1 |
Cao L, Li J, Yang Z, Hu X, Wang P. A review of synthetic biology tools in Yarrowia lipolytica. World J Microbiol Biotechnol 2023;39:129. [PMID: 36944859 DOI: 10.1007/s11274-023-03557-9] [Reference Citation Analysis]
|
2 |
Zhang Q, Wang X, Zeng W, Xu S, Li D, Yu S, Zhou J. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae. Metab Eng 2023;76:50-62. [PMID: 36634840 DOI: 10.1016/j.ymben.2023.01.005] [Reference Citation Analysis]
|
3 |
Luo G, Lin Y, Chen S, Xiao R, Zhang J, Li C, Sinskey AJ, Ye L, Liang S. Overproduction of Patchoulol in Metabolically Engineered Komagataella phaffii. J Agric Food Chem 2023;71:2049-58. [PMID: 36681940 DOI: 10.1021/acs.jafc.2c08228] [Reference Citation Analysis]
|
4 |
Moon SY, Son S, Oh SS, Lee JY. Harnessing Cellular Organelles to Bring New Functionalities into Yeast. Biotechnol Bioproc E 2023. [DOI: 10.1007/s12257-022-0195-5] [Reference Citation Analysis]
|
5 |
Xu M, Sun M, Meng X, Zhang W, Shen Y, Liu W. Engineering Pheromone-Mediated Quorum Sensing with Enhanced Response Output Increases Fucosyllactose Production in Saccharomyces cerevisiae. ACS Synth Biol 2023;12:238-48. [PMID: 36520033 DOI: 10.1021/acssynbio.2c00507] [Reference Citation Analysis]
|
6 |
Guo Q, Peng QQ, Chen YY, Song P, Ji XJ, Huang H, Shi TQ. High-yield α-humulene production in Yarrowia lipolytica from waste cooking oil based on transcriptome analysis and metabolic engineering. Microb Cell Fact 2022;21:271. [PMID: 36566177 DOI: 10.1186/s12934-022-01986-z] [Reference Citation Analysis]
|
7 |
Zhang L, Yang H, Xia Y, Shen W, Liu L, Li Q, Chen X. Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction. Biotechnol Biofuels 2022;15:59. [DOI: 10.1186/s13068-022-02160-8] [Reference Citation Analysis]
|
8 |
Mukherjee M, Blair RH, Wang ZQ. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metabolic Engineering 2022;74:139-149. [DOI: 10.1016/j.ymben.2022.10.004] [Reference Citation Analysis]
|
9 |
Jing Y, Wang Y, Zhou D, Wang J, Li J, Sun J, Feng Y, Xin F, Zhang W. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnol Adv 2022;61:108033. [PMID: 36096404 DOI: 10.1016/j.biotechadv.2022.108033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Promdonkoy P, Sornlek W, Preechakul T, Tanapongpipat S, Runguphan W. Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood. Fermentation 2022;8:429. [DOI: 10.3390/fermentation8090429] [Reference Citation Analysis]
|
11 |
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. J Agric Food Chem 2022. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Reference Citation Analysis]
|
12 |
Zhao M, Zhang C, Wang H, He S, Lu W. Biosynthesis of valerenic acid by engineered Saccharomyces cerevisiae. Biotechnol Lett 2022;44:857-65. [PMID: 35643816 DOI: 10.1007/s10529-022-03264-9] [Reference Citation Analysis]
|
13 |
Lv X, Xue H, Qin L, Li C. Transporter Engineering in Microbial Cell Factory Boosts Biomanufacturing Capacity. BioDesign Research 2022;2022:1-8. [DOI: 10.34133/2022/9871087] [Reference Citation Analysis]
|
14 |
Jin K, Xia H, Liu Y, Li J, Du G, Lv X, Liu L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact 2022;21. [DOI: 10.1186/s12934-022-01819-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Ju H, Zhang C, He S, Nan W, Lu W. Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin. Appl Microbiol Biotechnol 2022. [PMID: 35235006 DOI: 10.1007/s00253-022-11819-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Jiao X, Gu Y, Zhou P, Yu H, Ye L. Recent advances in construction and regulation of yeast cell factories. World J Microbiol Biotechnol 2022;38:57. [PMID: 35174424 DOI: 10.1007/s11274-022-03241-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Jaramillo-madrid AC, Lacchini E, Goossens A. Within and beyond organelle engineering: strategies for increased terpene production in yeasts and plants. Current Opinion in Green and Sustainable Chemistry 2022;33:100572. [DOI: 10.1016/j.cogsc.2021.100572] [Reference Citation Analysis]
|
18 |
Liu Y, Wang Z, Cui Z, Qi Q, Hou J. Progress and perspectives for microbial production of farnesene. Bioresour Technol 2022;:126682. [PMID: 35007732 DOI: 10.1016/j.biortech.2022.126682] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Du MM, Zhu ZT, Zhang GG, Zhao YQ, Gao B, Tao XY, Liu M, Ren YH, Wang FQ, Wei DZ. Engineering Saccharomyces cerevisiae for Hyperproduction of β-Amyrin by Mitigating the Inhibition Effect of Squalene on β-Amyrin Synthase. J Agric Food Chem 2021. [PMID: 34955018 DOI: 10.1021/acs.jafc.1c06712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
20 |
Guo Q, Shi TQ, Peng QQ, Sun XM, Ji XJ, Huang H. Harnessing Yarrowia lipolytica Peroxisomes as a Subcellular Factory for α-Humulene Overproduction. J Agric Food Chem 2021;69:13831-7. [PMID: 34751575 DOI: 10.1021/acs.jafc.1c05897] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Zhu ZT, Du MM, Gao B, Tao XY, Zhao M, Ren YH, Wang FQ, Wei DZ. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction. Metab Eng 2021;68:232-45. [PMID: 34710614 DOI: 10.1016/j.ymben.2021.10.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
|
22 |
Barreto IC, de Almeida AS, Sena Filho JG. Taxonomic Insights and Its Type Cyclization Correlation of Volatile Sesquiterpenes in Vitex Species and Potential Source Insecticidal Compounds: A Review. Molecules 2021;26:6405. [PMID: 34770814 DOI: 10.3390/molecules26216405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Bioresour Technol 2021;342:125978. [PMID: 34598073 DOI: 10.1016/j.biortech.2021.125978] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
|
24 |
Mai J, Li W, Ledesma-Amaro R, Ji XJ. Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. J Agric Food Chem 2021;69:9498-510. [PMID: 34376044 DOI: 10.1021/acs.jafc.1c03864] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
25 |
Liu CL, Xue K, Yang Y, Liu X, Li Y, Lee TS, Bai Z, Tan T. Metabolic engineering strategies for sesquiterpene production in microorganism. Crit Rev Biotechnol 2021;:1-20. [PMID: 34256675 DOI: 10.1080/07388551.2021.1924112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
|
26 |
Liu H, Chen SL, Xu JZ, Zhang WG. Dual Regulation of Cytoplasm and Peroxisomes for Improved Α-Farnesene Production in Recombinant Pichia pastoris. ACS Synth Biol 2021;10:1563-73. [PMID: 34080850 DOI: 10.1021/acssynbio.1c00186] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
|
27 |
Milker S, Sydow A, Torres-Monroy I, Jach G, Faust F, Kranz L, Tkatschuk L, Holtmann D. Gram-scale production of the sesquiterpene α-humulene with Cupriavidus necator. Biotechnol Bioeng 2021;118:2694-702. [PMID: 33844284 DOI: 10.1002/bit.27788] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
28 |
Carsanba E, Pintado M, Oliveira C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals (Basel) 2021;14:295. [PMID: 33810302 DOI: 10.3390/ph14040295] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
29 |
Xue H, Sun W, Wang Y, Li C. Refining Metabolic Mass Transfer for Efficient Biosynthesis of Plant Natural Products in Yeast. Front Bioeng Biotechnol 2021;9:633741. [PMID: 33748083 DOI: 10.3389/fbioe.2021.633741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
30 |
Jing Y, Guo F, Zhang S, Dong W, Zhou J, Xin F, Zhang W, Jiang M. Recent Advances on Biological Synthesis of Lycopene by Using Industrial Yeast. Ind Eng Chem Res 2021;60:3485-94. [DOI: 10.1021/acs.iecr.0c05228] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Dusséaux S, Wajn WT, Liu Y, Ignea C, Kampranis SC. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc Natl Acad Sci U S A 2020;117:31789-99. [PMID: 33268495 DOI: 10.1073/pnas.2013968117] [Cited by in Crossref: 41] [Cited by in F6Publishing: 47] [Article Influence: 13.7] [Reference Citation Analysis]
|
32 |
Yang B, Feng X, Li C. Microbial Cell Factory for Efficiently Synthesizing Plant Natural Products via Optimizing the Location and Adaptation of Pathway on Genome Scale. Front Bioeng Biotechnol 2020;8:969. [PMID: 32923436 DOI: 10.3389/fbioe.2020.00969] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
33 |
Cao X, Yang S, Cao C, Zhou YJ. Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synth Syst Biotechnol 2020;5:179-86. [PMID: 32637671 DOI: 10.1016/j.synbio.2020.06.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
34 |
Wei W, Zhang P, Shang Y, Zhou Y, Ye BC. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose. Bioresour Technol 2020;314:123726. [PMID: 32622278 DOI: 10.1016/j.biortech.2020.123726] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
|