BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y. Bacteria-Targeting Conjugates Based on Antimicrobial Peptide for Bacteria Diagnosis and Therapy. Mol Pharmaceutics 2015;12:2505-16. [DOI: 10.1021/acs.molpharmaceut.5b00053] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 8.1] [Reference Citation Analysis]
Number Citing Articles
1 Müller L, Zanghelini G, Laroque DA, Laurindo JB, Valencia GA, Costa CD, Carciofi BA. Cold atmospheric plasma for producing antibacterial bilayer films of LLDPE/cassava starch added with ZnO-nanoparticles. Food Packaging and Shelf Life 2022;34:100988. [DOI: 10.1016/j.fpsl.2022.100988] [Reference Citation Analysis]
2 Xie H, Liu Y, An H, Yi J, Li C, Wang X, Chai W. Recent advances in prevention, detection and treatment in prosthetic joint infections of bioactive materials. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1053399] [Reference Citation Analysis]
3 Yamauchi R, Kawano K, Yamaoka Y, Taniguchi A, Yano Y, Takasu K, Matsuzaki K. Development of Antimicrobial Peptide-Antibiotic Conjugates to Improve the Outer Membrane Permeability of Antibiotics Against Gram-Negative Bacteria. ACS Infect Dis 2022. [PMID: 36255133 DOI: 10.1021/acsinfecdis.2c00406] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Kang SJ, Nam SH, Lee BJ. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiotics (Basel) 2022;11:1338. [PMID: 36289996 DOI: 10.3390/antibiotics11101338] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Wang J, Kim J, Kang KW, Paek SH, Takemura Y, Bae S. AC and DC magnetic softness enhanced dual-doped γ-Fe2O3 nanoparticles for highly efficient cancer theranostics. Applied Materials Today 2022;28:101533. [DOI: 10.1016/j.apmt.2022.101533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Li Z, Yang Y, Qin Z, Li S, Bai L, Li J, Liu X. Florfenicol-Polyarginine Conjugates Exhibit Promising Antibacterial Activity Against Resistant Strains. Front Chem 2022;10:921091. [DOI: 10.3389/fchem.2022.921091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Moreira L, Guimarães NM, Pereira S, Santos RS, Loureiro JA, Pereira MC, Azevedo NF. Liposome Delivery of Nucleic Acids in Bacteria: Toward In Vivo Labeling of Human Microbiota. ACS Infect Dis 2022. [PMID: 35737929 DOI: 10.1021/acsinfecdis.1c00601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhang J, Zhang J, Wang Y, Zhang X, Nie T, Liu Y. Strategies to Improve the Activity and Biocompatibility: Modification of Peptide Antibiotics. Foodborne Pathog Dis 2022;19:376-85. [PMID: 35713924 DOI: 10.1089/fpd.2021.0112] [Reference Citation Analysis]
9 Woong Yoo S, Young Kwon S, Kang SR, Min JJ. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy. Adv Drug Deliv Rev 2022;187:114366. [PMID: 35654213 DOI: 10.1016/j.addr.2022.114366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Mohammed EHM, Lohan S, Tiwari RK, Parang K. Amphiphilic cyclic peptide [W4KR5]-Antibiotics combinations as broad-spectrum antimicrobial agents. Eur J Med Chem 2022;235:114278. [PMID: 35339840 DOI: 10.1016/j.ejmech.2022.114278] [Reference Citation Analysis]
11 Nie B, Huo S, Qu X, Guo J, Liu X, Hong Q, Wang Y, Yang J, Yue B. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.02.003] [Reference Citation Analysis]
12 Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022. [PMID: 34984699 DOI: 10.1002/med.21879] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
13 Sheard DE, Li W, O’brien-simpson NM, Separovic F, Wade JD. Peptide Multimerization as Leads for Therapeutic Development. Biologics 2022;2:15-44. [DOI: 10.3390/biologics2010002] [Reference Citation Analysis]
14 Sun L, Shi S, Geng H, Huang Y, Qiao Y, Song J, Yang L, Grimes CA, Feng X, Cai Q. NaGdF 4 :Nd@NaGdF 4 Core-Shell Down-Conversion Nanoparticles as NIR-II Fluorescent Probes for Targeted Imaging of Bacteria. ACS Appl Nano Mater 2021;4:11231-8. [DOI: 10.1021/acsanm.1c02769] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021;177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Li L, Gu P, Hao M, Xiang X, Feng Y, Zhu X, Song Y, Song E. Bacteria-Targeted MRI Probe-Based Imaging Bacterial Infection and Monitoring Antimicrobial Therapy In Vivo. Small 2021;17:e2103627. [PMID: 34554653 DOI: 10.1002/smll.202103627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
17 Tegge W, Guerra G, Höltke A, Schiller L, Beutling U, Harmrolfs K, Gröbe L, Wullenkord H, Xu C, Weich H, Brönstrup M. Zielgerichtete bakterielle Lokalisation und infektionsinduzierte Freisetzung von antibiotischen Colistin‐Konjugaten. Angew Chem 2021;133:18135-18144. [DOI: 10.1002/ange.202104921] [Reference Citation Analysis]
18 More P, Inamdar V, Suresh S, Dindorkar S, Peddakolmi S, Jain K, Khona N, Khatoon S, Patange S. Synthesis of zinc oxide nanoparticles using Chrysopogonzizanioides grass extract, its applications in photodegradation and antimicrobial activity. J Mater Sci: Mater Electron 2021;32:20725-20741. [DOI: 10.1007/s10854-021-06585-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Tegge W, Guerra G, Höltke A, Schiller L, Beutling U, Harmrolfs K, Gröbe L, Wullenkord H, Xu C, Weich H, Brönstrup M. Selective Bacterial Targeting and Infection-Triggered Release of Antibiotic Colistin Conjugates. Angew Chem Int Ed Engl 2021;60:17989-97. [PMID: 34097810 DOI: 10.1002/anie.202104921] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Jiang Y, Fang S, Zhang X, Feng J, Ruan Q, Zhang J. Radiolabeling and evaluation of a novel [99mTcN]2+ complex with deferoxamine dithiocarbamate as a potential agent for bacterial infection imaging. Bioorg Med Chem Lett 2021;43:128102. [PMID: 33984471 DOI: 10.1016/j.bmcl.2021.128102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021;165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Tsirogianni A, Kournoutou GG, Bougas A, Poulou-Sidiropoulou E, Dinos G, Athanassopoulos CM. New Chloramphenicol Derivatives with a Modified Dichloroacetyl Tail as Potential Antimicrobial Agents. Antibiotics (Basel) 2021;10:394. [PMID: 33917453 DOI: 10.3390/antibiotics10040394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Kang SR, Min JJ. Recent Progress in the Molecular Imaging of Tumor-Treating Bacteria. Nucl Med Mol Imaging 2021;55:7-14. [PMID: 33643484 DOI: 10.1007/s13139-021-00689-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Liu W, Miao L, Li X, Xu Z. Development of fluorescent probes targeting the cell wall of pathogenic bacteria. Coordination Chemistry Reviews 2021;429:213646. [DOI: 10.1016/j.ccr.2020.213646] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
25 Park HY, Zoller SD, Hegde V, Sheppard W, Burke Z, Blumstein G, Hamad C, Sprague M, Hoang J, Smith R, Romero Pastrana F, Czupryna J, Miller LS, López-Álvarez M, Bispo M, van Oosten M, van Dijl JM, Francis KP, Bernthal NM. Comparison of two fluorescent probes in preclinical non-invasive imaging and image-guided debridement surgery of Staphylococcal biofilm implant infections. Sci Rep 2021;11:1622. [PMID: 33452271 DOI: 10.1038/s41598-020-78362-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021;50:7820-80. [PMID: 34042120 DOI: 10.1039/d0cs00729c] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 56.0] [Reference Citation Analysis]
27 Miao L, Liu W, Qiao Q, Li X, Xu Z. Fluorescent antibiotics for real-time tracking of pathogenic bacteria. J Pharm Anal 2020;10:444-51. [PMID: 33133728 DOI: 10.1016/j.jpha.2020.09.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
28 Morris MA, Malek M, Hashemian MH, Nguyen BT, Manuse S, Lewis K, Nowick JS. A Fluorescent Teixobactin Analogue. ACS Chem Biol 2020;15:1222-31. [PMID: 32045203 DOI: 10.1021/acschembio.9b00908] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
29 Li S, Mohamedi AH, Senkowsky J, Nair A, Tang L. Imaging in Chronic Wound Diagnostics. Adv Wound Care (New Rochelle) 2020;9:245-63. [PMID: 32226649 DOI: 10.1089/wound.2019.0967] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
30 Saraswat J, Wani FA, Dar KI, Rizvi MMA, Patel R. Noncovalent Conjugates of Ionic Liquid with Antibacterial Peptide Melittin: An Efficient Combination against Bacterial Cells. ACS Omega 2020;5:6376-88. [PMID: 32258872 DOI: 10.1021/acsomega.9b03777] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
31 Wang J, Shy A, Wu D, Cooper DL, Xu J, He H, Zhan W, Sun S, Lovett ST, Xu B. Structure-Activity Relationship of Peptide-Conjugated Chloramphenicol for Inhibiting Escherichia coli. J Med Chem 2019;62:10245-57. [PMID: 31670952 DOI: 10.1021/acs.jmedchem.9b01210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Aali H, Azizi N, Baygi NJ, Kermani F, Mashreghi M, Youssefi A, Mollazadeh S, Khaki JV, Nasiri H. High antibacterial and photocatalytic activity of solution combustion synthesized Ni0.5Zn0.5Fe2O4 nanoparticles: Effect of fuel to oxidizer ratio and complex fuels. Ceramics International 2019;45:19127-40. [DOI: 10.1016/j.ceramint.2019.06.159] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
33 Lee H, Lim SI, Shin SH, Lim Y, Koh JW, Yang S. Conjugation of Cell-Penetrating Peptides to Antimicrobial Peptides Enhances Antibacterial Activity. ACS Omega 2019;4:15694-701. [PMID: 31572872 DOI: 10.1021/acsomega.9b02278] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 14.7] [Reference Citation Analysis]
34 Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019;39:2343-96. [PMID: 31004359 DOI: 10.1002/med.21588] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 13.7] [Reference Citation Analysis]
35 Bobone S, Stella L. Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. In: Matsuzaki K, editor. Antimicrobial Peptides. Singapore: Springer; 2019. pp. 175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
36 Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019;7:125-38. [DOI: 10.1007/s40336-019-00322-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
37 Xiao F, Cao B, Wang C, Guo X, Li M, Xing D, Hu X. Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. ACS Nano 2019;13:1511-25. [PMID: 30632740 DOI: 10.1021/acsnano.8b07251] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 23.0] [Reference Citation Analysis]
38 Sheard DE, O’brien-simpson NM, Wade JD, Separovic F. Combating bacterial resistance by combination of antibiotics with antimicrobial peptides. Pure and Applied Chemistry 2019;91:199-209. [DOI: 10.1515/pac-2018-0707] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
39 Lv E, Ding J, Qin W. Potentiometric Detection of Listeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay. Anal Chem 2018;90:13600-6. [PMID: 30335975 DOI: 10.1021/acs.analchem.8b03809] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
40 Zhao Y, Lu Z, Dai X, Wei X, Yu Y, Chen X, Zhang X, Li C. Glycomimetic-Conjugated Photosensitizer for Specific Pseudomonas aeruginosa Recognition and Targeted Photodynamic Therapy. Bioconjugate Chem 2018;29:3222-30. [DOI: 10.1021/acs.bioconjchem.8b00600] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
41 Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater 2018;7:e1800155. [PMID: 29756275 DOI: 10.1002/adhm.201800155] [Cited by in Crossref: 82] [Cited by in F6Publishing: 86] [Article Influence: 20.5] [Reference Citation Analysis]
42 Dean SN, Turner KB, Medintz IL, Walper SA. Targeting and delivery of therapeutic enzymes. Ther Deliv 2017;8:577-95. [PMID: 28633594 DOI: 10.4155/tde-2017-0020] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
43 Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. Adv Mater 2018;30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Cited by in Crossref: 238] [Cited by in F6Publishing: 247] [Article Influence: 59.5] [Reference Citation Analysis]
44 Yang S, Han X, Yang Y, Qiao H, Yu Z, Liu Y, Wang J, Tang T. Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS Appl Mater Interfaces 2018;10:14299-311. [PMID: 29633833 DOI: 10.1021/acsami.7b15678] [Cited by in Crossref: 101] [Cited by in F6Publishing: 109] [Article Influence: 25.3] [Reference Citation Analysis]
45 Faya M, Kalhapure RS, Kumalo HM, Waddad AY, Omolo C, Govender T. Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. Journal of Drug Delivery Science and Technology 2018;44:153-71. [DOI: 10.1016/j.jddst.2017.12.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
46 Stone MRL, Butler MS, Phetsang W, Cooper MA, Blaskovich MAT. Fluorescent Antibiotics: New Research Tools to Fight Antibiotic Resistance. Trends Biotechnol 2018;36:523-36. [PMID: 29478675 DOI: 10.1016/j.tibtech.2018.01.004] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 17.8] [Reference Citation Analysis]
47 Tannert A, Ramoji A, Neugebauer U, Popp J. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 2018;410:773-90. [PMID: 29214536 DOI: 10.1007/s00216-017-0713-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
48 Staderini M, Megia-Fernandez A, Dhaliwal K, Bradley M. Peptides for optical medical imaging and steps towards therapy. Bioorg Med Chem 2018;26:2816-26. [PMID: 29042225 DOI: 10.1016/j.bmc.2017.09.039] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 8.2] [Reference Citation Analysis]
49 Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M. Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review. Molecules 2017;22:E1439. [PMID: 28858240 DOI: 10.3390/molecules22091439] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 14.2] [Reference Citation Analysis]
50 Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017;34:832-85. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Cited by in Crossref: 99] [Cited by in F6Publishing: 102] [Article Influence: 19.8] [Reference Citation Analysis]
51 Hazam PK, Jerath G, Kumar A, Chaudhary N, Ramakrishnan V. Effect of tacticity-derived topological constraints in bactericidal peptides. Biochim Biophys Acta Biomembr 2017;1859:1388-95. [PMID: 28479275 DOI: 10.1016/j.bbamem.2017.05.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
52 Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 2017;38:87-96. [PMID: 28399505 DOI: 10.1016/j.cbpa.2017.03.014] [Cited by in Crossref: 197] [Cited by in F6Publishing: 200] [Article Influence: 39.4] [Reference Citation Analysis]
53 Kumar, R, Umar, A, Kumar, G, Nalwa HS. Antimicrobial properties of ZnO nanomaterials: A review. Ceramics International 2017;43:3940-61. [DOI: 10.1016/j.ceramint.2016.12.062] [Cited by in Crossref: 279] [Cited by in F6Publishing: 285] [Article Influence: 55.8] [Reference Citation Analysis]
54 Bougas A, Vlachogiannis IA, Gatos D, Arenz S, Dinos GP. Dual effect of chloramphenicol peptides on ribosome inhibition. Amino Acids 2017;49:995-1004. [PMID: 28283906 DOI: 10.1007/s00726-017-2406-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
55 Bartusik D, Aebisher D. Applications of 19 F Magnetic Resonance Spectroscopy and Imaging for the Study of Nanostructures Used in Antimicrobial Therapy. Nanostructures for Antimicrobial Therapy 2017. [DOI: 10.1016/b978-0-323-46152-8.00011-1] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
56 Hoque J, Adhikary U, Yadav V, Samaddar S, Konai MM, Prakash RG, Paramanandham K, Shome BR, Sanyal K, Haldar J. Chitosan Derivatives Active against Multidrug-Resistant Bacteria and Pathogenic Fungi: In Vivo Evaluation as Topical Antimicrobials. Mol Pharm 2016;13:3578-89. [PMID: 27589087 DOI: 10.1021/acs.molpharmaceut.6b00764] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 9.3] [Reference Citation Analysis]
57 Jiang H, Xiong M, Bi Q, Wang Y, Li C. Self-enhanced targeted delivery of a cell wall- and membrane-active antibiotics, daptomycin, against staphylococcal pneumonia. Acta Pharm Sin B 2016;6:319-28. [PMID: 27471672 DOI: 10.1016/j.apsb.2016.05.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
58 Reinhardt A, Neundorf I. Design and Application of Antimicrobial Peptide Conjugates. Int J Mol Sci 2016;17:E701. [PMID: 27187357 DOI: 10.3390/ijms17050701] [Cited by in Crossref: 87] [Cited by in F6Publishing: 92] [Article Influence: 14.5] [Reference Citation Analysis]
59 Mills B, Bradley M, Dhaliwal K. Optical imaging of bacterial infections. Clin Transl Imaging 2016;4:163-74. [PMID: 27340649 DOI: 10.1007/s40336-016-0180-0] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 9.7] [Reference Citation Analysis]