
115 |
Hu H, Deng X, Song Q, Yang W, Zhang Y, Liu W, Wang S, Liang Z, Xing X, Zhu J, Zhang J, Shao Z, Wang B, Zhang Y. Mitochondria-targeted accumulation of oxygen-irrelevant free radicals for enhanced synergistic low-temperature photothermal and thermodynamic therapy. J Nanobiotechnology 2021;19:390. [PMID: 34823543 DOI: 10.1186/s12951-021-01142-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
116 |
Qi X, Li S, Song X, Gong Y, Guo Z, Cui C, Wang X, Tan Z. An Fe‐MIL100 Based Drug Delivery System for pH and Glutathione Dual‐Responsive Drug Release. ChemistrySelect 2021;6:12295-9. [DOI: 10.1002/slct.202103551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
117 |
Li F, Lv Z, Zhang X, Dong Y, Ding X, Li Z, Li S, Yao C, Yang D. Supramolecular Self‐Assembled DNA Nanosystem for Synergistic Chemical and Gene Regulations on Cancer Cells. Angewandte Chemie 2021;133:25761-25770. [DOI: 10.1002/ange.202111900] [Reference Citation Analysis]
|
118 |
Li F, Lv Z, Zhang X, Dong Y, Ding X, Li Z, Li S, Yao C, Yang D. Supramolecular Self-Assembled DNA Nanosystem for Synergistic Chemical and Gene Regulations on Cancer Cells. Angew Chem Int Ed Engl 2021;60:25557-66. [PMID: 34533880 DOI: 10.1002/anie.202111900] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
119 |
Su X, Cao Y, Liu Y, Ouyang B, Ning B, Wang Y, Guo H, Pang Z, Shen S. Localized disruption of redox homeostasis boosting ferroptosis of tumor by hydrogel delivery system. Mater Today Bio 2021;12:100154. [PMID: 34778741 DOI: 10.1016/j.mtbio.2021.100154] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
120 |
Zhang Q, Wang X, Kang Y, Sun H, Liang Y, Liu J, Su Z, Dan J, Luo L, Yue T, Wang J, Zhang W. Natural Products Self-Assembled Nanozyme for Cascade Detection of Glucose and Bacterial Viability in Food. Foods 2021;10:2596. [PMID: 34828877 DOI: 10.3390/foods10112596] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
121 |
Zeng W, Jiang D, Liu Z, Suo W, Wang Z, Zhu D, Huang Q. An Injectable Hydrogel for Enhanced FeGA-Based Chemodynamic Therapy by Increasing Intracellular Acidity. Front Oncol 2021;11:750855. [PMID: 34631588 DOI: 10.3389/fonc.2021.750855] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
122 |
Luo Y, Yan P, Li X, Hou J, Wang Y, Zhou S. pH-Sensitive Polymeric Vesicles for GOx/BSO Delivery and Synergetic Starvation-Ferroptosis Therapy of Tumor. Biomacromolecules 2021;22:4383-94. [PMID: 34533297 DOI: 10.1021/acs.biomac.1c00960] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
123 |
Zheng Y, Li X, Dong C, Ding L, Huang H, Zhang T, Chen Y, Wu R. Ultrasound‐Augmented Nanocatalytic Ferroptosis Reverses Chemotherapeutic Resistance and Induces Synergistic Tumor Nanotherapy. Adv Funct Materials 2022;32:2107529. [DOI: 10.1002/adfm.202107529] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
124 |
Zhang Y, Xi K, Fu X, Sun H, Wang H, Yu D, Li Z, Ma Y, Liu X, Huang B, Wang J, Li G, Cui J, Li X, Ni S. Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma. Biomaterials 2021;278:121163. [PMID: 34601197 DOI: 10.1016/j.biomaterials.2021.121163] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
|
125 |
Liu P, Peng Y, Ding J, Zhou W. Fenton Metal Nanomedicines for Imaging-guided Combinatorial Chemodynamic Therapy against Cancer. Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
126 |
Zhong H, Huang PY, Yan P, Chen PL, Shi QY, Zhao ZA, Chen JX, Shu X, Wang P, Yang B, Zhou ZZ, Chen JJ, Pang JX, Tu YF, Liu LH, Zhang XZ. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater 2021;10:e2100770. [PMID: 34190424 DOI: 10.1002/adhm.202100770] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
127 |
Geng B, Yang X, Li P, Shi W, Pan D, Shen L. W-Doped TiO2 Nanorods for Multimode Tumor Eradication in Osteosarcoma Models under Single Ultrasound Irradiation. ACS Appl Mater Interfaces 2021;13:45325-34. [PMID: 34533945 DOI: 10.1021/acsami.1c14701] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
128 |
Liang H, Wu X, Zhao G, Feng K, Ni K, Sun X. Renal Clearable Ultrasmall Single-Crystal Fe Nanoparticles for Highly Selective and Effective Ferroptosis Therapy and Immunotherapy. J Am Chem Soc 2021;143:15812-23. [PMID: 34473493 DOI: 10.1021/jacs.1c07471] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 18.0] [Reference Citation Analysis]
|
129 |
Wang X, Zhao Y, Hu Y, Fei Y, Zhao Y, Xue C, Cai K, Li M, Luo Z. Activatable Biomineralized Nanoplatform Remodels the Intracellular Environment of Multidrug-Resistant Tumors for Enhanced Ferroptosis/Apoptosis Therapy. Small 2021;:e2102269. [PMID: 34554637 DOI: 10.1002/smll.202102269] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
130 |
Xu L, Xu R, Saw PE, Wu J, Cheng SX, Xu X. Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. Nano Lett 2021;21:7569-78. [PMID: 34472343 DOI: 10.1021/acs.nanolett.1c02073] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
|
131 |
Liu M, Xu Y, Zhao Y, Wang Z, Shi D. Hydroxyl radical-involved cancer therapy via Fenton reactions. Front Chem Sci Eng . [DOI: 10.1007/s11705-021-2077-3] [Reference Citation Analysis]
|
132 |
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, Wu C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021;277:121110. [PMID: 34482088 DOI: 10.1016/j.biomaterials.2021.121110] [Cited by in Crossref: 71] [Cited by in F6Publishing: 81] [Article Influence: 35.5] [Reference Citation Analysis]
|
133 |
Huang H, Dong C, Chang M, Ding L, Chen L, Feng W, Chen Y. Mitochondria‐specific nanocatalysts for chemotherapy‐augmented sequential chemoreactive tumor therapy. Exploration 2021;1:50-60. [DOI: 10.1002/exp.20210149] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
|
134 |
Xiang H, You C, Liu W, Wang D, Chen Y, Dong C. Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials 2021;277:121071. [PMID: 34450576 DOI: 10.1016/j.biomaterials.2021.121071] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
|
135 |
Zhu D, Zhu X, Ren S, Lu Y, Zhu H. Manganese dioxide (MnO 2 ) based nanomaterials for cancer therapies and theranostics. Journal of Drug Targeting. [DOI: 10.1080/1061186x.2020.1815209] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
|
136 |
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021;50:6013-41. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Cited by in Crossref: 101] [Cited by in F6Publishing: 116] [Article Influence: 50.5] [Reference Citation Analysis]
|
137 |
Tian Q, Xue F, Wang Y, Cheng Y, An L, Yang S, Chen X, Huang G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021;39:101162. [DOI: 10.1016/j.nantod.2021.101162] [Cited by in Crossref: 64] [Cited by in F6Publishing: 43] [Article Influence: 32.0] [Reference Citation Analysis]
|
138 |
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. Adv Sci (Weinh) 2021;8:e2101101. [PMID: 34145984 DOI: 10.1002/advs.202101101] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
139 |
Hu H, Yang W, Liang Z, Zhou Z, Song Q, Liu W, Deng X, Zhu J, Xing X, Zhong B, Wang B, Wang S, Shao Z, Zhang Y. Amplification of oxidative stress with lycorine and gold-based nanocomposites for synergistic cascade cancer therapy. J Nanobiotechnology 2021;19:221. [PMID: 34315494 DOI: 10.1186/s12951-021-00933-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
140 |
Yang Z, Zhu Y, Dong Z, Li W, Yang N, Wang X, Feng L, Liu Z. Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nat Commun 2021;12:4299. [PMID: 34262038 DOI: 10.1038/s41467-021-24604-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 16.0] [Reference Citation Analysis]
|
141 |
Zhang C, Wang X, Dong X, Mei L, Wu X, Gu Z, Zhao Y. X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. Biomaterials 2021;276:121023. [PMID: 34274779 DOI: 10.1016/j.biomaterials.2021.121023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
142 |
Chen T, Chu Q, Li M, Han G, Li X. Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. J Nanobiotechnology 2021;19:206. [PMID: 34246260 DOI: 10.1186/s12951-021-00957-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
143 |
Zong Q, Wang K, Xiao X, Jiang M, Li J, Yuan Y, Wang J. Amplification of tumor oxidative stresses by Poly(disulfide acetal) for multidrug resistance reversal. Biomaterials 2021;276:121005. [PMID: 34252801 DOI: 10.1016/j.biomaterials.2021.121005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
144 |
Hou S, Gao Y, Ma X, Lu Y, Li X, Cheng J, Wu Y, Xue P, Kang Y, Guo M, Xu Z. Tumor microenvironment responsive biomimetic copper peroxide nanoreactors for drug delivery and enhanced chemodynamic therapy. Chemical Engineering Journal 2021;416:129037. [DOI: 10.1016/j.cej.2021.129037] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
|
145 |
Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, Xu Y, Qian X, Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater 2021;128:435-46. [PMID: 33862284 DOI: 10.1016/j.actbio.2021.04.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
|
146 |
Zhou TJ, Xu Y, Xing L, Wang Y, Jiang HL. A Harmless-Harmful Switchable and Uninterrupted Laccase-Instructed Killer for Activatable Chemodynamic Therapy. Adv Mater 2021;33:e2100114. [PMID: 34062021 DOI: 10.1002/adma.202100114] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
147 |
Li Q, Dong Z, Chen M, Feng L. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews 2021;439:213912. [DOI: 10.1016/j.ccr.2021.213912] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
148 |
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021;19:192. [PMID: 34183023 DOI: 10.1186/s12951-021-00936-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
|
149 |
Klein AL, Nugent G, Cavendish J, Geldenhuys WJ, Sriram K, Porter D, Fladeland R, Lockman PR, Sherman JH. Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021;13:948. [PMID: 34202660 DOI: 10.3390/pharmaceutics13070948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
150 |
Luo B, Chen L, Hong Z, You X, Huang FP, Bian HD, Zhang L, Zhao S. A simple and feasible atom-precise biotinylated Cu(i) complex for tumor-targeted chemodynamic therapy. Chem Commun (Camb) 2021;57:6046-9. [PMID: 34036986 DOI: 10.1039/d1cc00515d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
151 |
An D, Fu J, Zhang B, Xie N, Nie G, Ågren H, Qiu M, Zhang H. NIR‐II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Adv Funct Materials 2021;31:2101625. [DOI: 10.1002/adfm.202101625] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 18.0] [Reference Citation Analysis]
|
152 |
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Adv Mater 2021;33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Cited by in Crossref: 63] [Cited by in F6Publishing: 71] [Article Influence: 31.5] [Reference Citation Analysis]
|
153 |
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. Adv Mater 2021;33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
|
154 |
Li Z, Chen Y, Zeng X, Zhang X. Ultra-small FePt/siRNA loaded mesoporous silica nanoplatform to deplete cysteine for enhanced ferroptosis in breast tumor therapy. Nano Today 2021;38:101150. [DOI: 10.1016/j.nantod.2021.101150] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
155 |
Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordination Chemistry Reviews 2021;437:213828. [DOI: 10.1016/j.ccr.2021.213828] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 15.5] [Reference Citation Analysis]
|
156 |
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS Nano 2021;15:8039-68. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Cited by in Crossref: 69] [Cited by in F6Publishing: 83] [Article Influence: 34.5] [Reference Citation Analysis]
|
157 |
Zhang Z, Xie L, Ju Y, Dai Y. Recent Advances in Metal-Phenolic Networks for Cancer Theranostics. Small 2021;:e2100314. [PMID: 34018690 DOI: 10.1002/smll.202100314] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
|
158 |
Liu P, Zhou Y, Shi X, Yuan Y, Peng Y, Hua S, Luo Q, Ding J, Li Y, Zhou W. A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances. J Nanobiotechnology 2021;19:149. [PMID: 34020663 DOI: 10.1186/s12951-021-00893-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
159 |
Zhou M, Liu X, Chen F, Yang L, Yuan M, Fu DY, Wang W, Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed Mater 2021;16. [PMID: 33882463 DOI: 10.1088/1748-605X/abfa6e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
160 |
Su T, Cheng F, Pu Y, Cao J, Lin S, Zhu G, He B. Polymeric micelles amplify tumor oxidative stresses through combining PDT and glutathione depletion for synergistic cancer chemotherapy. Chemical Engineering Journal 2021;411:128561. [DOI: 10.1016/j.cej.2021.128561] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
161 |
Xie S, Sun W, Zhang C, Dong B, Yang J, Hou M, Xiong L, Cai B, Liu X, Xue W. Metabolic Control by Heat Stress Determining Cell Fate to Ferroptosis for Effective Cancer Therapy. ACS Nano 2021;15:7179-94. [PMID: 33861924 DOI: 10.1021/acsnano.1c00380] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 20.0] [Reference Citation Analysis]
|
162 |
Sun Y, Chen H, Huang Y, Xu F, Liu G, Ma L, Wang Z. One-pot synthesis of AuPd@FexOy nanoagent with the activable Fe species for enhanced Chemodynamic-photothermal synergetic therapy. Biomaterials 2021;274:120821. [PMID: 33940539 DOI: 10.1016/j.biomaterials.2021.120821] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
|
163 |
Sun H, Feng M, Chen S, Wang R, Luo Y, Yin B, Li J, Wang X. Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodynamic therapy. J Mater Chem B 2020;8:7149-59. [PMID: 32617545 DOI: 10.1039/d0tb01437k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
|
164 |
Li P, Gao M, Hu Z, Xu T, Chen J, Ma Y, Li S, Gu Y. Synergistic ferroptosis and macrophage re-polarization using engineering exosome-mimic M1 nanovesicles for cancer metastasis suppression. Chemical Engineering Journal 2021;409:128217. [DOI: 10.1016/j.cej.2020.128217] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
|
165 |
Chen M, Liu D, Liu F, Wu Y, Peng X, Song F. Recent advances of redox-responsive nanoplatforms for tumor theranostics. Journal of Controlled Release 2021;332:269-84. [DOI: 10.1016/j.jconrel.2021.02.030] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
|
166 |
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021;9:208-27. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
167 |
Liu P, Shi X, Zhong S, Peng Y, Qi Y, Ding J, Zhou W. Metal-phenolic networks for cancer theranostics. Biomater Sci 2021;9:2825-49. [PMID: 33688863 DOI: 10.1039/d0bm02064h] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
|
168 |
Qin J, Liang G, Cheng D, Liu Y, Cheng X, Yang P, Wu N, Zhao Y, Wei J. Controllable synthesis of iron-polyphenol colloidal nanoparticles with composition-dependent photothermal performance. J Colloid Interface Sci 2021;593:172-81. [PMID: 33744528 DOI: 10.1016/j.jcis.2021.02.082] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
169 |
Park H, Saravanakumar G, Kim J, Lim J, Kim WJ. Tumor Microenvironment Sensitive Nanocarriers for Bioimaging and Therapeutics. Adv Healthc Mater 2021;10:e2000834. [PMID: 33073497 DOI: 10.1002/adhm.202000834] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
|
170 |
Liu Y, Zhai S, Jiang X, Liu Y, Wang K, Wang C, Zhang M, Liu X, Bu W. Intracellular Mutual Promotion of Redox Homeostasis Regulation and Iron Metabolism Disruption for Enduring Chemodynamic Therapy. Adv Funct Mater 2021;31:2010390. [DOI: 10.1002/adfm.202010390] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
|
171 |
Hwang E, Jung HS. Metal-organic complex-based chemodynamic therapy agents for cancer therapy. Chem Commun (Camb) 2020;56:8332-41. [PMID: 32515445 DOI: 10.1039/d0cc03012k] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
|
172 |
He Y, Hua Liu S, Yin J, Yoon J. Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers. Coordination Chemistry Reviews 2021;429:213610. [DOI: 10.1016/j.ccr.2020.213610] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
|
173 |
Hao Z, Cheng X, Cong C, Zhang X, Zhang W, Zhao Q, Wang S, Gao D. Nanoreactor of “butterfly effect” inciting a triple interlocked combination of starvation/chemo/metal ion therapy by remodeling tumor microenvironment. Chemical Engineering Journal 2021;405:126571. [DOI: 10.1016/j.cej.2020.126571] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
174 |
Geng P, Yu N, Zhang J, Jin Z, Wen M, Jiang Q, Kang L, Peng C, Li M, Zhang H, Zhu M, Chen Z. One Responsive Stone, Three Birds: Mn(III)-Hemoporfin Frameworks with Glutathione-Enhanced Degradation, MRI, and Sonodynamic Therapy. Adv Healthc Mater 2021;10:e2001463. [PMID: 33274856 DOI: 10.1002/adhm.202001463] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
|
175 |
Zheng H, Ma B, Shi Y, Dai Q, Li D, Ren E, Zhu J, Liu J, Chen H, Yin Z, Chu C, Wang X, Liu G. Tumor microenvironment-triggered MoS2@GA-Fe nanoreactor: A self-rolling enhanced chemodynamic therapy and hydrogen sulfide treatment for hepatocellular carcinoma. Chemical Engineering Journal 2021;406:126888. [DOI: 10.1016/j.cej.2020.126888] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
|
176 |
Yang P, Tao J, Chen F, Chen Y, He J, Shen K, Zhao P, Li Y. Multienzyme-Mimic Ultrafine Alloyed Nanoparticles in Metal Organic Frameworks for Enhanced Chemodynamic Therapy. Small 2021;17:e2005865. [PMID: 33502106 DOI: 10.1002/smll.202005865] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
|
177 |
Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine Meets Fenton Chemistry. Chem Rev 2021;121:1981-2019. [DOI: 10.1021/acs.chemrev.0c00977] [Cited by in Crossref: 150] [Cited by in F6Publishing: 172] [Article Influence: 75.0] [Reference Citation Analysis]
|
178 |
Sun YH, Bu R, Wang YW, Hu YC, Wang XM, Dong X, Zu W, Niu Y, Zhao PW, Sun P, Ru SH, Lu JK, Na SS. Validation of efficacy and mechanism of Sanwei-Tanxiang powder in improving myocardial ischemia reperfusion injuries. Sci Rep 2021;11:664. [PMID: 33437022 DOI: 10.1038/s41598-020-80861-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
179 |
Sun H, Zhang Z, Kang X, Dai Q, Song A, Hao J, Cui J. Biologically-derived nanoparticles for chemo-ferroptosis combination therapy. Mater Chem Front 2021;5:3813-3822. [DOI: 10.1039/d1qm00295c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
180 |
Wang W, Zhao W, Zhang H, Dou X, Shi H. 2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. Chinese Journal of Catalysis 2021;42:97-106. [DOI: 10.1016/s1872-2067(20)63602-6] [Cited by in Crossref: 72] [Cited by in F6Publishing: 77] [Article Influence: 36.0] [Reference Citation Analysis]
|
181 |
Wu H, Gu D, Xia S, Chen F, You C, Sun B. One-for-all intelligent core-shell nanoparticles for tumor-specific photothermal-chemodynamic synergistic therapy. Biomater Sci 2021;9:1020-33. [PMID: 33325928 DOI: 10.1039/d0bm01734e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
182 |
Ding S, He L, Bian X, Tian G. Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 2020;35:100920. [DOI: 10.1016/j.nantod.2020.100920] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 15.7] [Reference Citation Analysis]
|
183 |
Zhu Y, Wang Y, Williams GR, Fu L, Wu J, Wang H, Liang R, Weng X, Wei M. Multicomponent Transition Metal Dichalcogenide Nanosheets for Imaging-Guided Photothermal and Chemodynamic Therapy. Adv Sci (Weinh) 2020;7:2000272. [PMID: 33304740 DOI: 10.1002/advs.202000272] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 15.3] [Reference Citation Analysis]
|
184 |
Meng X, Zhang X, Liu M, Cai B, He N, Wang Z. Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today 2020;21:100864. [DOI: 10.1016/j.apmt.2020.100864] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 13.7] [Reference Citation Analysis]
|
185 |
Wang X, Zhong X, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 2020;35:100946. [DOI: 10.1016/j.nantod.2020.100946] [Cited by in Crossref: 176] [Cited by in F6Publishing: 199] [Article Influence: 58.7] [Reference Citation Analysis]
|
186 |
Liang H, Guo J, Shi Y, Zhao G, Sun S, Sun X. Porous yolk-shell Fe/Fe3O4 nanoparticles with controlled exposure of highly active Fe(0) for cancer therapy. Biomaterials 2021;268:120530. [PMID: 33296795 DOI: 10.1016/j.biomaterials.2020.120530] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
|
187 |
Song S, Gao Y, Sheng Y, Rui T, Luo C. Targeting NRF2 to suppress ferroptosis in brain injury. Histol Histopathol 2021;36:383-97. [PMID: 33242213 DOI: 10.14670/HH-18-286] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
|
188 |
Li Y, Jia R, Lin H, Sun X, Qu F. Synthesis of MoSe 2 /CoSe 2 Nanosheets for NIR‐Enhanced Chemodynamic Therapy via Synergistic In‐Situ H 2 O 2 Production and Activation. Adv Funct Mater 2021;31:2008420. [DOI: 10.1002/adfm.202008420] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
|
189 |
Li L, Zeng Z, Chen Z, Gao R, Pan L, Deng J, Ye X, Zhang J, Zhang S, Mei C, Yu J, Feng Y, Wang Q, Yu AY, Yang M, Huang J. Microenvironment-Triggered Degradable Hydrogel for Imaging Diagnosis and Combined Treatment of Intraocular Choroidal Melanoma. ACS Nano 2020;14:15403-16. [PMID: 33174744 DOI: 10.1021/acsnano.0c06000] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
190 |
Zhang J, Zhao B, Chen S, Wang Y, Zhang Y, Wang Y, Wei D, Zhang L, Rong G, Weng Y, Hao J, Li B, Hou XQ, Kang X, Zhao Y, Wang F, Zhao Y, Yu Y, Wu QP, Liang XJ, Xiao H. Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS Nano 2020;14:14831-45. [PMID: 33084319 DOI: 10.1021/acsnano.0c03781] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
|
191 |
Chong G, Zang J, Han Y, Su R, Weeranoppanant N, Dong H, Li Y. Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Res 2020;:1-16. [PMID: 33250971 DOI: 10.1007/s12274-020-3179-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
|
192 |
Yamashita R, Komaki Y, Yang G, Ibuki Y. Cell line-dependent difference in glutathione levels affects the cigarette sidestream smoke-induced inhibition of nucleotide excision repair. Mutat Res Genet Toxicol Environ Mutagen 2020;858-860:503273. [PMID: 33198939 DOI: 10.1016/j.mrgentox.2020.503273] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
193 |
Wang B, Dai Y, Kong Y, Du W, Ni H, Zhao H, Sun Z, Shen Q, Li M, Fan Q. Tumor Microenvironment-Responsive Fe(III)–Porphyrin Nanotheranostics for Tumor Imaging and Targeted Chemodynamic–Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:53634-45. [DOI: 10.1021/acsami.0c14046] [Cited by in Crossref: 33] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
|
194 |
Jia C, Wu H, Luo K, Hao W, Wang S, Huang M. Magnetic Silica Nanosystems With NIR-Responsive and Redox Reaction Capacity for Drug Delivery and Tumor Therapy. Front Chem 2020;8:567652. [PMID: 33195055 DOI: 10.3389/fchem.2020.567652] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
195 |
Sang D, Li X, Xu Z, Lin H, Guo C, Qu F. Disrupted intracellular redox balance with enhanced ROS generation and sensitive drug release for cancer therapy. Biomater Sci 2020;8:6045-55. [PMID: 33000800 DOI: 10.1039/d0bm00765j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
196 |
Huang Z, Huang Y, Chen M, Chen J, Zeng Z, Xu X, Huang B, Luo Y, Xiao Z, Ding Y, Zhao C. Bone-targeted oxidative stress nanoamplifier for synergetic chemo/chemodynamic therapy of bone metastases through increasing generation and reducing elimination of ROS. Chemical Engineering Journal 2020;399:125667. [DOI: 10.1016/j.cej.2020.125667] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
197 |
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 19.3] [Reference Citation Analysis]
|
198 |
Qiao B, Luo Y, Cheng HB, Ren J, Cao J, Yang C, Liang B, Yang A, Yuan X, Li J, Deng L, Li P, Ran HT, Hao L, Zhou Z, Li M, Zhang Y, Timashev PS, Liang XJ, Wang Z. Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS Nano 2020;14:12652-67. [PMID: 32986406 DOI: 10.1021/acsnano.0c00771] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 12.0] [Reference Citation Analysis]
|
199 |
Liu Y, Lv S, Liu D, Song F. Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomater 2020;116:16-31. [PMID: 32942012 DOI: 10.1016/j.actbio.2020.09.019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
200 |
Liu T, Yang K, Liu Z. Recent advances in functional nanomaterials for X-ray triggered cancer therapy. Progress in Natural Science: Materials International 2020;30:567-76. [DOI: 10.1016/j.pnsc.2020.09.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
201 |
Xie X, Peng Z, Wang Z, Hua X, Wang Z, Deng K, Yang X, Huang H, Liu X. Monitoring biothiols dynamics in living cells by ratiometric fluorescent gold carbon dots. Talanta 2020;218:121214. [DOI: 10.1016/j.talanta.2020.121214] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
202 |
Wang B, Zhang X, Wang Z, Shi D. Ferroptotic nanomaterials enhance cancer therapy via boosting Fenton-reaction. Journal of Drug Delivery Science and Technology 2020;59:101883. [DOI: 10.1016/j.jddst.2020.101883] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
203 |
Xu X, Chen Y, Zhang Y, Yao Y, Ji P. Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe2+ induced ferroptosis in breast cancer cells. J Mater Chem B 2020. [PMID: 32944722 DOI: 10.1039/d0tb01616k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|
204 |
Gong F, Chen M, Yang N, Dong Z, Tian L, Hao Y, Zhuo M, Liu Z, Chen Q, Cheng L. Bimetallic Oxide FeWO X Nanosheets as Multifunctional Cascade Bioreactors for Tumor Microenvironment‐Modulation and Enhanced Multimodal Cancer Therapy. Adv Funct Mater 2020;30:2002753. [DOI: 10.1002/adfm.202002753] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
|
205 |
Choi J, Kim G, Cho SB, Im HJ. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnology 2020;18:122. [PMID: 32883290 DOI: 10.1186/s12951-020-00684-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
|
206 |
Li W, Wang S, Ren C, Liu P, Lu Q, Yang L, Song Y, Xu M, Tan F, Yu M, Li N. Exo/endogenous dual-augmented chemodynamic therapy based on bio-reducible and bio-breakable copper (Ⅱ)-based truncated octahedron. Chemical Engineering Journal 2020;396:125280. [DOI: 10.1016/j.cej.2020.125280] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
|
207 |
Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, Hu Q, Zhang W, Li C, Tan Y, Xie N, Ren W, Li C, Liu Y, Hu H, Xu X, Yao H. Nanoparticles (NPs)-Meditated LncRNA AFAP1-AS1 Silencing to Block Wnt/β-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. Adv Sci (Weinh) 2020;7:2000915. [PMID: 32999837 DOI: 10.1002/advs.202000915] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
|
208 |
Lin L, Wang S, Deng H, Yang W, Rao L, Tian R, Liu Y, Yu G, Zhou Z, Song J, Yang HH, Chen ZY, Chen X. Endogenous Labile Iron Pool-Mediated Free Radical Generation for Cancer Chemodynamic Therapy. J Am Chem Soc 2020;142:15320-30. [PMID: 32820914 DOI: 10.1021/jacs.0c05604] [Cited by in Crossref: 92] [Cited by in F6Publishing: 104] [Article Influence: 30.7] [Reference Citation Analysis]
|
209 |
Chen Y, Huang Y, Zhou S, Sun M, Chen L, Wang J, Xu M, Liu S, Liang K, Zhang Q, Jiang T, Song Q, Jiang G, Tang X, Gao X, Chen J. Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment. Nano Lett 2020;20:6780-90. [PMID: 32809834 DOI: 10.1021/acs.nanolett.0c02622] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
210 |
Dong Z, Hao Y, Li Q, Yang Z, Zhu Y, Liu Z, Feng L. Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Res 2020;13:3057-67. [DOI: 10.1007/s12274-020-2972-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
|
211 |
Pu Y, Zhou B, Xiang H, Wu W, Yin H, Yue W, Yin Y, Li H, Chen Y, Xu H. Tyrosinase-activated prodrug nanomedicine as oxidative stress amplifier for melanoma-specific treatment. Biomaterials 2020;259:120329. [PMID: 32836058 DOI: 10.1016/j.biomaterials.2020.120329] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
212 |
Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology 2020;18:108. [PMID: 32746846 DOI: 10.1186/s12951-020-00668-5] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
|
213 |
Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomater Sci Eng 2020;6:4834-45. [DOI: 10.1021/acsbiomaterials.0c01009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
|
214 |
Hu J, Wang T, Zhou L, Wei S. A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition. Journal of Photochemistry and Photobiology B: Biology 2020;209:111955. [DOI: 10.1016/j.jphotobiol.2020.111955] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
215 |
Sun H, Zhang Y, Chen S, Wang R, Chen Q, Li J, Luo Y, Wang X, Chen H. Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Appl Mater Interfaces 2020;12:30145-54. [PMID: 32515573 DOI: 10.1021/acsami.0c07013] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
|
216 |
Gong F, Yang N, Wang X, Zhao Q, Chen Q, Liu Z, Cheng L. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today 2020;32:100851. [DOI: 10.1016/j.nantod.2020.100851] [Cited by in Crossref: 143] [Cited by in F6Publishing: 152] [Article Influence: 47.7] [Reference Citation Analysis]
|
217 |
Dong Z, Feng L, Hao Y, Li Q, Chen M, Yang Z, Zhao H, Liu Z. Synthesis of CaCO3-Based Nanomedicine for Enhanced Sonodynamic Therapy via Amplification of Tumor Oxidative Stress. Chem 2020;6:1391-407. [DOI: 10.1016/j.chempr.2020.02.020] [Cited by in Crossref: 117] [Cited by in F6Publishing: 119] [Article Influence: 39.0] [Reference Citation Analysis]
|
218 |
Jing L, Yang C, Zhang P, Zeng J, Li Z, Gao M. Nanoparticles weaponized with built‐in functions for imaging‐guided cancer therapy. View 2020;1. [DOI: 10.1002/viw2.19] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
|
219 |
Guan X, Yin H, Xu X, Xu G, Zhang Y, Zhou B, Yue W, Liu C, Sun L, Xu H, Zhang K. Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation. Adv Funct Mater 2020;30:2000326. [DOI: 10.1002/adfm.202000326] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 23.3] [Reference Citation Analysis]
|
220 |
Huang Y, Yue N, Fan A. Cationic liposome-triggered luminol chemiluminescence reaction and its applications. Analyst 2020;145:4551-9. [PMID: 32421110 DOI: 10.1039/d0an00632g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
221 |
Peng Z, Nie K, Song Y, Liu H, Zhou Y, Yuan Y, Chen D, Peng X, Yan W, Song J, Qu J. Monitoring the Cellular Delivery of Doxorubicin-Cu Complexes in Cells by Fluorescence Lifetime Imaging Microscopy. J Phys Chem A 2020;124:4235-40. [PMID: 32364735 DOI: 10.1021/acs.jpca.0c00182] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
222 |
Yuan H, Zhao Y, Yang C, Zhang C, Yang Y, Meng H, Huan S, Song G, Zhang X. Copper-thioguanine metallodrug with self-reinforcing circular catalysis for activatable MRI imaging and amplifying specificity of cancer therapy. Sci China Chem 2020;63:924-35. [DOI: 10.1007/s11426-020-9738-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
|
223 |
Gao W, Wei S, Li Z, Li L, Zhang X, Li C, Gao D. Nano magnetic liposomes-encapsulated parthenolide and glucose oxidase for ultra-efficient synergistic antitumor therapy. Nanotechnology 2020;31:355104. [PMID: 32403097 DOI: 10.1088/1361-6528/ab92c8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
224 |
Han Y, Gao S, Zhang Y, Ni Q, Li Z, Liang XJ, Zhang J. Metal-Based Nanocatalyst for Combined Cancer Therapeutics. Bioconjug Chem 2020;31:1247-58. [PMID: 32319762 DOI: 10.1021/acs.bioconjchem.0c00194] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
|
225 |
He Y, Liu X, Xing L, Wan X, Chang X, Jiang H. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials 2020;241:119911. [DOI: 10.1016/j.biomaterials.2020.119911] [Cited by in Crossref: 75] [Cited by in F6Publishing: 84] [Article Influence: 25.0] [Reference Citation Analysis]
|
226 |
Wang Q, Sun M, Li D, Li C, Luo C, Wang Z, Zhang W, Yang Z, Feng Y, Wang S, He Z, Zhang H, Kan Q, Sun W, Sun J. Cytochrome P450 enzyme-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between clopidogrel and photosensitizer. Theranostics 2020;10:5550-64. [PMID: 32373230 DOI: 10.7150/thno.42633] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
|
227 |
Xu T, Ma Y, Yuan Q, Hu H, Hu X, Qian Z, Rolle JK, Gu Y, Li S. Enhanced Ferroptosis by Oxygen-Boosted Phototherapy Based on a 2-in-1 Nanoplatform of Ferrous Hemoglobin for Tumor Synergistic Therapy. ACS Nano 2020;14:3414-25. [PMID: 32155051 DOI: 10.1021/acsnano.9b09426] [Cited by in Crossref: 97] [Cited by in F6Publishing: 112] [Article Influence: 32.3] [Reference Citation Analysis]
|
228 |
Chen P, Zheng C, Chen C, Huang K, Wang X, Hu P, Geng J. Thiol inhibition of Hg cold vapor generation in SnCl2/NaBH4 system: A homogeneous bioassay for H2O2/glucose and butyrylcholinesterase/pesticide sensing by atomic spectrometry. Anal Chim Acta 2020;1111:8-15. [PMID: 32312400 DOI: 10.1016/j.aca.2020.03.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
229 |
An P, Fan F, Gu D, Gao Z, Hossain AMS, Sun B. Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy. J Control Release 2020;321:734-43. [PMID: 32145265 DOI: 10.1016/j.jconrel.2020.03.007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 17.0] [Reference Citation Analysis]
|
230 |
Qin J, Liang G, Feng Y, Feng B, Wang G, Wu N, Zhao Y, Wei J. Synthesis of gadolinium/iron-bimetal-phenolic coordination polymer nanoparticles for theranostic applications. Nanoscale 2020;12:6096-103. [PMID: 32129393 DOI: 10.1039/c9nr10020b] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
|
231 |
Tian Q, An L, Tian Q, Lin J, Yang S. Ellagic acid-Fe@BSA nanoparticles for endogenous H2S accelerated Fe(III)/Fe(II) conversion and photothermal synergistically enhanced chemodynamic therapy. Theranostics 2020;10:4101-15. [PMID: 32226542 DOI: 10.7150/thno.41882] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 14.3] [Reference Citation Analysis]
|
232 |
Kou L, Jiang X, Huang H, Lin X, Zhang Y, Yao Q, Chen R. The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines. Asian J Pharm Sci 2020;15:145-57. [PMID: 32373196 DOI: 10.1016/j.ajps.2020.02.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
233 |
Liu J, Wu M, Pan Y, Duan Y, Dong Z, Chao Y, Liu Z, Liu B. Biodegradable Nanoscale Coordination Polymers for Targeted Tumor Combination Therapy with Oxidative Stress Amplification. Adv Funct Mater 2020;30:1908865. [DOI: 10.1002/adfm.201908865] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 19.7] [Reference Citation Analysis]
|
234 |
Qin X, Li Y. Strategies To Design and Synthesize Polymer‐Based Stimuli‐Responsive Drug‐Delivery Nanosystems. ChemBioChem 2020;21:1236-53. [DOI: 10.1002/cbic.201900550] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
|
235 |
He Y, Cong C, Li L, Luo L, He Y, Hao Z, Gao D. Sequential Intra-Intercellular Delivery of Nanomedicine for Deep Drug-Resistant Solid Tumor Penetration. ACS Appl Mater Interfaces 2020;12:8978-88. [DOI: 10.1021/acsami.9b20062] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
|
236 |
Denkova AG, Liu H, Men Y, Eelkema R. Enhanced Cancer Therapy by Combining Radiation and Chemical Effects Mediated by Nanocarriers. Adv Therap 2020;3:1900177. [DOI: 10.1002/adtp.201900177] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
237 |
Xiang H, Feng W, Chen Y. Single-Atom Catalysts in Catalytic Biomedicine. Adv Mater 2020;32:e1905994. [PMID: 31930751 DOI: 10.1002/adma.201905994] [Cited by in Crossref: 142] [Cited by in F6Publishing: 147] [Article Influence: 47.3] [Reference Citation Analysis]
|
238 |
Hao Y, Dong Z, Chen M, Chao Y, Liu Z, Feng L, Hao Y, Dong Z, Chen M, Chao Y, Liu Z, Feng L. Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. Biomaterials 2020;228:119568. [DOI: 10.1016/j.biomaterials.2019.119568] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 25.0] [Reference Citation Analysis]
|
239 |
Wu H, Chen F, Gu D, You C, Sun B. A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy. Nanoscale 2020;12:17319-31. [DOI: 10.1039/d0nr03135f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
|
240 |
Lv R, Du K, Liu Q, Meng X, Chen L, Wang Z. Nano iron–copper alloys for tumor ablation: efficiently amplified oxidative stress through acid response. New J Chem 2020;44:14438-46. [DOI: 10.1039/d0nj02554b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
241 |
Chen Q, Yang D, Yu L, Jing X, Chen Y. Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. Mater Horiz 2020;7:317-37. [DOI: 10.1039/c9mh01565e] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
|
242 |
He Y, Li X, Li Z, Bian J, Zhang X, Wei S, Zhang X, Gao D. A magnetically responsive drug-loaded nanocatalyst with cobalt-involved redox for the enhancement of tumor ferrotherapy. Chem Commun 2020;56:10533-6. [DOI: 10.1039/d0cc03829f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
243 |
Zhu H, Cao G, Qiang C, Fu Y, Wu Y, Li X, Han G. Hollow ferric-tannic acid nanocapsules with sustained O 2 and ROS induction for synergistic tumor therapy. Biomater Sci 2020;8:3844-55. [DOI: 10.1039/d0bm00533a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
244 |
Xiao X, Liang S, Zhao Y, Huang D, Xing B, Cheng Z, Lin J. Core–shell structured 5-FU@ZIF-90@ZnO as a biodegradable nanoplatform for synergistic cancer therapy. Nanoscale 2020;12:3846-54. [DOI: 10.1039/c9nr09869k] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
|
245 |
Feng W, Chen Y. Chemoreactive nanomedicine. J Mater Chem B 2020;8:6753-64. [DOI: 10.1039/d0tb00436g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
246 |
Ren C, Cheng Y, Li W, Liu P, Yang L, Lu Q, Xu M, Tan F, Li J, Li N. Ultra-small Bi 2 S 3 nanodot-doped reversible Fe( ii / iii )-based hollow mesoporous Prussian blue nanocubes for amplified tumor oxidative stress-augmented photo-/radiotherapy. Biomater Sci 2020;8:1981-95. [DOI: 10.1039/c9bm02014d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
|
247 |
Shah J, Bhagat S, Singh S. Standard biological assays to estimate nanoparticle toxicity and biodistribution. Nanotoxicity 2020. [DOI: 10.1016/b978-0-12-819943-5.00004-x] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
248 |
Lv S, Long W, Chen J, Ren Q, Wang J, Mu X, Liu H, Zhang X, Zhang R. Dual pH-triggered catalytic selective Mn clusters for cancer radiosensitization and radioprotection. Nanoscale 2020;12:548-57. [DOI: 10.1039/c9nr08192e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
249 |
Yu XA, Lu M, Luo Y, Hu Y, Zhang Y, Xu Z, Gong S, Wu Y, Ma XN, Yu BY, Tian J. A cancer-specific activatable theranostic nanodrug for enhanced therapeutic efficacy via amplification of oxidative stress. Theranostics 2020;10:371-83. [PMID: 31903126 DOI: 10.7150/thno.39412] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
|
250 |
Li M, Zhang H, Hou Y, Wang X, Xue C, Li W, Cai K, Zhao Y, Luo Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz 2020;5:202-17. [DOI: 10.1039/c9nh00577c] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 15.7] [Reference Citation Analysis]
|
251 |
Wu J, Niu S, Bremner DH, Nie W, Fu Z, Li D, Zhu LM. A Tumor Microenvironment-Responsive Biodegradable Mesoporous Nanosystem for Anti-Inflammation and Cancer Theranostics. Adv Healthc Mater 2020;9:e1901307. [PMID: 31814332 DOI: 10.1002/adhm.201901307] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
252 |
Wang X, Zhong X, Gong F, Chao Y, Cheng L. Newly developed strategies for improving sonodynamic therapy. Mater Horiz 2020;7:2028-46. [DOI: 10.1039/d0mh00613k] [Cited by in Crossref: 89] [Cited by in F6Publishing: 92] [Article Influence: 29.7] [Reference Citation Analysis]
|
253 |
Chen Y, Yao Y, Zhou X, Liao C, Dai X, Liu J, Yu Y, Zhang S. Cascade-Reaction-Based Nanodrug for Combined Chemo/Starvation/Chemodynamic Therapy against Multidrug-Resistant Tumors. ACS Appl Mater Interfaces 2019;11:46112-23. [PMID: 31722522 DOI: 10.1021/acsami.9b15848] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
|
254 |
Guo Y, Zhang X, Sun W, Jia H, Zhu Y, Zhang X, Zhou N, Wu F. Metal–Phenolic Network-Based Nanocomplexes that Evoke Ferroptosis by Apoptosis: Promoted Nuclear Drug Influx and Reversed Drug Resistance of Cancer. Chem Mater 2019;31:10071-84. [DOI: 10.1021/acs.chemmater.9b03042] [Cited by in Crossref: 63] [Cited by in F6Publishing: 68] [Article Influence: 15.8] [Reference Citation Analysis]
|
255 |
Zhong X, Wang X, Cheng L, Tang Y, Zhan G, Gong F, Zhang R, Hu J, Liu Z, Yang X. GSH‐Depleted PtCu 3 Nanocages for Chemodynamic‐ Enhanced Sonodynamic Cancer Therapy. Adv Funct Mater 2019;30:1907954. [DOI: 10.1002/adfm.201907954] [Cited by in Crossref: 209] [Cited by in F6Publishing: 210] [Article Influence: 52.3] [Reference Citation Analysis]
|
256 |
An P, Gao Z, Sun K, Gu D, Wu H, You C, Li Y, Cheng K, Zhang Y, Wang Z, Sun B. Photothermal-Enhanced Inactivation of Glutathione Peroxidase for Ferroptosis Sensitized by an Autophagy Promotor. ACS Appl Mater Interfaces 2019;11:42988-97. [PMID: 31650832 DOI: 10.1021/acsami.9b16124] [Cited by in Crossref: 42] [Cited by in F6Publishing: 50] [Article Influence: 10.5] [Reference Citation Analysis]
|
257 |
Yang G, Chen C, Zhu Y, Liu Z, Xue Y, Zhong S, Wang C, Gao Y, Zhang W. GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS Appl Mater Interfaces 2019;11:44961-9. [DOI: 10.1021/acsami.9b15996] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
|
258 |
Guo J, Wang Y, Zhao M. Target-directed functionalized ferrous phosphate-carbon dots fluorescent nanostructures as peroxidase mimetics for cancer cell detection and ROS-mediated therapy. Sensors and Actuators B: Chemical 2019;297:126739. [DOI: 10.1016/j.snb.2019.126739] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
|
259 |
Ouyang B, Liu F, Ruan S, Liu Y, Guo H, Cai Z, Yu X, Pang Z, Shen S. Localized Free Radicals Burst Triggered by NIR-II Light for Augmented Low-Temperature Photothermal Therapy. ACS Appl Mater Interfaces 2019;11:38555-67. [DOI: 10.1021/acsami.9b15009] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
|
260 |
Tian Z, Yang K, Yao T, Li X, Ma Y, Qu C, Qu X, Xu Y, Guo Y, Qu Y. Catalytically Selective Chemotherapy from Tumor-Metabolic Generated Lactic Acid. Small 2019;15:e1903746. [PMID: 31553140 DOI: 10.1002/smll.201903746] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
|
261 |
Sharma A, Lee MG, Won M, Koo S, Arambula JF, Sessler JL, Chi SG, Kim JS. Targeting Heterogeneous Tumors Using a Multifunctional Molecular Prodrug. J Am Chem Soc 2019;141:15611-8. [PMID: 31509395 DOI: 10.1021/jacs.9b07171] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 13.5] [Reference Citation Analysis]
|
262 |
Du K, Liu Q, Liu M, Lv R, He N, Wang Z. Encapsulation of glucose oxidase in Fe(III)/tannic acid nanocomposites for effective tumor ablation via Fenton reaction. Nanotechnology 2020;31:015101. [PMID: 31530753 DOI: 10.1088/1361-6528/ab44f9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
|
263 |
Dong Z, Yang Z, Hao Y, Feng L. Fabrication of H2O2-driven nanoreactors for innovative cancer treatments. Nanoscale 2019;11:16164-86. [PMID: 31453999 DOI: 10.1039/c9nr04418c] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
|
264 |
Nie X, Xia L, Wang HL, Chen G, Wu B, Zeng TY, Hong CY, Wang LH, You YZ. Photothermal Therapy Nanomaterials Boosting Transformation of Fe(III) into Fe(II) in Tumor Cells for Highly Improving Chemodynamic Therapy. ACS Appl Mater Interfaces 2019;11:31735-42. [PMID: 31393101 DOI: 10.1021/acsami.9b11291] [Cited by in Crossref: 83] [Cited by in F6Publishing: 85] [Article Influence: 20.8] [Reference Citation Analysis]
|
265 |
Yan N, Lin L, Xu C, Tian H, Chen X. A GSH‐Gated DNA Nanodevice for Tumor‐Specific Signal Amplification of microRNA and MR Imaging–Guided Theranostics. Small 2019;15:1903016. [DOI: 10.1002/smll.201903016] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
|
266 |
Chen Q, Zhou J, Chen Z, Luo Q, Xu J, Song G. Tumor-Specific Expansion of Oxidative Stress by Glutathione Depletion and Use of a Fenton Nanoagent for Enhanced Chemodynamic Therapy. ACS Appl Mater Interfaces 2019;11:30551-65. [PMID: 31397998 DOI: 10.1021/acsami.9b09323] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 17.8] [Reference Citation Analysis]
|
267 |
Li Y, An L, Lin J, Tian Q, Yang S. Smart nanomedicine agents for cancer, triggered by pH, glutathione, H2O2, or H2S. Int J Nanomedicine 2019;14:5729-49. [PMID: 31440046 DOI: 10.2147/IJN.S210116] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
|
268 |
Kou L, Sun R, Xiao S, Zheng Y, Chen Z, Cai A, Zheng H, Yao Q, Ganapathy V, Chen R. Ambidextrous Approach To Disrupt Redox Balance in Tumor Cells with Increased ROS Production and Decreased GSH Synthesis for Cancer Therapy. ACS Appl Mater Interfaces 2019;11:26722-30. [DOI: 10.1021/acsami.9b09784] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
|
269 |
Lin L, Huang T, Song J, Ou X, Wang Z, Deng H, Tian R, Liu Y, Wang J, Liu Y, Yu G, Zhou Z, Wang S, Niu G, Yang H, Chen X. Synthesis of Copper Peroxide Nanodots for H 2 O 2 Self-Supplying Chemodynamic Therapy. J Am Chem Soc 2019;141:9937-45. [DOI: 10.1021/jacs.9b03457] [Cited by in Crossref: 459] [Cited by in F6Publishing: 499] [Article Influence: 114.8] [Reference Citation Analysis]
|
270 |
Liu C, Wang D, Zhang S, Cheng Y, Yang F, Xing Y, Xu T, Dong H, Zhang X. Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief. ACS Nano 2019;13:4267-77. [PMID: 30901515 DOI: 10.1021/acsnano.8b09387] [Cited by in Crossref: 350] [Cited by in F6Publishing: 373] [Article Influence: 87.5] [Reference Citation Analysis]
|
271 |
Ren Q, Yang K, Zou R, Wan Z, Shen Z, Wu G, Zhou Z, Ni Q, Fan W, Hu J, Liu Y. Biodegradable hollow manganese/cobalt oxide nanoparticles for tumor theranostics. Nanoscale 2019;11:23021-6. [DOI: 10.1039/c9nr07725a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
|
272 |
Pan Q, Zhang B, Peng X, Wan S, Luo K, Gao W, Pu Y, He B. A dithiocarbamate-based H 2 O 2 -responsive prodrug for combinational chemotherapy and oxidative stress amplification therapy. Chem Commun 2019;55:13896-9. [DOI: 10.1039/c9cc05438c] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
|