BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019;119:5607-774. [PMID: 30859819 DOI: 10.1021/acs.chemrev.8b00538] [Cited by in Crossref: 103] [Cited by in F6Publishing: 84] [Article Influence: 34.3] [Reference Citation Analysis]
Number Citing Articles
1 Paananen RO, Javanainen M, Holopainen JM, Vattulainen I. Crystalline Wax Esters Regulate the Evaporation Resistance of Tear Film Lipid Layers Associated with Dry Eye Syndrome. J Phys Chem Lett 2019;10:3893-8. [PMID: 31260321 DOI: 10.1021/acs.jpclett.9b01187] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
2 Zhang L. Interaction of Human β Defensin Type 3 (hBD-3) with Different PIP2-Containing Membranes, a Molecular Dynamics Simulation Study. J Chem Inf Model 2021;61:4670-86. [PMID: 34473496 DOI: 10.1021/acs.jcim.1c00805] [Reference Citation Analysis]
3 Wilson KA, MacDermott-Opeskin HI, Riley E, Lin Y, O'Mara ML. Understanding the Link between Lipid Diversity and the Biophysical Properties of the Neuronal Plasma Membrane. Biochemistry 2020;59:3010-8. [PMID: 32786397 DOI: 10.1021/acs.biochem.0c00524] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Ma J, Liu X, Yang Y, Qiu J, Dong Z, Ren Q, Zuo YY, Xia T, Chen W, Liu S. Binding of Benzo[a]pyrene Alters the Bioreactivity of Fine Biochar Particles toward Macrophages Leading to Deregulated Macrophagic Defense and Autophagy. ACS Nano 2021;15:9717-31. [PMID: 34124884 DOI: 10.1021/acsnano.1c00324] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
5 Liekkinen J, de Santos Moreno B, Paananen RO, Vattulainen I, Monticelli L, Bernardino de la Serna J, Javanainen M. Understanding the Functional Properties of Lipid Heterogeneity in Pulmonary Surfactant Monolayers at the Atomistic Level. Front Cell Dev Biol 2020;8:581016. [PMID: 33304898 DOI: 10.3389/fcell.2020.581016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Pogozheva ID, Armstrong GA, Kong L, Hartnagel TJ, Carpino CA, Gee SE, Picarello DM, Rubin AS, Lee J, Park S, Lomize AL, Im W. Comparative Molecular Dynamics Simulation Studies of Realistic Eukaryotic, Prokaryotic, and Archaeal Membranes. J Chem Inf Model 2022. [PMID: 35167752 DOI: 10.1021/acs.jcim.1c01514] [Reference Citation Analysis]
7 Yee SM, Gillams RJ, Mclain SE, Lorenz CD. Effects of lipid heterogeneity on model human brain lipid membranes. Soft Matter 2021;17:126-35. [DOI: 10.1039/d0sm01766c] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020;12:65-84. [PMID: 32067192 DOI: 10.1007/s12551-020-00620-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
9 Gorai B, Sahoo AK, Srivastava A, Dixit NM, Maiti PK. Concerted Interactions between Multiple gp41 Trimers and the Target Cell Lipidome May Be Required for HIV-1 Entry. J Chem Inf Model 2021;61:444-54. [PMID: 33373521 DOI: 10.1021/acs.jcim.0c01291] [Reference Citation Analysis]
10 Biswas B, Singh PC. Restructuring of Membrane Water and Phospholipids in Direct Interaction of Neurotransmitters with Model Membranes Associated with Synaptic Signaling: Interface-Selective Vibrational Sum Frequency Generation Study. J Phys Chem Lett 2021;12:2871-9. [PMID: 33720729 DOI: 10.1021/acs.jpclett.1c00173] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zoni V, Campomanes P, Vanni S. Investigating the structural properties of hydrophobic solvent-rich lipid bilayers. Soft Matter 2021;17:5329-35. [PMID: 33969832 DOI: 10.1039/d0sm02270e] [Reference Citation Analysis]
12 Desikan R, Behera A, Maiti PK, Ayappa KG. Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 2021;649:461-502. [PMID: 33712196 DOI: 10.1016/bs.mie.2021.01.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Javanainen M, Ollila OHS, Martinez-Seara H. Rotational Diffusion of Membrane Proteins in Crowded Membranes. J Phys Chem B 2020;124:2994-3001. [PMID: 32188248 DOI: 10.1021/acs.jpcb.0c00884] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Faustino I, Abdizadeh H, Souza PCT, Jeucken A, Stanek WK, Guskov A, Slotboom DJ, Marrink SJ. Membrane mediated toppling mechanism of the folate energy coupling factor transporter. Nat Commun 2020;11:1763. [PMID: 32273501 DOI: 10.1038/s41467-020-15554-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Päslack C, Smith JC, Heyden M, Schäfer LV. Hydration-mediated stiffening of collective membrane dynamics by cholesterol. Phys Chem Chem Phys 2019;21:10370-6. [DOI: 10.1039/c9cp01431d] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Koivuniemi A, Fallarero A, Bunker A. Insight into the antimicrobial mechanism of action of β2,2-amino acid derivatives from molecular dynamics simulation: Dancing the can-can at the membrane surface. Biochim Biophys Acta Biomembr 2019;1861:183028. [PMID: 31376362 DOI: 10.1016/j.bbamem.2019.07.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
17 Sejdiu BI, Tieleman DP. ProLint: a web-based framework for the automated data analysis and visualization of lipid-protein interactions. Nucleic Acids Res 2021;49:W544-50. [PMID: 34038536 DOI: 10.1093/nar/gkab409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chmielińska A, Stepien P, Bonarek P, Girych M, Enkavi G, Rog T, Dziedzicka-Wasylewska M, Polit A. Can di-4-ANEPPDHQ reveal the structural differences between nanodiscs and liposomes? Biochim Biophys Acta Biomembr 2021;1863:183649. [PMID: 33991503 DOI: 10.1016/j.bbamem.2021.183649] [Reference Citation Analysis]
19 [DOI: 10.1101/2021.01.20.427278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Pezeshkian W, König M, Marrink SJ, Ipsen JH. A Multi-Scale Approach to Membrane Remodeling Processes. Front Mol Biosci 2019;6:59. [PMID: 31396522 DOI: 10.3389/fmolb.2019.00059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
21 Ingólfsson HI, Bhatia H, Zeppelin T, Bennett WFD, Carpenter KA, Hsu PC, Dharuman G, Bremer PT, Schiøtt B, Lightstone FC, Carpenter TS. Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity. J Phys Chem B 2020;124:7819-29. [PMID: 32790367 DOI: 10.1021/acs.jpcb.0c03368] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
22 Licari G, Strakova K, Matile S, Tajkhorshid E. Twisting and tilting of a mechanosensitive molecular probe detects order in membranes. Chem Sci 2020;11:5637-49. [PMID: 32864081 DOI: 10.1039/d0sc02175j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
23 Ortiz J, Oliva A, Teruel JA, Aranda FJ, Ortiz A. Effect of pH and temperature on the aggregation behaviour of dirhamnolipid biosurfactant. An experimental and molecular dynamics study. J Colloid Interface Sci 2021;597:160-70. [PMID: 33872875 DOI: 10.1016/j.jcis.2021.03.177] [Reference Citation Analysis]
24 Eltyshev AK, Agafonova IA, Minin AS, Pozdina VA, Shevirin VA, Slepukhin PA, Benassi E, Belskaya NP. Photophysics, photochemistry and bioimaging application of 8-azapurine derivatives. Org Biomol Chem 2021;19:9880-96. [PMID: 34734607 DOI: 10.1039/d1ob01801a] [Reference Citation Analysis]
25 Smith P, Quinn PJ, Lorenz CD. Two Coexisting Membrane Structures Are Defined by Lateral and Transbilayer Interactions between Sphingomyelin and Cholesterol. Langmuir 2020;36:9786-99. [DOI: 10.1021/acs.langmuir.0c01237] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
26 Pezeshkian W, Shillcock JC, Ipsen JH. Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell. Toxins (Basel) 2021;13:449. [PMID: 34203472 DOI: 10.3390/toxins13070449] [Reference Citation Analysis]
27 Kadaoluwa Pathirannahalage SP, Meftahi N, Elbourne A, Weiss ACG, McConville CF, Padua A, Winkler DA, Costa Gomes M, Greaves TL, Le TC, Besford QA, Christofferson AJ. Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. J Chem Inf Model 2021;61:4521-36. [PMID: 34406000 DOI: 10.1021/acs.jcim.1c00794] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Lin X, Lin X, Gu N. Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. Nanoscale 2020;12:4101-9. [DOI: 10.1039/c9nr09226a] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Kolokouris D, Kalenderoglou IE, Kolocouris A. Inside and Out of the Pore: Comparing Interactions and Molecular Dynamics of Influenza A M2 Viroporin Complexes in Standard Lipid Bilayers. J Chem Inf Model 2021;61:5550-68. [PMID: 34714655 DOI: 10.1021/acs.jcim.1c00264] [Reference Citation Analysis]
30 Zhdanov VP. Ligand-receptor-mediated attachment of lipid vesicles to a supported lipid bilayer. Eur Biophys J 2020;49:395-400. [PMID: 32556429 DOI: 10.1007/s00249-020-01441-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Cherstvy AG, Safdari H, Metzler R. Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: striking differences for massive versus massless particles. J Phys D: Appl Phys 2021;54:195401. [DOI: 10.1088/1361-6463/abdff0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 17.0] [Reference Citation Analysis]
32 Boonnoy P, Jarerattanachat V, Karttunen M, Wong-Ekkabut J. Role of cholesterol flip-flop in oxidized lipid bilayers. Biophys J 2021;120:4525-35. [PMID: 34478697 DOI: 10.1016/j.bpj.2021.08.036] [Reference Citation Analysis]
33 Campomanes P, Prabhu J, Zoni V, Vanni S. Recharging your fats: CHARMM36 parameters for neutral lipids triacylglycerol and diacylglycerol. Biophys Rep (N Y) 2021;1:None. [PMID: 34939045 DOI: 10.1016/j.bpr.2021.100034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Jiménez-Jiménez C, Manzano M, Vallet-Regí M. Nanoparticles Coated with Cell Membranes for Biomedical Applications. Biology (Basel) 2020;9:E406. [PMID: 33218092 DOI: 10.3390/biology9110406] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Cao X, Tian P. "Dividing and Conquering" and "Caching" in Molecular Modeling. Int J Mol Sci 2021;22:5053. [PMID: 34068835 DOI: 10.3390/ijms22095053] [Reference Citation Analysis]
36 Feng S, Kong L, Gee S, Im W. Molecular Condensate in a Membrane: A Tugging Game between Hydrophobicity and Polarity with Its Biological Significance. Langmuir 2022. [PMID: 35503859 DOI: 10.1021/acs.langmuir.2c00876] [Reference Citation Analysis]
37 Cui D, Kong N, Ding L, Guo Y, Yang W, Yan F. Ultrathin 2D Titanium Carbide MXene (Ti3 C2 Tx ) Nanoflakes Activate WNT/HIF-1α-Mediated Metabolism Reprogramming for Periodontal Regeneration. Adv Healthc Mater 2021;10:e2101215. [PMID: 34586717 DOI: 10.1002/adhm.202101215] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Ohn J, Park M, Kim JY, Chung JH, Kim KH, Jo SJ, Kwon O. Postnatal epidermal maturation is associated with the competence of the skin barrier. Journal of Dermatological Science 2022. [DOI: 10.1016/j.jdermsci.2022.02.009] [Reference Citation Analysis]
39 Lolicato F, Juhola H, Zak A, Postila PA, Saukko A, Rissanen S, Enkavi G, Vattulainen I, Kepczynski M, Róg T. Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor. ACS Chem Neurosci 2020;11:1914-24. [PMID: 32538079 DOI: 10.1021/acschemneuro.9b00656] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
40 Stepien P, Augustyn B, Poojari C, Galan W, Polit A, Vattulainen I, Wisnieska-becker A, Rog T. Complexity of seemingly simple lipid nanodiscs. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020;1862:183420. [DOI: 10.1016/j.bbamem.2020.183420] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Thompson MJ, Baenziger JE. Ion channels as lipid sensors: from structures to mechanisms. Nat Chem Biol 2020;16:1331-42. [DOI: 10.1038/s41589-020-00693-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
42 Liu Y, Barnoud J, Marrink SJ. Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes. Biophys J 2019;117:1215-23. [PMID: 31542224 DOI: 10.1016/j.bpj.2019.08.037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
43 Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020;8:284. [PMID: 32411705 DOI: 10.3389/fcell.2020.00284] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
44 Postila PA, Róg T. A Perspective: Active Role of Lipids in Neurotransmitter Dynamics. Mol Neurobiol 2020;57:910-25. [PMID: 31595461 DOI: 10.1007/s12035-019-01775-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
45 Kitjanon J, Khuntawee W, Phongphanphanee S, Sutthibutpong T, Chattham N, Karttunen M, Wong-Ekkabut J. Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations. Polymers (Basel) 2021;13:4044. [PMID: 34833344 DOI: 10.3390/polym13224044] [Reference Citation Analysis]
46 Dunina-Barkovskaya AY, Vishnyakova KS. Modulation of the Cholesterol-Dependent Activity of Macrophages IC-21 by CRAC Peptides with Substituted Motif-Forming Amino Acids. Biochem (Mosc) Suppl Ser A Membr Cell Biol 2020;14:331-43. [PMID: 33288988 DOI: 10.1134/S1990747820040054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Bhatia H, Ingólfsson HI, Carpenter TS, Lightstone FC, Bremer P. MemSurfer: A Tool for Robust Computation and Characterization of Curved Membranes. J Chem Theory Comput 2019;15:6411-21. [DOI: 10.1021/acs.jctc.9b00453] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
48 Srinivasan S, Zoni V, Vanni S. Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein–membrane interactions. Faraday Discuss . [DOI: 10.1039/d0fd00058b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Yeasmin R, Brewer A, Fine LR, Zhang L. Molecular Dynamics Simulations of Human Beta-Defensin Type 3 Crossing Different Lipid Bilayers. ACS Omega 2021;6:13926-39. [PMID: 34095684 DOI: 10.1021/acsomega.1c01803] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
50 Furuta T. Structural dynamics of ABC transporters: molecular simulation studies. Biochem Soc Trans 2021;49:405-14. [PMID: 33634827 DOI: 10.1042/BST20200710] [Reference Citation Analysis]
51 Chen CH, Melo MC, Berglund N, Khan A, de la Fuente-Nunez C, Ulmschneider JP, Ulmschneider MB. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly. Curr Opin Struct Biol 2020;61:160-6. [PMID: 32006812 DOI: 10.1016/j.sbi.2019.12.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
52 Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. Targeting thermoTRP ion channels: in silico preclinical approaches and opportunities. Expert Opin Ther Targets 2020;24:1079-97. [PMID: 32972264 DOI: 10.1080/14728222.2020.1820987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Hadidi H, Kamali R. Molecular dynamics study of water transport through AQP5-R188C mutant causing palmoplantar keratoderma (PPK) using the gating mechanism concept. Biophys Chem 2021;277:106655. [PMID: 34225022 DOI: 10.1016/j.bpc.2021.106655] [Reference Citation Analysis]
54 Prasanna X, Salo VT, Li S, Ven K, Vihinen H, Jokitalo E, Vattulainen I, Ikonen E. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biol 2021;19:e3000998. [PMID: 33481779 DOI: 10.1371/journal.pbio.3000998] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
55 Li H, Gao J, Cao L, Xie X, Fan J, Wang H, Wang HH, Nie Z. A DNA Molecular Robot that Autonomously Walks on the Cell Membrane to Drive Cell Motility. Angew Chem Int Ed Engl 2021. [PMID: 34490693 DOI: 10.1002/anie.202108210] [Reference Citation Analysis]
56 Duncan AL. Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans 2020;48:993-1004. [PMID: 32453413 DOI: 10.1042/BST20190932] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
57 Patro LPP, Rathinavelan T. STRIDER: Steric hindrance and metal coordination identifier. Computational Biology and Chemistry 2022. [DOI: 10.1016/j.compbiolchem.2022.107686] [Reference Citation Analysis]
58 Alessandri R, Souza PCT, Thallmair S, Melo MN, de Vries AH, Marrink SJ. Pitfalls of the Martini Model. J Chem Theory Comput 2019;15:5448-60. [PMID: 31498621 DOI: 10.1021/acs.jctc.9b00473] [Cited by in Crossref: 67] [Cited by in F6Publishing: 52] [Article Influence: 22.3] [Reference Citation Analysis]
59 Bondar AN, Lemieux MJ. Reactions at Biomembrane Interfaces. Chem Rev 2019;119:6162-83. [PMID: 31021080 DOI: 10.1021/acs.chemrev.8b00596] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
60 Abrusci G, Tarenzi T, Sturlese M, Giachin G, Battistutta R, Lattanzi G. Comparative Molecular Dynamics Investigation of the Electromotile Hearing Protein Prestin. Int J Mol Sci 2021;22:8318. [PMID: 34361083 DOI: 10.3390/ijms22158318] [Reference Citation Analysis]
61 Bondar AN. Phosphatidylglyerol Lipid Binding at the Active Site of an Intramembrane Protease. J Membr Biol 2020;253:563-76. [PMID: 33210155 DOI: 10.1007/s00232-020-00152-z] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
62 Patel DS, Blasco P, Widmalm G, Im W. Escherichia coli O176 LPS structure and dynamics: A NMR spectroscopy and MD simulation study. Curr Res Struct Biol 2020;2:79-88. [PMID: 34235471 DOI: 10.1016/j.crstbi.2020.04.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
63 Pant P, Pathak A, Jayaram B. Bicyclo-DNA mimics with enhanced protein binding affinities: insights from molecular dynamics simulations. J Biomol Struct Dyn 2022;:1-8. [PMID: 35403569 DOI: 10.1080/07391102.2022.2061594] [Reference Citation Analysis]
64 Kundu S, Malik S, Ghosh M, Nandi S, Pyne A, Debnath A, Sarkar N. A Comparative Study on DMSO-Induced Modulation of the Structural and Dynamical Properties of Model Bilayer Membranes. Langmuir 2021;37:2065-78. [DOI: 10.1021/acs.langmuir.0c03037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
65 Osella S, Paloncýová M, Sahi M, Knippenberg S. Influence of Membrane Phase on the Optical Properties of DPH. Molecules 2020;25:E4264. [PMID: 32957614 DOI: 10.3390/molecules25184264] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Vanharanta L, Peränen J, Pfisterer SG, Enkavi G, Vattulainen I, Ikonen E. High‐content imaging and structure‐based predictions reveal functional differences between Niemann‐Pick C1 variants. Traffic 2020;21:386-97. [DOI: 10.1111/tra.12727] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
67 Efremov RG. Dynamic "Molecular Portraits" of Biomembranes Drawn by Their Lateral Nanoscale Inhomogeneities. Int J Mol Sci 2021;22:6250. [PMID: 34200697 DOI: 10.3390/ijms22126250] [Reference Citation Analysis]
68 Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resistance Updates 2020;49:100670. [DOI: 10.1016/j.drup.2019.100670] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 14.0] [Reference Citation Analysis]
69 Alvarez-ramírez F, Ruiz-morales Y. Database of Nuclear Independent Chemical Shifts (NICS) versus NICS ZZ of Polycyclic Aromatic Hydrocarbons (PAHs). J Chem Inf Model 2020;60:611-20. [DOI: 10.1021/acs.jcim.9b00909] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Gao Y, Zhou X, Zhang MM, Liu YJ, Guo XP, Lei CR, Li WJ, Lu D. Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress. Appl Microbiol Biotechnol 2021;105:2455-72. [PMID: 33606076 DOI: 10.1007/s00253-021-11174-5] [Reference Citation Analysis]
71 Tieleman DP, Sejdiu BI, Cino EA, Smith P, Barreto-Ojeda E, Khan HM, Corradi V. Insights into lipid-protein interactions from computer simulations. Biophys Rev 2021;13:1019-27. [PMID: 35047089 DOI: 10.1007/s12551-021-00876-9] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Santos DES, Pontes FJS, Lins RD, Coutinho K, Soares TA. SuAVE: A Tool for Analyzing Curvature-Dependent Properties in Chemical Interfaces. J Chem Inf Model 2020;60:473-84. [DOI: 10.1021/acs.jcim.9b00569] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
73 Barhaghi MS, Crawford B, Schwing G, Hardy DJ, Stone JE, Schwiebert L, Potoff J, Tajkhorshid E. py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD. J Chem Theory Comput 2022. [PMID: 35621307 DOI: 10.1021/acs.jctc.1c00911] [Reference Citation Analysis]
74 Liekkinen J, Enkavi G, Javanainen M, Olmeda B, Pérez-gil J, Vattulainen I. Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. Journal of Molecular Biology 2020;432:3251-68. [DOI: 10.1016/j.jmb.2020.02.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
75 Simeral ML, Zhang A, Demers SME, Hughes HJ, Abdul-Moqueet M, Mayer KM, Hafner JH. Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy. J Phys Chem B 2021;125:2031-41. [PMID: 33617719 DOI: 10.1021/acs.jpcb.0c10576] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Filipe HAL, Moreno MJ, Loura LMS. The Secret Lives of Fluorescent Membrane Probes as Revealed by Molecular Dynamics Simulations. Molecules 2020;25:E3424. [PMID: 32731549 DOI: 10.3390/molecules25153424] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
77 Augustyn B, Stepien P, Poojari C, Mobarak E, Polit A, Wisniewska-becker A, Róg T. Cholesteryl Hemisuccinate Is Not a Good Replacement for Cholesterol in Lipid Nanodiscs. J Phys Chem B 2019;123:9839-45. [DOI: 10.1021/acs.jpcb.9b07853] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
78 Li K, Lyu Y, Huang Y, Xu S, Liu HW, Chen L, Ren TB, Xiong M, Huan S, Yuan L, Zhang XB, Tan W. A de novo strategy to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging. Proc Natl Acad Sci U S A 2021;118:e2018033118. [PMID: 33602816 DOI: 10.1073/pnas.2018033118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Pezeshkian W, Marrink SJ. Simulating realistic membrane shapes. Curr Opin Cell Biol 2021;71:103-11. [PMID: 33721706 DOI: 10.1016/j.ceb.2021.02.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
80 Messias A, Santos DES, Pontes FJS, Lima FS, Soares TA. Out of Sight, Out of Mind: The Effect of the Equilibration Protocol on the Structural Ensembles of Charged Glycolipid Bilayers. Molecules 2020;25:E5120. [PMID: 33158044 DOI: 10.3390/molecules25215120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
81 Brewer A, Zhang L. Binding free energy calculation of human beta defensin 3 with negatively charged lipid bilayer using free energy perturbation method. Biophys Chem 2021;277:106662. [PMID: 34399250 DOI: 10.1016/j.bpc.2021.106662] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Kim S, Voth GA. Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis. J Phys Chem B 2021;125:6874-88. [PMID: 34139844 DOI: 10.1021/acs.jpcb.1c03559] [Reference Citation Analysis]
83 Sejdiu BI, Tieleman DP. Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. Biophys J 2020;118:1887-900. [PMID: 32272057 DOI: 10.1016/j.bpj.2020.03.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 12.5] [Reference Citation Analysis]
84 Cheimarios N, Kokkoris G, Boudouvis AG. Multiscale Modeling in Chemical Vapor Deposition Processes: Models and Methodologies. Arch Computat Methods Eng 2021;28:637-72. [DOI: 10.1007/s11831-019-09398-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
85 Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, Truong VK, Chapman J, Elbourne A. Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications. Adv Sci (Weinh) 2020;7:1902913. [PMID: 32440470 DOI: 10.1002/advs.201902913] [Cited by in Crossref: 72] [Cited by in F6Publishing: 56] [Article Influence: 36.0] [Reference Citation Analysis]
86 Javanainen M, Martinez-Seara H. Rapid diffusion of cholesterol along polyunsaturated membranes via deep dives. Phys Chem Chem Phys 2019;21:11660-9. [PMID: 31119241 DOI: 10.1039/c9cp02022e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
87 Hnatiuk KI, Alekseev AN, Alekseev SA, Grabovsky YE, Yablochkova KS, Lazarenko MV, Lazarenko MM. Investigation of the structure and mechanisms of thermal motion in nanostructured undecylenic acid. Molecular Crystals and Liquid Crystals 2020;701:16-27. [DOI: 10.1080/15421406.2020.1732559] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Geragotelis AD, Freites JA, Tobias DJ. Anomalous Diffusion of Peripheral Membrane Signaling Proteins from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2021;125:9990-8. [PMID: 34459592 DOI: 10.1021/acs.jpcb.1c04905] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Yu Y, Krämer A, Venable RM, Simmonett AC, MacKerell AD Jr, Klauda JB, Pastor RW, Brooks BR. Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. J Chem Theory Comput 2021;17:1562-80. [PMID: 33620214 DOI: 10.1021/acs.jctc.0c01326] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
90 Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021;78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
91 Tomkins M, Hughes A, Morris RJ. An update on passive transport in and out of plant cells. Plant Physiol 2021;187:1973-84. [PMID: 35235675 DOI: 10.1093/plphys/kiab406] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
92 Stadtländer CT. Biomembrane simulations: Computational studies of biological membranes. Informatics in Medicine Unlocked 2021;26:100744. [DOI: 10.1016/j.imu.2021.100744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Duncan AL, Corey RA, Sansom MSP. Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc Natl Acad Sci U S A 2020;117:7803-13. [PMID: 32213593 DOI: 10.1073/pnas.1918387117] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
94 Zhang G, Keener JE, Marty MT. Measuring Remodeling of the Lipid Environment Surrounding Membrane Proteins with Lipid Exchange and Native Mass Spectrometry. Anal Chem 2020;92:5666-9. [PMID: 32250609 DOI: 10.1021/acs.analchem.0c00786] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
95 Piao J, Yuan W, Dong Y. Recent Progress of DNA Nanostructures on Amphiphilic Membranes. Macromol Biosci 2021;21:e2000440. [PMID: 33759366 DOI: 10.1002/mabi.202000440] [Reference Citation Analysis]
96 Umamaheswari S, Karthika P, Suvenitha K, Kadirvelu K, Ramesh M. Dose-Dependent Molecular Responses of Labeo rohita to Triphenyl Phosphate. Chem Res Toxicol 2021;34:2500-11. [PMID: 34847329 DOI: 10.1021/acs.chemrestox.1c00281] [Reference Citation Analysis]
97 Ohkubo YZ, Madsen JJ. Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches. Thromb Haemost 2021;121:1122-37. [PMID: 34214998 DOI: 10.1055/s-0040-1722187] [Reference Citation Analysis]
98 Sharma P, Desikan R, Ayappa KG. Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes. J Phys Chem B 2021;125:6587-99. [PMID: 34081861 DOI: 10.1021/acs.jpcb.1c03277] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
99 Camilo CRDS, Ruggiero JR, de Araujo AS. A Method for Detection of Water Permeation Events in Molecular Dynamics Simulations of Lipid Bilayers. Braz J Phys 2022;52. [DOI: 10.1007/s13538-022-01071-1] [Reference Citation Analysis]
100 Bohinc K, Špadina M, Reščič J, Shimokawa N, Spada S. Influence of Charge Lipid Head Group Structures on Electric Double Layer Properties. J Chem Theory Comput 2021. [PMID: 34937343 DOI: 10.1021/acs.jctc.1c00800] [Reference Citation Analysis]
101 Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021;254:51-64. [PMID: 33409541 DOI: 10.1007/s00232-020-00165-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Pezeshkian W, König M, Wassenaar TA, Marrink SJ. Backmapping triangulated surfaces to coarse-grained membrane models. Nat Commun 2020;11:2296. [PMID: 32385270 DOI: 10.1038/s41467-020-16094-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
103 Pluhackova K, Horner A. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity. BMC Biol 2021;19:4. [PMID: 33441107 DOI: 10.1186/s12915-020-00936-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
104 Wilson KA, Wang L, Macdermott-opeskin H, O'mara ML. The Fats of Life: Using Computational Chemistry to Characterise the Eukaryotic Cell Membrane. Aust J Chem 2020;73:85. [DOI: 10.1071/ch19353] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
105 Olżyńska A, Kulig W, Mikkolainen H, Czerniak T, Jurkiewicz P, Cwiklik L, Rog T, Hof M, Jungwirth P, Vattulainen I. Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes. Langmuir 2020;36:10438-47. [PMID: 32804507 DOI: 10.1021/acs.langmuir.0c01590] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]