BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deshpande S, Singh N. Influence of Cubosome Surface Architecture on Its Cellular Uptake Mechanism. Langmuir 2017;33:3509-16. [DOI: 10.1021/acs.langmuir.6b04423] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Waghule T, Laxmi Swetha K, Roy A, Narayan Saha R, Singhvi G. Exploring temozolomide encapsulated PEGylated Liposomes and Lyotropic liquid crystals for effective treatment of glioblastoma: in-vitro, cell line, and pharmacokinetic studies. Eur J Pharm Biopharm 2023:S0939-6411(23)00064-4. [PMID: 36924995 DOI: 10.1016/j.ejpb.2023.03.004] [Reference Citation Analysis]
2 Vitoria Pupo Silvestrini A, Wender Debiasi B, Garcia Praça F, Vitoria Lopes Badra Bentley M. Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. International Journal of Pharmaceutics 2022;628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Reference Citation Analysis]
3 Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022;348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022;299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
5 Dyett BP, Yu H, Sarkar S, Strachan JB, Drummond CJ, Conn CE. Uptake Dynamics of Cubosome Nanocarriers at Bacterial Surfaces and the Routes for Cargo Internalization. ACS Appl Mater Interfaces 2021;13:53530-40. [PMID: 34726885 DOI: 10.1021/acsami.1c09909] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Shi Z, Pan S, Wang L, Li S. Topical gel based nanoparticles for the controlled release of oleanolic acid: design and in vivo characterization of a cubic liquid crystalline anti-inflammatory drug. BMC Complement Med Ther 2021;21:224. [PMID: 34481504 DOI: 10.1186/s12906-021-03399-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Waheed A, Aqil M. Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. Journal of Molecular Liquids 2021;338:116919. [DOI: 10.1016/j.molliq.2021.116919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
8 Jagielski J, Przysiecka Ł, Flak D, Diak M, Pietralik-Molińska Z, Kozak M, Jurga S, Nowaczyk G. Comprehensive and comparative studies on nanocytotoxicity of glyceryl monooleate- and phytantriol-based lipid liquid crystalline nanoparticles. J Nanobiotechnology 2021;19:168. [PMID: 34082768 DOI: 10.1186/s12951-021-00913-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang X, Wu W. Liquid Crystalline Phases for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021;22:81. [PMID: 33619612 DOI: 10.1208/s12249-021-01951-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh S, Singh P, Guleria A, Saha S, Saraf SA. Fabrication of Imatinib Mesylate-Loaded Lactoferrin-Modified PEGylated Liquid Crystalline Nanoparticles for Mitochondrial-Dependent Apoptosis in Hepatocellular Carcinoma. Mol Pharm 2021;18:1102-20. [PMID: 33356314 DOI: 10.1021/acs.molpharmaceut.0c01024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
11 Mehanna MM, Sarieddine R, Alwattar JK, Chouaib R, Gali-Muhtasib H. Anticancer Activity of Thymoquinone Cubic Phase Nanoparticles Against Human Breast Cancer: Formulation, Cytotoxicity and Subcellular Localization. Int J Nanomedicine 2020;15:9557-70. [PMID: 33293807 DOI: 10.2147/IJN.S263797] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
12 Jabłonowska E, Matyszewska D, Nazaruk E, Godlewska M, Gaweł D, Bilewicz R. Lipid membranes exposed to dispersions of phytantriol and monoolein cubosomes: Langmuir monolayer and HeLa cell membrane studies. Biochim Biophys Acta Gen Subj 2021;1865:129738. [PMID: 32956751 DOI: 10.1016/j.bbagen.2020.129738] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
13 Strachan JB, Dyett BP, Nasa Z, Valery C, Conn CE. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. Journal of Colloid and Interface Science 2020;576:241-51. [DOI: 10.1016/j.jcis.2020.05.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
14 Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid & Interface Science 2020;48:28-39. [DOI: 10.1016/j.cocis.2020.03.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
15 El-Gendy MA, Mansour M, El-Assal MIA, Ishak RAH, Mortada ND. Delineating penetration enhancer-enriched liquid crystalline nanostructures as novel platforms for improved ophthalmic delivery. Int J Pharm 2020;582:119313. [PMID: 32283196 DOI: 10.1016/j.ijpharm.2020.119313] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
16 Zhai J, Tan FH, Luwor RB, Srinivasa Reddy T, Ahmed N, Drummond CJ, Tran N. In Vitro and In Vivo Toxicity and Biodistribution of Paclitaxel-Loaded Cubosomes as a Drug Delivery Nanocarrier: A Case Study Using an A431 Skin Cancer Xenograft Model. ACS Appl Bio Mater 2020;3:4198-207. [DOI: 10.1021/acsabm.0c00269] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
17 Pattnaik S, Swain K, Singh SP, Sirbaiya AK. Lipid vesicles: Potentials as drug delivery systems. Nanoengineered Biomaterials for Advanced Drug Delivery 2020. [DOI: 10.1016/b978-0-08-102985-5.00008-5] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Alvarez-malmagro J, Matyszewska D, Nazaruk E, Szwedziak P, Bilewicz R. PM-IRRAS Study on the Effect of Phytantriol-Based Cubosomes on DMPC Bilayers as Model Lipid Membranes. Langmuir 2019;35:16650-60. [DOI: 10.1021/acs.langmuir.9b02974] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
19 Dyett BP, Yu H, Strachan J, Drummond CJ, Conn CE. Fusion dynamics of cubosome nanocarriers with model cell membranes. Nat Commun 2019;10:4492. [PMID: 31582802 DOI: 10.1038/s41467-019-12508-8] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 10.8] [Reference Citation Analysis]
20 Mezzenga R, Seddon JM, Drummond CJ, Boyd BJ, Schröder-Turk GE, Sagalowicz L. Nature-Inspired Design and Application of Lipidic Lyotropic Liquid Crystals. Adv Mater 2019;31:e1900818. [PMID: 31222858 DOI: 10.1002/adma.201900818] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 17.8] [Reference Citation Analysis]
21 Astolfi P, Giorgini E, Adamo FC, Vita F, Logrippo S, Francescangeli O, Pisani M. Effects of a cationic surfactant incorporation in phytantriol bulk cubic phases and dispersions loaded with the anticancer drug 5-fluorouracil. Journal of Molecular Liquids 2019;286:110954. [DOI: 10.1016/j.molliq.2019.110954] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
22 Rahmati M, Mozafari M. Nano-immunoengineering: Opportunities and challenges. Current Opinion in Biomedical Engineering 2019;10:51-9. [DOI: 10.1016/j.cobme.2019.02.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
23 Tan A, Hong L, Du JD, Boyd BJ. Self-Assembled Nanostructured Lipid Systems: Is There a Link between Structure and Cytotoxicity? Adv Sci (Weinh) 2019;6:1801223. [PMID: 30775224 DOI: 10.1002/advs.201801223] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 14.0] [Reference Citation Analysis]
24 Abdelaziz HM, Elzoghby AO, Helmy MW, Samaha MW, Fang JY, Freag MS. Liquid crystalline assembly for potential combinatorial chemo-herbal drug delivery to lung cancer cells. Int J Nanomedicine 2019;14:499-517. [PMID: 30666110 DOI: 10.2147/IJN.S188335] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
25 Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019;58:2958-78. [PMID: 29926520 DOI: 10.1002/anie.201804067] [Cited by in Crossref: 211] [Cited by in F6Publishing: 218] [Article Influence: 42.2] [Reference Citation Analysis]
26 Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem 2019;131:2984-3006. [DOI: 10.1002/ange.201804067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
27 Kim H, Sung J, Chang Y, Alfeche A, Leal C. Microfluidics Synthesis of Gene Silencing Cubosomes. ACS Nano 2018;12:9196-205. [PMID: 30081623 DOI: 10.1021/acsnano.8b03770] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
28 Deshpande S, Singh N. Probing the nanoparticle-AGO2 interaction for enhanced gene knockdown. Soft Matter 2018;14:4169-77. [PMID: 29687822 DOI: 10.1039/c8sm00534f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
29 Patravale VB, Desai PP, Mapara SS. Lipid Nanocarriers for Advanced Therapeutic Applications. Multifunctional Nanocarriers for Contemporary Healthcare Applications 2018. [DOI: 10.4018/978-1-5225-4781-5.ch005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
30 Abou Matar T, Karam P. The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules. Macromol Biosci 2018;18:1700309. [DOI: 10.1002/mabi.201700309] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]