1 |
Zhao P, Wang Z, Wang Y, Wu Z, Guo Y, Wang C, Fang X, Qu Z, Wang H, Zhao G. A novel heavy-atom-free lysosome-targeted BODIPY as triplet photosensitizer based on SOCT-ISC mechanism for photodynamic therapy. Dyes and Pigments 2023;214:111214. [DOI: 10.1016/j.dyepig.2023.111214] [Reference Citation Analysis]
|
2 |
Gao J, Luan T, Lv J, Yang M, Li H, Yuan Z. An oxygen-carrying and lysosome-targeting BODIPY derivative for NIR bioimaging and enhanced multimodal therapy against hypoxic tumors. J Photochem Photobiol B 2023;241:112666. [PMID: 36842340 DOI: 10.1016/j.jphotobiol.2023.112666] [Reference Citation Analysis]
|
3 |
Yang Z, Wang L, Zhang J, Liu J, Yu X. Application of bismuth sulfide based nanomaterials in cancer diagnosis and treatment. Nano Today 2023;49:101799. [DOI: 10.1016/j.nantod.2023.101799] [Reference Citation Analysis]
|
4 |
Fu LH, Wu XY, He J, Qi C, Lin J, Huang P. Biomimetic Nanoplatform with H(2)O(2) Homeostasis Disruption and Oxidative Stress Amplification for Enhanced Chemodynamic Therapy. Acta Biomater 2023:S1742-7061(23)00151-4. [PMID: 36934891 DOI: 10.1016/j.actbio.2023.03.017] [Reference Citation Analysis]
|
5 |
Peltek OO, Karpov TE, Rogova A, Postovalova A, Ageev E, Petrov A, Antuganov D, Stanzhevsky AA, Maistrenko DN, Zuev D, Muslimov AR, Timin AS, Zyuzin MV. Development of Nanocarrier-Based Radionuclide and Photothermal Therapy in Combination with Chemotherapy in Melanoma Cancer Treatment. ACS Appl Mater Interfaces 2023;15:13460-71. [PMID: 36867432 DOI: 10.1021/acsami.2c20619] [Reference Citation Analysis]
|
6 |
Yin Y, Xin Y, Zhang F, An D, Fan H, Qin M, Xia J, Xi T, Xiong J. Overcoming ABCB1-mediated multidrug resistance by transcription factor BHLHE40. Neoplasia 2023;39:100891. [PMID: 36931039 DOI: 10.1016/j.neo.2023.100891] [Reference Citation Analysis]
|
7 |
Lee D, Shin J, Son H, Cheon SY, Lee Y, Park J, Koo H. Organic and inorganic nanomedicine for combination cancer therapies. Nanoscale Adv 2023;5:1600-10. [PMID: 36926565 DOI: 10.1039/d3na00043e] [Reference Citation Analysis]
|
8 |
Liu P, Hao L, Liu M, Hu S. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1161472] [Reference Citation Analysis]
|
9 |
Lu B, Quan H, Zhang Z, Li T, Wang J, Ding Y, Wang Y, Zhan X, Yao Y. End Group Nonplanarization Enhances Phototherapy Efficacy of A-D-A Fused-Ring Photosensitizer for Tumor Phototherapy. Nano Lett 2023. [PMID: 36897125 DOI: 10.1021/acs.nanolett.3c00119] [Reference Citation Analysis]
|
10 |
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023;59:3024-39. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Reference Citation Analysis]
|
11 |
Chen S, Fan J, Xiao F, Qin Y, Long Y, Yuan L, Liu B. Erythrocyte membrane-camouflaged Prussian blue nanocomplexes for combinational therapy of triple-negative breast cancer. J Mater Chem B 2023;11:2219-33. [PMID: 36790882 DOI: 10.1039/d2tb02289c] [Reference Citation Analysis]
|
12 |
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. Small 2023;:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Reference Citation Analysis]
|
13 |
Bhoye M, Pansambal S, Basnet P, Lin KA, Gutierrez-mercado KY, Pérez-larios A, Chauhan A, Oza R, Ghotekar S. Eco-Friendly Synthesis of Ni/NiO Nanoparticles Using Gymnema sylvestre Leaves Extract for Antifungal Activity. J Compos Sci 2023;7:105. [DOI: 10.3390/jcs7030105] [Reference Citation Analysis]
|
14 |
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. Nanomaterials (Basel) 2023;13. [PMID: 36903831 DOI: 10.3390/nano13050953] [Reference Citation Analysis]
|
15 |
Yin Y, Jiang H, Wang Y, Zhang L, Sun C, Xie P, Zheng K, Wang S, Yang Q. Self-Assembled Nanodelivery System with Rapamycin and Curcumin for Combined Photo-Chemotherapy of Breast Cancer. Pharmaceutics 2023;15:849. [DOI: 10.3390/pharmaceutics15030849] [Reference Citation Analysis]
|
16 |
Nguyen V, Dao TNT, Cho M, Jeong H, Nguyen-le M, Shin Y, Yoon J. Recent advances in extracellular vesicle-based organic nanotherapeutic drugs for precision cancer therapy. Coordination Chemistry Reviews 2023;479:215006. [DOI: 10.1016/j.ccr.2022.215006] [Reference Citation Analysis]
|
17 |
Papaioannou L, Kolokithas-ntoukas A, Karkaletsou L, Didaskalou S, Koffa MD, Avgoustakis K. NIR-responsive, lapatinib-loaded gold nanorods for combined photothermal and pharmacological treatment of HER2 positive breast cancer: In vitro evaluation and cell studies. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104347] [Reference Citation Analysis]
|
18 |
Zhou S, Zhao W, Hu J, Mao C, Zhou M. Application of Nanotechnology in Thrombus Therapy. Adv Healthc Mater 2023;12:e2202578. [PMID: 36507827 DOI: 10.1002/adhm.202202578] [Reference Citation Analysis]
|
19 |
Jin H, Liao S, Yao F, Li J, Xu Z, Zhao K, Xu X, Sun S. Insight into the Crosstalk between Photodynamic Therapy and Immunotherapy in Breast Cancer. Cancers (Basel) 2023;15. [PMID: 36900322 DOI: 10.3390/cancers15051532] [Reference Citation Analysis]
|
20 |
Sun Z, Hou Y. Intelligent micro/nanorobots for improved tumor therapy. BMEMat 2023. [DOI: 10.1002/bmm2.12012] [Reference Citation Analysis]
|
21 |
Chu B, Chen Z, Shi H, Wu X, Wang H, Dong F, He Y. Fluorescence, ultrasonic and photoacoustic imaging for analysis and diagnosis of diseases. Chem Commun (Camb) 2023;59:2399-412. [PMID: 36744435 DOI: 10.1039/d2cc06654h] [Reference Citation Analysis]
|
22 |
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Reference Citation Analysis]
|
23 |
Hu S, Huang L, Zhou L, Wu T, Zhao S, Zhang L. Single-Excitation Triple-Emission Down-/Up-Conversion Nanoassemblies for Tumor Microenvironment-Enhanced Ratiometric NIR-II Fluorescence Imaging and Chemo-/Photodynamic Combination Therapy. Anal Chem 2023;95:3830-9. [PMID: 36706236 DOI: 10.1021/acs.analchem.2c05333] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-Mediated Tumor Immunotherapy. Adv Healthc Mater 2023;:e2203028. [PMID: 36807733 DOI: 10.1002/adhm.202203028] [Reference Citation Analysis]
|
25 |
Lu W, Liu W, Hu A, Shen J, Yi H, Cheng Z. Combinatorial Polydopamine-Liposome Nanoformulation as an Effective Anti-Breast Cancer Therapy. Int J Nanomedicine 2023;18:861-79. [PMID: 36844433 DOI: 10.2147/IJN.S382109] [Reference Citation Analysis]
|
26 |
Yang M, Zhang Y, Alexander R, Liu J, Wu W, Wang G. Synergistic Photocatalytic and Photothermal Antibacterial Activity of (In, Nb) and (Al, Nb) Co‐Doped TiO 2 Ceramics. Advanced NanoBiomed Research 2023. [DOI: 10.1002/anbr.202200129] [Reference Citation Analysis]
|
27 |
Feng K, Xu Z, Wang Y, Wu X, Xiong F, Ruan Y, Wu X, Ye L, Su D, Yu J, Sun X. Renal-clearable porous hollow copper iron oxide nanoparticles for trimodal chemodynamic-photothermal-chemo anti-tumor therapy. Nanoscale 2023;15:3188-98. [PMID: 36723141 DOI: 10.1039/d2nr06224k] [Reference Citation Analysis]
|
28 |
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023;11:1182-214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Reference Citation Analysis]
|
29 |
Cetin Ersen B, Goncu B, Dag A, Birlik Demirel G. GLUT-Targeting Phototherapeutic Nanoparticles for Synergistic Triple Combination Cancer Therapy. ACS Appl Mater Interfaces 2023. [PMID: 36780418 DOI: 10.1021/acsami.2c21180] [Reference Citation Analysis]
|
30 |
Zhang J, Li Y, Jiang M, Qiu H, Li Y, Gu M, Yin S. Self-Assembled Aza-BODIPY and Iron(III) Nanoparticles for Photothermal-Enhanced Chemodynamic Therapy in the NIR-II Window. ACS Biomater Sci Eng 2023;9:821-30. [PMID: 36725684 DOI: 10.1021/acsbiomaterials.2c01539] [Reference Citation Analysis]
|
31 |
Zheng Z, Yuan L, Hu JJ, Xia F, Lou X. Modular Peptide Probe for Protein Analysis. Chemistry 2023;29:e202203225. [PMID: 36333271 DOI: 10.1002/chem.202203225] [Reference Citation Analysis]
|
32 |
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova K, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev 2023. [PMID: 36757198 DOI: 10.1002/med.21935] [Reference Citation Analysis]
|
33 |
Gai L, Zhang R, Shi X, Ni Z, Wang S, Zhang JL, Lu H, Guo Z. BOINPYs: facile synthesis and photothermal properties triggered by photoinduced nonadiabatic decay. Chem Sci 2023;14:1434-42. [PMID: 36794191 DOI: 10.1039/d2sc06435a] [Reference Citation Analysis]
|
34 |
Luo Q, Shao N, Zhang A, Chen C, Wang D, Luo L, Xiao Z. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals 2023;16:249. [DOI: 10.3390/ph16020249] [Reference Citation Analysis]
|
35 |
Chen J, Zhu Y, Wu C, Shi J. Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev 2023;52:973-1000. [PMID: 36597879 DOI: 10.1039/d2cs00479h] [Reference Citation Analysis]
|
36 |
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. Mater Horiz 2023;10:361-92. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Reference Citation Analysis]
|
37 |
Liang B, Miao Y, Zhao L, Fang L, Deng D. A dandelion-like nanomedicine via hierarchical self-assembly for synergistic chemotherapy and photo-dynamic cancer therapy. Nanomedicine 2023;49:102660. [PMID: 36746273 DOI: 10.1016/j.nano.2023.102660] [Reference Citation Analysis]
|
38 |
Xu J, Xu W, Wang Z, Jiang Y. Study on combination therapy for lung cancer through pemetrexed-loaded mesoporous polydopamine nanoparticles. J Biomed Mater Res A 2023;111:158-69. [PMID: 36479812 DOI: 10.1002/jbm.a.37436] [Reference Citation Analysis]
|
39 |
An N, Gao Y, Shi Y, Du X, Cheng J, Tang S, Liu P, Yang H, Guo C. Nickel phosphide for MRI-guided synergistic photo-immunotherapy. Journal of Materials Science & Technology 2023. [DOI: 10.1016/j.jmst.2022.12.032] [Reference Citation Analysis]
|
40 |
Wang Z, Lu J, Yuan Z, Pi W, Huang X, Lin X, Zhang Y, Lei H, Wang P. Natural Carrier-Free Binary Small Molecule Self-Assembled Hydrogel Synergize Antibacterial Effects and Promote Wound Healing by Inhibiting Virulence Factors and Alleviating the Inflammatory Response. Small 2023;19:e2205528. [PMID: 36446719 DOI: 10.1002/smll.202205528] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Ma Z, Han H, Zhao Y. Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics. Biomaterials 2023;293:121947. [PMID: 36512861 DOI: 10.1016/j.biomaterials.2022.121947] [Reference Citation Analysis]
|
42 |
Pu Y, Wu W, Xiang H, Chen Y, Xu H. CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. Nano Today 2023;48:101734. [DOI: 10.1016/j.nantod.2022.101734] [Reference Citation Analysis]
|
43 |
Sekar R, Basavegowda N, Thathapudi JJ, Sekhar MR, Joshi P, Somu P, Baek KH. Recent Progress of Gold-Based Nanostructures towards Future Emblem of Photo-Triggered Cancer Theranostics: A Special Focus on Combinatorial Phototherapies. Pharmaceutics 2023;15. [PMID: 36839754 DOI: 10.3390/pharmaceutics15020433] [Reference Citation Analysis]
|
44 |
Chen Z, Rong Y, Ding J, Cheng X, Chen X, He C. Injectable Polypeptide Hydrogel Depots Containing Dual Immune Checkpoint Inhibitors and Doxorubicin for Improved Tumor Immunotherapy and Post-Surgical Tumor Treatment. Pharmaceutics 2023;15. [PMID: 36839750 DOI: 10.3390/pharmaceutics15020428] [Reference Citation Analysis]
|
45 |
Zou Y, Huang D, He S, Song X, Liu W, Sun W, Du J, Fan J, Peng X. Cooperatively enhanced photothermal-chemotherapy via simultaneously downregulating HSPs and promoting DNA alkylation in cancer cells. Chem Sci 2023;14:1010-7. [PMID: 36755714 DOI: 10.1039/d2sc06143k] [Reference Citation Analysis]
|
46 |
Zhang H, Xu X, Yan D, Ren C, Zhang J, Gu M, Wang Y, Wu P, Li Z, Kong L, Han C. PROTAC Nanoplatform with Targeted Degradation of NAD(P)H:Quinone Oxidoreductase 1 to Enhance Reactive Oxygen Species-Mediated Apoptosis. ACS Appl Mater Interfaces 2023. [PMID: 36657998 DOI: 10.1021/acsami.2c20312] [Reference Citation Analysis]
|
47 |
Guo D, Dai X, Liu K, Liu Y, Wu J, Wang K, Jiang S, Sun F, Wang L, Guo B, Yang D, Huang L. A Self-Reinforcing Nanoplatform for Highly Effective Synergistic Targeted Combinatary Calcium-Overload and Photodynamic Therapy of Cancer. Adv Healthc Mater 2023;:e2202424. [PMID: 36640265 DOI: 10.1002/adhm.202202424] [Reference Citation Analysis]
|
48 |
Xiao P, Xie W, Zhang J, Wu Q, Shen Z, Guo C, Wu Y, Wang F, Tang BZ, Wang D. De Novo Design of Reversibly pH-Switchable NIR-II Aggregation-Induced Emission Luminogens for Efficient Phototheranostics of Patient-Derived Tumor Xenografts. J Am Chem Soc 2023;145:334-44. [PMID: 36575385 DOI: 10.1021/jacs.2c10076] [Reference Citation Analysis]
|
49 |
Geng S, Guo M, Zhan G, Shi D, Shi L, Gan L, Zhao Y, Yang X. NIR-triggered ligand-presenting nanocarriers for enhancing synergistic photothermal-chemotherapy. J Control Release 2023;353:229-40. [PMID: 36427657 DOI: 10.1016/j.jconrel.2022.11.039] [Reference Citation Analysis]
|
50 |
Li J, Zhu L, Kwok HF. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment. Drug Resist Updat 2023;66:100904. [PMID: 36462375 DOI: 10.1016/j.drup.2022.100904] [Reference Citation Analysis]
|
51 |
Grebinyk A, Prylutska S, Grebinyk S, Prylutskyy Y, Ritter U, Matyshevska O, Dandekar T, Frohme M. Toward photodynamic cancer chemotherapy with C60-Doxorubicin nanocomplexes. Nanomaterials for Photodynamic Therapy 2023. [DOI: 10.1016/b978-0-323-85595-2.00005-0] [Reference Citation Analysis]
|
52 |
Zhang L, Jiang Z, Yang X, Qian Y, Wang M, Wu S, Li L, Jia F, Wang Z, Hu Z, Zhao M, Tang X, Li G, Shang H, Chen X, Wang W. A Totipotent "All-In-One" Peptide Sequentially Blocks Immune Checkpoint and Reverses the Immunosuppressive Tumor Microenvironment. Adv Mater 2023;35:e2207330. [PMID: 36259590 DOI: 10.1002/adma.202207330] [Reference Citation Analysis]
|
53 |
Singh P, Youden B, Carrier A, Oakes K, Servos M, Jiang R, Lin S, Nguyen TD, Zhang X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J Control Release 2023;353:1050-67. [PMID: 36549390 DOI: 10.1016/j.jconrel.2022.12.036] [Reference Citation Analysis]
|
54 |
Wang C, Wang Q, Wang H, Li Z, Chen J, Zhang Z, Zeng H, Yu X, Yang X, Yang X, Li Z. Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy. J Control Release 2023;353:391-410. [PMID: 36473606 DOI: 10.1016/j.jconrel.2022.11.059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
55 |
Xue F, Zhu S, Tian Q, Qin R, Wang Z, Huang G, Yang S. Macrophage-mediated delivery of magnetic nanoparticles for enhanced magnetic resonance imaging and magnetothermal therapy of solid tumors. Journal of Colloid and Interface Science 2023;629:554-562. [DOI: 10.1016/j.jcis.2022.08.186] [Reference Citation Analysis]
|
56 |
Zeng Y, Ouyang Q, Yu Y, Tan L, Liu X, Zheng Y, Wu S. Defective Homojunction Porphyrin-Based Metal-Organic Frameworks for Highly Efficient Sonodynamic Therapy. Small Methods 2023;7:e2201248. [PMID: 36549891 DOI: 10.1002/smtd.202201248] [Reference Citation Analysis]
|
57 |
Li Y, Cui J, Li C, Deng C, Deng G, Zhang H, An F. Biomaterial-assisted photoimmunotherapy for synergistic suppression of cancer progression. Chinese Chemical Letters 2023. [DOI: 10.1016/j.cclet.2023.108180] [Reference Citation Analysis]
|
58 |
Joshi R, Jadhao M, Ghosh SK. Recent trends in the applications of nanocomposites in cancer theranostics. Green Sustainable Process for Chemical and Environmental Engineering and Science 2023. [DOI: 10.1016/b978-0-323-95169-2.00011-0] [Reference Citation Analysis]
|
59 |
Li X, Xu X, Xu M, Geng Z, Ji P, Liu Y. Hydrogel systems for targeted cancer therapy. Front Bioeng Biotechnol 2023;11:1140436. [PMID: 36873346 DOI: 10.3389/fbioe.2023.1140436] [Reference Citation Analysis]
|
60 |
Yang P, Chang Y, Zhang J, Gao F, Liu X, Wei Q, Ma X, Guo Y. The combination of in situ photodynamic promotion and ion-interference to improve the efficacy of cancer therapy. J Colloid Interface Sci 2023;629:522-33. [PMID: 36088697 DOI: 10.1016/j.jcis.2022.08.125] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
61 |
Zhang W, Liu C, Liu Z, Zhao C, Zhu J, Ren J, Qu X. A Cell Selective Fluoride-Activated MOF Biomimetic Platform for Prodrug Synthesis and Enhanced Synergistic Cancer Therapy. ACS Nano 2022;16:20975-84. [PMID: 36394517 DOI: 10.1021/acsnano.2c08604] [Reference Citation Analysis]
|
62 |
Ma H, Peng J, Zhang J, Pan L, Ouyang J, Li Z, Guo B, Wang Z, Xu Y, Lian D, Zeng X. Frontiers in Preparations and Promising Applications of Mesoporous Polydopamine for Cancer Diagnosis and Treatment. Pharmaceutics 2022;15. [PMID: 36678644 DOI: 10.3390/pharmaceutics15010015] [Reference Citation Analysis]
|
63 |
Cunqing Kong, Xingcai Chen. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J Nanomedicine 2022;17. [PMID: 36540374 DOI: 10.2147/IJN.S388996] [Reference Citation Analysis]
|
64 |
Xu Z, Chen J, Li Y, Hu T, Fan L, Xi J, Han J, Guo R. Yolk-shell Fe(3)O(4)@Carbon@Platinum-Chlorin e6 nanozyme for MRI-assisted synergistic catalytic-photodynamic-photothermal tumor therapy. J Colloid Interface Sci 2022;628:1033-43. [PMID: 35970129 DOI: 10.1016/j.jcis.2022.08.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 8.0] [Reference Citation Analysis]
|
65 |
Zhan YR, Chen P, He X, Hei MW, Zhang J, Yu XQ. Sodium Alginate-Doping Cationic Nanoparticle As Dual Gene Delivery System for Genetically Bimodal Therapy. Biomacromolecules 2022;23:5312-21. [PMID: 36346945 DOI: 10.1021/acs.biomac.2c01119] [Reference Citation Analysis]
|
66 |
Lu S, Lu L, Liu Y, Li Z, Fang Y, Chen Z, Zhou J. Native and engineered extracellular vesicles for wound healing. Front Bioeng Biotechnol 2022;10:1053217. [PMID: 36568307 DOI: 10.3389/fbioe.2022.1053217] [Reference Citation Analysis]
|
67 |
Sun Y, Wang Y, Liu Y, Wang H, Yang C, Liu X, Wang F. Integration of Manganese Dioxide‐Based Nanomaterials for Biomedical Applications. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200093] [Reference Citation Analysis]
|
68 |
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS Omega 2022;7:45882-909. [PMID: 36570217 DOI: 10.1021/acsomega.2c05852] [Reference Citation Analysis]
|
69 |
Lee KK, Lee SC, Kim H, Lee C. Polydopamine Nanoparticle-Incorporated Fluorescent Hydrogel for Fluorescence Imaging-Guided Photothermal Therapy of Cancers. BioChip J 2022. [DOI: 10.1007/s13206-022-00091-y] [Reference Citation Analysis]
|
70 |
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi M, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioactive Materials 2023;23:471-507. [DOI: 10.1016/j.bioactmat.2022.11.013] [Reference Citation Analysis]
|
71 |
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022;14. [PMID: 36501672 DOI: 10.3390/polym14235278] [Reference Citation Analysis]
|
72 |
Sohrabi M, Babaei Z, Haghpanah V, Larijani B, Abbasi A, Mahdavi M. Recent advances in gene therapy-based cancer monotherapy and synergistic bimodal therapy using upconversion nanoparticles: Structural and biological aspects. Biomedicine & Pharmacotherapy 2022;156:113872. [DOI: 10.1016/j.biopha.2022.113872] [Reference Citation Analysis]
|
73 |
Fan J, Qin Y, Xiao C, Yuan L, Long Y, Zhao Y, Nguyen W, Chen S, Chen W, Liu X, Liu B. Biomimetic PLGA-based nanocomplexes for improved tumor penetration to enhance chemo-photodynamic therapy against metastasis of TNBC. Materials Today Advances 2022;16:100289. [DOI: 10.1016/j.mtadv.2022.100289] [Reference Citation Analysis]
|
74 |
Zhang Q, Luo Q, Liu Z, Sun M, Dong X. Nano-ROS-generating approaches to cancer dynamic therapy: Lessons from Nanoparticles. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141225] [Reference Citation Analysis]
|
75 |
Guo Z, Xiao J, Liu W, Wang Y, Liu T, Jiang H, Liu X, Wang X. Cationic porphyrin-based nanoparticles assisted with bio-assembly imaging-guided strategy for efficient inactivation of bacteria and promote wound healing. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141218] [Reference Citation Analysis]
|
76 |
Li R, Ren J, Zhang D, Lv M, Wang Z, Wang H, Zhang S, Du J, Jiang X, Wang G. Attachment of −tBu groups to aza-BODIPY core at 3,5-sites with ultra-large Stokes shift to enhance photothermal therapy through apoptosis mechanism. Materials Today Bio 2022;16:100446. [DOI: 10.1016/j.mtbio.2022.100446] [Reference Citation Analysis]
|
77 |
Cheng M, Shi H, Xu T, Jiang W, Tang BZ, Duo Y. High-dimensional single-cell cartography tracking of immune cells subpopulation of mice peripheral blood treated with gold nanorods and black phosphorus nanosheets. Nano Today 2022;47:101666. [DOI: 10.1016/j.nantod.2022.101666] [Reference Citation Analysis]
|
78 |
Luo G, Li Z, Zheng J, Yang H, Li X, Guishan X, Duo Y. Recent progresses on radiotherapeutics-based treatment of cancer with two-dimensional nanomaterials. Applied Materials Today 2022;29:101584. [DOI: 10.1016/j.apmt.2022.101584] [Reference Citation Analysis]
|
79 |
Xu Y, Xiong J, Sun X, Gao H. Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharm Sin B 2022;12:4327-47. [PMID: 36561994 DOI: 10.1016/j.apsb.2022.11.001] [Reference Citation Analysis]
|
80 |
Sow P, Dey S, Dey R, Majumder A, Nandi S, Bera M, Samadder A. Poly lactide-co-glycolide encapsulated nano-curcumin promoting antagonistic interactions between HSP 90 and XRCC1 proteins to prevent cypermethrin-induced toxicity: An in silico predicted in vitro and in vivo approach. Colloids and Surfaces B: Biointerfaces 2022;220:112905. [DOI: 10.1016/j.colsurfb.2022.112905] [Reference Citation Analysis]
|
81 |
Liu D, He H, Kong F, Cao Y, Zang F, Ma M, Gu N, Zhang Y. A versatile metal–organic nanoplatform in combination with CXCR4 antagonist and PD-L1 inhibitor for multimodal synergistic cancer therapy and MRI-guided tumor imaging. Nano Today 2022;47:101689. [DOI: 10.1016/j.nantod.2022.101689] [Reference Citation Analysis]
|
82 |
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coordination Chemistry Reviews 2022;473:214821. [DOI: 10.1016/j.ccr.2022.214821] [Reference Citation Analysis]
|
83 |
Zhao Y, Wang S, Chen A, Kankala RK. Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews 2022;472:214765. [DOI: 10.1016/j.ccr.2022.214765] [Reference Citation Analysis]
|
84 |
Shen K, Yan Y, Gao W, Li H, Chen W, He Z, Li L. Heat-Generating Mn0.5Zn0.5Fe2O4/MWCNTs nanocomposites for enhancing hyperthermia efficacy in magnetic hyperthermia applications. Journal of Alloys and Compounds 2022;926:166806. [DOI: 10.1016/j.jallcom.2022.166806] [Reference Citation Analysis]
|
85 |
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. Nanoscale Res Lett 2022;17:114. [DOI: 10.1186/s11671-022-03752-x] [Reference Citation Analysis]
|
86 |
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022;16:17497-551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
87 |
Wang Y, Huang Y, Fu Y, Guo Z, Chen D, Cao F, Ye Q, Duan Q, Liu M, Wang N, Han D, Qu C, Tian Z, Qu Y, Zheng Y. Reductive damage induced autophagy inhibition for tumor therapy. Nano Res 2022. [DOI: 10.1007/s12274-022-5139-z] [Reference Citation Analysis]
|
88 |
Zhang D, Tian S, Liu Y, Zheng M, Yang X, Zou Y, Shi B, Luo L. Near infrared-activatable biomimetic nanogels enabling deep tumor drug penetration inhibit orthotopic glioblastoma. Nat Commun 2022;13:6835. [PMID: 36369424 DOI: 10.1038/s41467-022-34462-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
89 |
Lee J, Seo HS, Park W, Park CG, Jeon Y, Park DH. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. Materials (Basel) 2022;15. [PMID: 36431465 DOI: 10.3390/ma15227977] [Reference Citation Analysis]
|
90 |
Chen H, Wen K, Lu Y, Zhang X, Shi Y, Shi Q, Ma H, Peng Q, Huang H. White-light-driven fluorescence switch for super-resolution imaging guided photodynamic and photoacid therapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1369-9] [Reference Citation Analysis]
|
91 |
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-mediated Tumor Immunotherapy.. [DOI: 10.21203/rs.3.rs-2021481/v1] [Reference Citation Analysis]
|
92 |
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022;26:61. [DOI: 10.1186/s40824-022-00308-z] [Reference Citation Analysis]
|
93 |
Faria P, Pacheco C, Moura RP, Sarmento B, Martins C. Multifunctional nanomedicine strategies to manage brain diseases. Drug Deliv and Transl Res 2022. [DOI: 10.1007/s13346-022-01256-w] [Reference Citation Analysis]
|
94 |
Ramedani A, Sabzevari O, Simchi A. Hybrid Ultrasound-Activated Nanoparticles Based on Graphene Quantum Dots for Cancer Treatment. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122373] [Reference Citation Analysis]
|
95 |
Chai R, Yu L, Dong C, Yin Y, Wang S, Chen Y, Zhang Q. Oxygen-evolving photosynthetic cyanobacteria for 2D bismuthene radiosensitizer-enhanced cancer radiotherapy. Bioact Mater 2022;17:276-88. [PMID: 35386463 DOI: 10.1016/j.bioactmat.2022.01.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
96 |
Guo H, Wang L, Wu W, Guo M, Yang L, Zhang Z, Cao L, Pu F, Huang X, Shao Z. Engineered biomimetic nanoreactor for synergistic photodynamic-chemotherapy against hypoxic tumor. J Control Release 2022;351:151-63. [PMID: 36122895 DOI: 10.1016/j.jconrel.2022.09.020] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
97 |
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022;190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
|
98 |
Shi Y, Zhu D, Wang D, Liu B, Du X, Wei G, Zhou X. Recent advances of smart AIEgens for photoacoustic imaging and phototherapy. Coordination Chemistry Reviews 2022;471:214725. [DOI: 10.1016/j.ccr.2022.214725] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
99 |
Ding M, Liu W, Gref R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 2022;190:114496. [PMID: 35970275 DOI: 10.1016/j.addr.2022.114496] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
|
100 |
Chang X, Zhu M, Tang X, Yu X, Liu F, Chen L, Yin T, Zhu Z, Zhang Y, Chen X. Enhanced manipulation of tumor microenvironments by nanomotor for synergistic therapy of malignant tumor. Biomaterials 2022;290:121853. [DOI: 10.1016/j.biomaterials.2022.121853] [Reference Citation Analysis]
|
101 |
Thangudu S, Chiang C, Chu Hwang K. 1550 nm Light Activatable Photothermal Therapy on Multifunctional CuBi2O4 Bimetallic Particles for Treating Drug Resistance Bacteria-Infected Skin in the NIR-III Biological Window. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.10.143] [Reference Citation Analysis]
|
102 |
Li Y, He G, Fu LH, Younis MR, He T, Chen Y, Lin J, Li Z, Huang P. A Microneedle Patch with Self-Oxygenation and Glutathione Depletion for Repeatable Photodynamic Therapy. ACS Nano 2022;16:17298-312. [PMID: 36166667 DOI: 10.1021/acsnano.2c08098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
103 |
Junna Jiao, Zhuang Qian, Yurong Wang, Mei Liu, Liye Fan, Mengqing Liu, Zichen Hao, Junrong Jiao, Zhuangwei Lv. Synthesis and Biological Evaluation of PEGylated MWO4 Nanoparticles as Sonodynamic AID Inhibitors in Treating Diffuse Large B-Cell Lymphoma. Molecules 2022;27:7143. [PMID: 36363970 DOI: 10.3390/molecules27217143] [Reference Citation Analysis]
|
104 |
He G, Li Y, Younis MR, Fu LH, He T, Lei S, Lin J, Huang P. Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nat Commun 2022;13:6238. [PMID: 36266306 DOI: 10.1038/s41467-022-33837-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
105 |
Bhartiya P, Chawla R, Dutta PK. Folate receptor targeted chitosan and polydopamine coated mesoporous silica nanoparticles for photothermal therapy and drug delivery. Journal of Macromolecular Science, Part A. [DOI: 10.1080/10601325.2022.2135443] [Reference Citation Analysis]
|
106 |
Johny J, van Halteren CER, Zwiehoff S, Behrends C, Bäumer C, Timmermann B, Rehbock C, Barcikowski S. Impact of Sterilization on the Colloidal Stability of Ligand-Free Gold Nanoparticles for Biomedical Applications. Langmuir 2022. [PMID: 36260482 DOI: 10.1021/acs.langmuir.2c01557] [Reference Citation Analysis]
|
107 |
Zhao J, Zou F, Zhu J, Huang C, Bu F, Zhu Z, Yuan R. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis. Front Pharmacol 2022;13:1025618. [DOI: 10.3389/fphar.2022.1025618] [Reference Citation Analysis]
|
108 |
Qu H, Wang C, Guo Y, Zhao Z, Qiao L, Yang J, Wu H, Li Q, Dong A. Electrospun N-halamine/ZnO-based platform eradicates bacteria through multimodal antimicrobial mechanism of action. Rare Met . [DOI: 10.1007/s12598-022-02116-9] [Reference Citation Analysis]
|
109 |
Li Q, Liu Q, Li H, Dong L, Zhou Y, Zhu J, Yang L, Tao J. Modified hollow mesoporous silica nanoparticles as immune adjuvant-nanocarriers for photodynamically enhanced cancer immunotherapy. Front Bioeng Biotechnol 2022;10:1039154. [DOI: 10.3389/fbioe.2022.1039154] [Reference Citation Analysis]
|
110 |
Sun J, He X. AIE‐based drug/gene delivery system: Evolution from fluorescence monitoring alone to augmented therapeutics. Aggregate 2022. [DOI: 10.1002/agt2.282] [Reference Citation Analysis]
|
111 |
Chen X, Lei S, Lin J, Huang P. Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opin Drug Deliv 2022. [PMID: 36214740 DOI: 10.1080/17425247.2022.2134853] [Reference Citation Analysis]
|
112 |
Zhang Y, Jiang S, Lin J, Huang P. Antineoplastic Enzyme as Drug Carrier with Activatable Catalytic Activity for Efficient Combined Therapy. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202208583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
113 |
Guo HL, Xie XY, Xu M. Application of nanomaterials in combined thermal ablation and immunotherapy for liver tumors. Shijie Huaren Xiaohua Zazhi 2022; 30(19): 829-837 [DOI: 10.11569/wcjd.v30.i19.829] [Reference Citation Analysis]
|
114 |
Chang J, Qin X, Li S, He F, Gai S, Ding H, Yang P. Combining Cobalt Ferrite Nanozymes with a Natural Enzyme to Reshape the Tumor Microenvironment for Boosted Cascade Enzyme-Like Activities. ACS Appl Mater Interfaces 2022. [PMID: 36190449 DOI: 10.1021/acsami.2c14433] [Reference Citation Analysis]
|
115 |
Gu P, Xu J, Zhu J. Self-Assembly of Polymer-Grafted Inorganic Nanoparticles into Three-Dimensional Superlattices. Giant 2022. [DOI: 10.1016/j.giant.2022.100123] [Reference Citation Analysis]
|
116 |
Xu J, Ning J, Wang Y, Xu M, Yi C, Yan F. Carbon dots as a promising therapeutic approach for combating cancer. Bioorganic & Medicinal Chemistry 2022;72:116987. [DOI: 10.1016/j.bmc.2022.116987] [Reference Citation Analysis]
|
117 |
Shahabadi N, Zendehcheshm S, Khademi F. Exploring the ct-DNA and plasmid DNA binding affinity of the biogenic synthesized Chloroxine-conjugated silver nanoflowers: Spectroscopic and gel electrophoresis methods. Process Biochemistry 2022;121:360-70. [DOI: 10.1016/j.procbio.2022.07.024] [Reference Citation Analysis]
|
118 |
Bhatia SN, Chen X, Dobrovolskaia MA, Lammers T. Cancer nanomedicine. Nat Rev Cancer 2022;22:550-6. [PMID: 35941223 DOI: 10.1038/s41568-022-00496-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
|
119 |
Li L, Yang J, Wei J, Jiang C, Liu Z, Yang B, Zhao B, Song W. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light Sci Appl 2022;11:286. [PMID: 36180470 DOI: 10.1038/s41377-022-00968-5] [Reference Citation Analysis]
|
120 |
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022;20:427. [PMID: 36175957 DOI: 10.1186/s12951-022-01615-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
121 |
Xue C, Zhang H, Wang X, Du H, Lu L, Fei Y, Li Y, Zhang Y, Li M, Luo Z. Bio-inspired engineered ferritin-albumin nanocomplexes for targeted ferroptosis therapy. J Control Release 2022:S0168-3659(22)00646-0. [PMID: 36181916 DOI: 10.1016/j.jconrel.2022.09.051] [Reference Citation Analysis]
|
122 |
Gu F, Hu C, Cao W, Li C, Xia Q, Gao Y, Liu Y, Gao S. Tumor Microenvironment Multiple Responsive Nanoparticles for Targeted Delivery of Doxorubicin and CpG Against Triple-Negative Breast Cancer. Int J Nanomedicine 2022;17:4401-17. [PMID: 36164553 DOI: 10.2147/IJN.S377702] [Reference Citation Analysis]
|
123 |
Lv J, Li H, Yang M, Li X, Gao J, Yuan Z. IR783 Encapsulated in TR‐Conjugated Liposomes for Enhancing NIR Imaging‐Guided Photothermal and Photodynamic Therapy**. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202560] [Reference Citation Analysis]
|
124 |
Huang A, Du J, Liu Z, Zhang G, Abuduwaili W, Yan J, Sun J, Xu R, Liu T, Shen X, Dong L, Zhu J, Li Y. Sorafenib-Loaded Cu2−xSe Nanoparticles Boost Photothermal–Synergistic Targeted Therapy against Hepatocellular Carcinoma. Nanomaterials 2022;12:3191. [DOI: 10.3390/nano12183191] [Reference Citation Analysis]
|
125 |
Sun Y, Han R, Wang J, Qin Y, Ren Z, Feng X, Liu Q, Wang X. A single-beam of light priming the immune responses and boosting cancer photoimmunotherapy. J Control Release 2022;350:734-47. [PMID: 36063959 DOI: 10.1016/j.jconrel.2022.08.057] [Reference Citation Analysis]
|
126 |
Duan Q, Zhang Q, Shi J, Zhang B, Zhou L, Sang S, Xue J. Synergistic Effect of Drug Delivery System Combining DOX and V9302 on Gastric Cancer Cells**. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202187] [Reference Citation Analysis]
|
127 |
Ma G, Liu Z, Zhu C, Chen H, Kwok RTK, Zhang P, Tang BZ, Cai L, Gong P. H 2 O 2 ‐Responsive NIR‐II AIE Nanobomb for Carbon Monoxide Boosting Low‐Temperature Photothermal Therapy. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202207213] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
128 |
Chen B, Pan Y, Zhang D, Xia H, Kankala RK. Phase-change materials-based platforms for biomedicine. Front Bioeng Biotechnol 2022;10:989953. [DOI: 10.3389/fbioe.2022.989953] [Reference Citation Analysis]
|
129 |
Nosrati H, Ghaffarlou M, Salehiabar M, Mousazadeh N, Abhari F, Barsbay M, Ertas YN, Rashidzadeh H, Mohammadi A, Nasehi L, Rezaeejam H, Davaran S, Ramazani A, Conde J, Danafar H. Magnetite and bismuth sulfide Janus heterostructures as radiosensitizers for in vivo enhanced radiotherapy in breast cancer. Biomaterials Advances 2022;140:213090. [DOI: 10.1016/j.bioadv.2022.213090] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
130 |
Yan J, Long X, Liang Y, Li F, Yu H, Li Y, Li Z, Tian Y, He B, Sun Y. Nanodrug delivery systems and cancer stem cells: From delivery carriers to treatment. Colloids and Surfaces B: Biointerfaces 2022;217:112701. [DOI: 10.1016/j.colsurfb.2022.112701] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
131 |
Yildirim A, İspirli Doğaç Y. An application of CoFe2O4/alginate magnetic beads: drug delivery system of 5-fluorouracil. Int J Sec Metabolite 2022. [DOI: 10.21448/ijsm.1052662] [Reference Citation Analysis]
|
132 |
Zhao L, Xu J, Tong Y, Gong P, Gao F, Li H, Jiang Y. Injectable “cocktail” hydrogel with dual‐stimuli‐responsive drug release, photothermal ablation, and drug‐antibody synergistic effect. SmartMat. [DOI: 10.1002/smm2.1148] [Reference Citation Analysis]
|
133 |
Jiang Q, Xie M, Chen R, Yan F, Ye C, Li Q, Xu S, Wu W, Jia Y, Shen P, Ruan J. Cancer cell membrane-wrapped nanoparticles for cancer immunotherapy: A review of current developments. Front Immunol 2022;13:973601. [DOI: 10.3389/fimmu.2022.973601] [Reference Citation Analysis]
|
134 |
Xiong X, Wang L, He S, Guan S, Li D, Zhang M, Qu X. Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Front Bioeng Biotechnol 2022;10:972837. [DOI: 10.3389/fbioe.2022.972837] [Reference Citation Analysis]
|
135 |
Hu J, Hu J, Wu W, Qin Y, Fu J, Zhou J, Liu C, Yin J. N-acetyl-galactosamine modified metal-organic frameworks to inhibit the growth and pulmonary metastasis of liver cancer stem cells through targeted chemotherapy and starvation therapy. Acta Biomater 2022:S1742-7061(22)00502-5. [PMID: 36002126 DOI: 10.1016/j.actbio.2022.08.027] [Reference Citation Analysis]
|
136 |
Wang Y, Zhang Y, Zhang X, Zhang Z, She J, Wu D, Gao W. High Drug-Loading Nanomedicines for Tumor Chemo-Photo Combination Therapy: Advances and Perspectives. Pharmaceutics 2022;14. [PMID: 36015361 DOI: 10.3390/pharmaceutics14081735] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
137 |
Lee G, Lee JH, Choi W, Kim C, Hahn SK. Hyaluronate-Black Phosphorus-Upconversion Nanoparticle Complex for Non-invasive Theranosis of Skin Cancer. Biomacromolecules 2022. [PMID: 35930811 DOI: 10.1021/acs.biomac.2c00506] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
138 |
Jiang X, Luo Z, Zhang B, Li P, Xiao J, Su W. Moderate microwave-assisted preparation of phthalocyanine-based carbon quantum dots for improved photo-inactivation of bacteria. Inorganic Chemistry Communications 2022;142:109543. [DOI: 10.1016/j.inoche.2022.109543] [Reference Citation Analysis]
|
139 |
Wang C, Tian Y, Wu B, Cheng W. Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. IJN 2022;Volume 17:3511-29. [DOI: 10.2147/ijn.s370767] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
140 |
Zhang H, Han W, Han J, Xu P, Jiang P. Review of novel materials as photosensitizers towards the bottleneck of photodynamic therapy. J Mater Sci. [DOI: 10.1007/s10853-022-07529-6] [Reference Citation Analysis]
|
141 |
Xu Y, Wang Y, An J, Sedgwick AC, Li M, Xie J, Hu W, Kang J, Sen S, Steinbrueck A, Zhang B, Qiao L, Wageh S, Arambula JF, Liu L, Zhang H, Sessler JL, Kim JS. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioactive Materials 2022;14:76-85. [DOI: 10.1016/j.bioactmat.2021.12.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
|
142 |
Yun K, Guo J, Zhu R, Wang T, Zhang X, Pan H, Pan W. Design of ROS-Responsive Hyaluronic Acid-Methotrexate Conjugates for Synergistic Chemo-Photothermal Therapy for Cancer. Mol Pharm 2022. [PMID: 35900105 DOI: 10.1021/acs.molpharmaceut.2c00472] [Reference Citation Analysis]
|
143 |
Escriche-Navarro B, Escudero A, Lucena-Sánchez E, Sancenón F, García-Fernández A, Martínez-Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. Adv Sci (Weinh) 2022;:e2200756. [PMID: 35866466 DOI: 10.1002/advs.202200756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
144 |
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022;51:6126-76. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
|
145 |
Hosseini Hashemi Z, Mirzaei M, Eslami Moghadam M. Property evaluation of two anticancer candidate platinum complexes with N-isobutyl glycine ligand against human colon cancer. Biometals 2022. [PMID: 35829930 DOI: 10.1007/s10534-022-00418-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
146 |
Yıldırım A, Doğaç Yİ. MnFe 2 O 4 /alginate magnetic beads as platform for cancer drug delivery: an in vitro study of 5-Fluorouracil release. Journal of Macromolecular Science, Part A. [DOI: 10.1080/10601325.2022.2098142] [Reference Citation Analysis]
|
147 |
Xu Q, Zhang Y, Yang Z, Jiang G, Lv M, Wang H, Liu C, Xie J, Wang C, Guo K, Gu Z, Yong Y. Tumor microenvironment-activated single-atom platinum nanozyme with H(2)O(2) self-supplement and O(2)-evolving for tumor-specific cascade catalysis chemodynamic and chemoradiotherapy. Theranostics 2022;12:5155-71. [PMID: 35836808 DOI: 10.7150/thno.73039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
148 |
Tanziela T, Dong X, Ye J, Guo Z, Jiang H, Lu Z, Liu X, Wang X. Advances in engineered exosomes towards cancer diagnosis and therapeutics. Prog Biomed Eng 2022;4:032002. [DOI: 10.1088/2516-1091/ac73c9] [Reference Citation Analysis]
|
149 |
Zhu H, Yu J, Ye J, Wu Y, Pan J, Li Y, Chen C, Zheng L, Liu G, Chu C. Nanoparticle-mediated corneal neovascularization treatments: Toward new generation of drug delivery systems. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.06.071] [Reference Citation Analysis]
|
150 |
Wang Z, Yu N, Zhang J, Ren Q, Li M, Chen Z. Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.174] [Reference Citation Analysis]
|
151 |
Lu Z, Singh G, Lesani P, Zreiqat H. Promise and Perspective of Nanomaterials in Antisenescence Tissue Engineering Applications. ACS Biomater Sci Eng 2022. [PMID: 35771746 DOI: 10.1021/acsbiomaterials.1c01298] [Reference Citation Analysis]
|
152 |
Luo G, Liang J, Zheng D, Ji P, Wang J, Chen W, Zhang X. Inhibiting Stress‐Activated Signals to Reverse Heat Resistance for Augmented Photothermal Therapy Based on Biologically Derived Nanotherapeutics. Adv Funct Materials. [DOI: 10.1002/adfm.202205550] [Reference Citation Analysis]
|
153 |
Jiang X, Han W, Liu J, Mao J, Lee MJ, Rodriguez M, Li Y, Luo T, Xu Z, Yang K, Bissonnette M, Weichselbaum RR, Lin W. Tumor-Activatable Nanoparticles Target Low-Density Lipoprotein Receptor to Enhance Drug Delivery and Antitumor Efficacy. Adv Sci (Weinh) 2022;:e2201614. [PMID: 35748191 DOI: 10.1002/advs.202201614] [Reference Citation Analysis]
|
154 |
Khosravi N, Pishavar E, Baradaran B, Oroojalian F, Mokhtarzadeh A. Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics. J Control Release 2022;348:706-22. [PMID: 35732250 DOI: 10.1016/j.jconrel.2022.06.026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
155 |
Deng F, Liu Y, Zheng R, Kong R, Zhou X, Wang J, Cheng H, Li S. Ce6- and Bez235-Based Nanomedicine for Chemo-/Photodynamic Combination Therapy of Tumors. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01384] [Reference Citation Analysis]
|
156 |
Chen T, Yao T, Pan H, Peng H, Whittaker AK, Li Y, Zhu S, Wang Z. One-step nanoarchitectonics of a multiple functional hydrogel based on cellulose nanocrystals for effective tumor therapy. Nano Res . [DOI: 10.1007/s12274-022-4455-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
157 |
Li X, Yin B, Gao L, Li X, Huang H, Song G, Zhou Y. One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy. Nano Res . [DOI: 10.1007/s12274-022-4474-4] [Reference Citation Analysis]
|
158 |
Mehmood S, Uddin MA, Yu H, Wang L, Amin BU, Haq F, Fahad S, Haroon M. Study on synthesis of cross-linked poly(cyclotriphosphazene-co-luteolin) nanospheres and their properties for controlled drug delivery. Colloid Polym Sci. [DOI: 10.1007/s00396-022-04992-0] [Reference Citation Analysis]
|
159 |
Wen C, Guo X, Gao C, Zhu Z, Meng N, Shen XC, Liang H. NIR-II-responsive AuNRs@SiO2-RB@MnO2 nanotheranostic for multimodal imaging-guided CDT/PTT synergistic cancer therapy. J Mater Chem B 2022;10:4274-84. [PMID: 35583909 DOI: 10.1039/d1tb02807c] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
160 |
Tian B, Wang C, Du Y, Dong S, Feng L, Liu B, Liu S, Ding H, Gai S, He F, Yang P. Near Infrared-Triggered Theranostic Nanoplatform with Controlled Release of HSP90 Inhibitor for Synergistic Mild Photothermal and Enhanced Nanocatalytic Therapy with Hypoxia Relief. Small 2022;:e2200786. [PMID: 35661402 DOI: 10.1002/smll.202200786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
161 |
Chen QB, Shen MH, Ren XH, Zhu S, Shang JT, Liu W, Zhang ZW, Dong ZJ, Gu HZ, Zhang XZ, Yuan Q, Zou T. Tumor-triggered targeting ammonium bicarbonate liposomes for tumor multimodal therapy. J Mater Chem B 2022. [PMID: 35666635 DOI: 10.1039/d2tb00409g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
162 |
Wang Y, Niu N, Huang Y, Song S, Tan H, Wang L, Wang D, Tang BZ. Three-Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and Aggregation-Induced Emission Photosensitizer for Potent Cancer Theranostics. Small Methods 2022;:e2200393. [PMID: 35657020 DOI: 10.1002/smtd.202200393] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
163 |
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci (Weinh) 2022;:e2201734. [PMID: 35652198 DOI: 10.1002/advs.202201734] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 33.0] [Reference Citation Analysis]
|
164 |
Yuan J, Ye Z, Zeng Y, Pan Z, Feng Z, Bao Y, Li Y, Liu X, He Y, Feng Q. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio 2022;15:100318. [PMID: 35734197 DOI: 10.1016/j.mtbio.2022.100318] [Reference Citation Analysis]
|
165 |
Liu Q, Shi L, Liao Y, Cao X, Liu X, Yu Y, Wang Z, Lu X, Wang J. Ultrathin-FeOOH-Coated MnO2 Sonosensitizers with Boosted Reactive Oxygen Species Yield and Remodeled Tumor Microenvironment for Efficient Cancer Therapy. Adv Sci (Weinh) 2022;9:e2200005. [PMID: 35484709 DOI: 10.1002/advs.202200005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
166 |
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022;15:100333. [PMID: 35774196 DOI: 10.1016/j.mtbio.2022.100333] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
167 |
Tian J, Huang B, Weng S, Zheng W, Zhang W. A multifunctional platform with metallacycle-based star polymers and gold nanorods for combinational photochemotherapy. Materials Today Advances 2022;14:100229. [DOI: 10.1016/j.mtadv.2022.100229] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
168 |
Lee H, Dey D, Kim K, Kim S, Kim E, Kang S, Bajpai V, Huh Y. Hypoxia-responsive nanomedicine to overcome tumor microenvironment-mediated resistance to chemo-photodynamic therapy. Materials Today Advances 2022;14:100218. [DOI: 10.1016/j.mtadv.2022.100218] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
169 |
Sohail M, Yu B, Sun Z, Liu J, Li Y, Zhao F, Chen D, Yang X, Xu H. Complex polymeric nanomicelles co-delivering doxorubicin and dimethoxycurcumin for cancer chemotherapy. Drug Deliv 2022;29:1523-35. [PMID: 35611890 DOI: 10.1080/10717544.2022.2073403] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
170 |
Salavatov NA, Bol’shakova AV, Morozov VN, Kolyvanova MA, Isagulieva AK, Dement’eva OV. Gold Nanorods with Functionalized Organosilica Shells: Synthesis and Prospects of Application in Tumor Theranostics. Colloid J 2022;84:93-9. [DOI: 10.1134/s1061933x22010100] [Reference Citation Analysis]
|
171 |
Yang L, Jia P, Song S, Dong Y, Shen R, He F, Gai S. On-Demand Triggered Chemodynamic Therapy by NIR-II Light on Oxidation-Prevented Bismuth Nanodots. ACS Appl Mater Interfaces 2022;14:21787-99. [PMID: 35506665 DOI: 10.1021/acsami.1c22631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
172 |
Lu B, Zhang Z, Ji Y, Zhou S, Jia B, Zhang Y, Wang J, Ding Y, Wang Y, Yao Y, Zhan X. Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Sci China Chem . [DOI: 10.1007/s11426-022-1232-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
173 |
Maji SK, Yu S, Choi E, Lim JW, Jang D, Kim GY, Kim S, Lee H, Kim DH. Anisotropic Plasmonic Gold Nanorod-Indocyanine Green@Reduced Graphene Oxide-Doxorubicin Nanohybrids for Image-Guided Enhanced Tumor Theranostics. ACS Omega 2022;7:15186-99. [PMID: 35572761 DOI: 10.1021/acsomega.2c01306] [Reference Citation Analysis]
|
174 |
Bian Y, Liu B, Liang S, Ding B, Zhao Y, Jiang F, Cheng Z, Kheraif AAA, Ma P, Lin J. Cu-based MOFs decorated dendritic mesoporous silica as tumor microenvironment responsive nanoreactor for enhanced tumor multimodal therapy. Chemical Engineering Journal 2022;435:135046. [DOI: 10.1016/j.cej.2022.135046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
175 |
Li Y, Zhang M, Han H, Zhang B, Matson JB, Chen D, Li W, Wang Y. Peptide-based supramolecular photodynamic therapy systems: From rational molecular design to effective cancer treatment. Chemical Engineering Journal 2022;436:135240. [DOI: 10.1016/j.cej.2022.135240] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
176 |
Blum NT, Fu L, Lin J, Huang P. When starvation therapy meets chemodynamic therapy. ChemPhysMater 2022. [DOI: 10.1016/j.chphma.2022.05.001] [Reference Citation Analysis]
|
177 |
Selmani A, Kovačević D, Bohinc K. Nanoparticles: From synthesis to applications and beyond. Adv Colloid Interface Sci 2022;303:102640. [PMID: 35358806 DOI: 10.1016/j.cis.2022.102640] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
178 |
Liu D, Chen Y, Wang Q, Ji Y, Bao L, Yao W, Gao X, Yin J. Tailored protein-conjugated DNA nanoplatform for synergistic cancer therapy. J Control Release 2022;346:250-9. [PMID: 35452765 DOI: 10.1016/j.jconrel.2022.04.022] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
179 |
Shi T, Huang C, Li Y, Huang F, Yin S. NIR-II phototherapy agents with aggregation-induced emission characteristics for tumor imaging and therapy. Biomaterials 2022;285:121535. [PMID: 35487066 DOI: 10.1016/j.biomaterials.2022.121535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
180 |
Gao Z, Gao H, Ding D. In Vivo Phototheranostics Application of AIEgen‐based Probes. Handbook of Aggregation‐Induced Emission 2022. [DOI: 10.1002/9781119643098.ch56] [Reference Citation Analysis]
|
181 |
Küçükdermenci S. Investigation of Magnetic Gradient Distribution Usability Generated by Helmholtz Coils for Magnetic Hyperthermia Localization. KOJOSE 2022. [DOI: 10.34088/kojose.792056] [Reference Citation Analysis]
|
182 |
Patel R, Lacerda Q, Oeffinger BE, Eisenbrey JR, Rochani AK, Kaushal G, Wessner CE, Wheatley MA. Development of a Dual Drug-Loaded, Surfactant-Stabilized Contrast Agent Containing Oxygen. Polymers 2022;14:1568. [DOI: 10.3390/polym14081568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
183 |
Liu Y, Dai X, Yu B, Chen M, Zhao N, Xu FJ. pH-Responsive hyaluronic acid-cloaked polycation/gold nanohybrids for tumor-targeted synergistic photothermal/gene therapy. Biomater Sci 2022. [PMID: 35412539 DOI: 10.1039/d2bm00296e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
184 |
Li B, Liu H, He Y, Zhao M, Ge C, Younis MR, Huang P, Chen X, Lin J. A "Self-Checking" pH/Viscosity-Activatable NIR-II Molecule for Real-Time Evaluation of Photothermal Therapy Efficacy. Angew Chem Int Ed Engl 2022;61:e202200025. [PMID: 35170174 DOI: 10.1002/anie.202200025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
185 |
Fu D, Liu X, Zheng X, Zhou M, Wang W, Su G, Liu T, Wang L, Xie Z. Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coordination Chemistry Reviews 2022;456:214393. [DOI: 10.1016/j.ccr.2021.214393] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
186 |
Wu H, Huang C, Wang L, Li Q, Li Y, Zhang L, Zhu D. Folate-targeted co-delivery polymersomes for efficient photo-chemo-antiangiogenic therapy against breast cancer and in vivo evaluation via OCTA/NIRF dual-modal imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.04.021] [Reference Citation Analysis]
|
187 |
Liu Y, Zhang J, Guo Y, Wang P, Su Y, Jin X, Zhu X, Zhang C. Drug‐grafted DNA as a novel chemogene for targeted combinatorial cancer therapy. Exploration 2022;2:20210172. [DOI: 10.1002/exp.20210172] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
188 |
Chen H, Timashev P, Zhang Y, Xue X, Liang XJ. Nanotechnology-based combinatorial phototherapy for enhanced cancer treatment. RSC Adv 2022;12:9725-37. [PMID: 35424935 DOI: 10.1039/d1ra09067d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
189 |
Feng L, Li C, Liu L, Wang Z, Chen Z, Yu J, Ji W, Jiang G, Zhang P, Wang J, Tang BZ. Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy via Type I PDT and PTT. ACS Nano 2022;16:4162-74. [PMID: 35230081 DOI: 10.1021/acsnano.1c10019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
|
190 |
Zhang N, Shu G, Shen L, Ding J, Qiao E, Fang S, Song J, Yang Y, Zhao Z, Lu C, Tu J, Xu M, Du Y, Chen M, Ji J. Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy. Nano Res . [DOI: 10.1007/s12274-022-4165-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
191 |
Zhu Y, Huang Y, Yan TH, Li J, Li Y, Drake HF, Zhong H, Jin Y, Zhao R, Zhou HC. Metal-Organic Framework-Based Nanoheater with Photo-Triggered Cascade Effects for On-Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy. Adv Healthc Mater 2022;:e2200004. [PMID: 35306753 DOI: 10.1002/adhm.202200004] [Reference Citation Analysis]
|
192 |
Jiang Y, Zhao W, Zhou H, Zhang Q, Zhang S. ATP-Triggered Intracellular In Situ Aggregation of a Gold-Nanoparticle-Equipped Triple-Helix Molecular Switch for Fluorescence Imaging and Photothermal Tumor Therapy. Langmuir 2022. [PMID: 35291761 DOI: 10.1021/acs.langmuir.1c03331] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
193 |
Bodrikov IV, Titov EY, Vorotyntsev AV, Pryakhina VI, Titov DY. Synthesis of Decorated Carbon Structures with Encapsulated Components by Low-Voltage Electric Discharge Treatment. High Energy Chem 2022;56:60-9. [DOI: 10.1134/s0018143922010039] [Reference Citation Analysis]
|
194 |
Salimi M, Mosca S, Gardner B, Palombo F, Matousek P, Stone N. Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management. Nanomaterials 2022;12:922. [DOI: 10.3390/nano12060922] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
195 |
Komiyama M, Shigi N, Ariga K. DNA‐Based Nanoarchitectures as Eminent Vehicles for Smart Drug Delivery Systems. Adv Funct Materials. [DOI: 10.1002/adfm.202200924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
196 |
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
197 |
Ma Y, Su Z, Zhou L, He L, Hou Z, Zou J, Cai Y, Chang D, Xie J, Zhu C, Fan W, Chen X, Ju S. Biodegradable Metal-Organic-Framework-Gated Organosilica for Tumor-Microenvironment-Unlocked Glutathione-Depletion-Enhanced Synergistic Therapy. Adv Mater 2022;34:e2107560. [PMID: 34902181 DOI: 10.1002/adma.202107560] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
198 |
Wang X, Qi Y, Hu Z, Jiang L, Pan F, Xiang Z, Xiong Z, Jia W, Hu J, Lu W. Fe3O4@PVP@DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00433-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
199 |
Pan WL, Tan Y, Meng W, Huang NH, Zhao YB, Yu ZQ, Huang Z, Zhang WH, Sun B, Chen JX. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials 2022;283:121449. [PMID: 35247637 DOI: 10.1016/j.biomaterials.2022.121449] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
|
200 |
Li J, Wang J, Zhang D, Cui T, Xu Z, Jiang X. Synthesis, structure and photochemical properties of asymmetric NMe2-bearing aza-BODIPYs as novel photothermal agents. Dyes and Pigments 2022;199:110092. [DOI: 10.1016/j.dyepig.2022.110092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
201 |
Jia X, Lv M, Fei Y, Dong Q, Wang H, Liu Q, Li D, Wang J, Wang E. Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials 2022;282:121404. [DOI: 10.1016/j.biomaterials.2022.121404] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
202 |
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 42.0] [Reference Citation Analysis]
|
203 |
Küçükdermenci S. Hedeflemeli manyetik hipertermi için tek ve çift eksen konumlamalarla oluşturulan gradyan desenlerinin haritalanarak incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2022. [DOI: 10.17341/gazimmfd.784966] [Reference Citation Analysis]
|
204 |
Yao M, Han W, Feng L, Wei Z, Liu Y, Zhang H, Zhang S. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem 2022;233:114236. [PMID: 35247753 DOI: 10.1016/j.ejmech.2022.114236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
205 |
Kim J, Choi Y, Yang S, Lee J, Choi J, Moon Y, Kim J, Shim N, Cho H, Shim MK, Jeon S, Lim DK, Yoon HY, Kim K. Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics 2022;14:474. [PMID: 35335852 DOI: 10.3390/pharmaceutics14030474] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
206 |
Li B, Liu H, He Y, Zhao M, Ge C, Younis MR, Huang P, Chen X, Lin J. A “Self‐Checking” pH/Viscosity‐Activatable NIR‐II Molecule for Real‐Time Evaluation of Photothermal Therapy Efficacy. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202200025] [Reference Citation Analysis]
|
207 |
Bhattacharya T, Das D, Borges e Soares GA, Chakrabarti P, Ai Z, Chopra H, Hasan MA, Cavalu S. Novel Green Approaches for the Preparation of Gold Nanoparticles and Their Promising Potential in Oncology. Processes 2022;10:426. [DOI: 10.3390/pr10020426] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
208 |
Jiang F, Zhao Y, Yang C, Cheng Z, Liu M, Xing B, Ding B, Ma P, Lin J. A tumor microenvironment-responsive Co/ZIF-8/ICG/Pt nanoplatform for chemodynamic and enhanced photodynamic antitumor therapy. Dalton Trans 2022;51:2798-804. [PMID: 35084419 DOI: 10.1039/d1dt04120g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
209 |
Lu D, Yu L, Chen Z, Chen M, Lei Z, Guo H, Wang X, Zhang Y, Xu T, Wang H, Zhou X, Ju S, Teng G. A Simple and Efficient Embolization-Combined Therapy for Solid Tumors by Smart Poly(amino acid)s Nanocomposites. ACS Appl Bio Mater 2022. [PMID: 35135191 DOI: 10.1021/acsabm.1c01106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
210 |
Zhang S, Chen H, Wang L, Qin X, Jiang B, Ji S, Shen X, Liang H. A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202107076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
211 |
Gao L, Song Y, Zhong J, Lin X, Zhou SF, Zhan G. Biocompatible 2D Cu-TCPP Nanosheets Derived from Cu2O Nanocubes as Multifunctional Nanoplatforms for Combined Anticancer Therapy. ACS Biomater Sci Eng 2022. [PMID: 35129963 DOI: 10.1021/acsbiomaterials.1c01430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
212 |
Zhang M, Zhang X, Zhao K, Dong Y, Yang W, Liu J, Li D. Assembly of gold nanorods with L-cysteine reduced graphene oxide for highly efficient NIR-triggered photothermal therapy. Spectrochim Acta A Mol Biomol Spectrosc 2022;266:120458. [PMID: 34619508 DOI: 10.1016/j.saa.2021.120458] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
213 |
Qi X, Wang G, Wang P, Pei Y, Zhang C, Yan M, Wei P, Tian G, Zhang G. Transferrin Protein Corona-Modified CuGd Core-Shell Nanoplatform for Tumor-Targeting Photothermal and Chemodynamic Synergistic Therapies. ACS Appl Mater Interfaces 2022. [PMID: 35119836 DOI: 10.1021/acsami.1c22998] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
214 |
Wang S, Lv J, Pang Y, Hu S, Lin Y, Li M. Ion channel-targeting near-infrared photothermal switch with synergistic effect for specific cancer therapy. J Mater Chem B 2022;10:748-56. [PMID: 35022632 DOI: 10.1039/d1tb02351a] [Reference Citation Analysis]
|
215 |
Ding Y, Tong Z, Jin L, Ye B, Zhou J, Sun Z, Yang H, Hong L, Huang F, Wang W, Mao Z. An NIR Discrete Metallacycle Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imaging-Guided Cancer Radio-Chemotherapy. Adv Mater 2022;34:e2106388. [PMID: 34821416 DOI: 10.1002/adma.202106388] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 21.0] [Reference Citation Analysis]
|
216 |
Papaioannou L, Avgoustakis K. Responsive nanomedicines enhanced by or enhancing physical modalities to treat solid cancer tumors: Preclinical and clinical evidence of safety and efficacy. Adv Drug Deliv Rev 2022;181:114075. [PMID: 34883140 DOI: 10.1016/j.addr.2021.114075] [Reference Citation Analysis]
|
217 |
Yan Y, Wang H, Zhao Y. Radiolabeled peptide probe for tumor imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
218 |
Cao Y, Ren Q, Hao R, Sun Z. Innovative strategies to boost photothermal therapy at mild temperature mediated by functional nanomaterials. Materials & Design 2022;214:110391. [DOI: 10.1016/j.matdes.2022.110391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
|
219 |
Gao P, Wang H, Cheng Y. Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. Chinese Chemical Letters 2022;33:575-86. [DOI: 10.1016/j.cclet.2021.08.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
|
220 |
Xie B, Shu W, Wang H, Chen L, Xu J, Zhang F, Lin R. Folic acid-modified metal-organic framework carries CPT and DOX for cancer treatment. Journal of Solid State Chemistry 2022;306:122803. [DOI: 10.1016/j.jssc.2021.122803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
221 |
Liu Y, Han YY, Lu S, Wu Y, Li J, Sun X, Yan J. Injectable hydrogel platform with biodegradable Dawson-type polyoxometalate and R848 for combinational photothermal-immunotherapy of cancer. Biomater Sci 2022. [PMID: 35080214 DOI: 10.1039/d1bm01835c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
222 |
Guo Y, Wang Z, Shi X, Shen M. Engineered cancer cell membranes: An emerging agent for efficient cancer theranostics. Exploration 2022;2:20210171. [DOI: 10.1002/exp.20210171] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
|
223 |
Huang L, Yang J, Wang T, Gao J, Xu D. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01257-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
224 |
Zhang L, Wang W, Ou M, Huang X, Ma Y, Tang J, Hou T, Zhang S, Yin L, Chen H, Hou Y, Ding Y. NIR-II photothermal therapy for effective tumor eradication enhanced by heterogeneous nanorods with dual catalytic activities. Nano Res . [DOI: 10.1007/s12274-022-4096-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
225 |
Lei J, Song Y, Li D, Lei M, Tan R, Liu Y, Zheng H. pH ‐sensitive and charge‐reversal Daunorubicin‐conjugated polymeric micelles for enhanced cancer therapy. J Appl Polym Sci 2022;139:51535. [DOI: 10.1002/app.51535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
226 |
Manivasagan P, Joe A, Han HW, Thambi T, Selvaraj M, Chidambaram K, Kim J, Jang ES. Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater Today Bio 2022;13:100197. [PMID: 35036895 DOI: 10.1016/j.mtbio.2021.100197] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
|
227 |
Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. Small 2022;:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
228 |
Wang M, Li Y, Wang M, Liu K, Hoover AR, Li M, Towner RA, Mukherjee P, Zhou F, Qu J, Chen WR. Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer. Acta Biomater 2022;138:453-62. [PMID: 34757232 DOI: 10.1016/j.actbio.2021.10.048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
|
229 |
Zhang Z, Qin S, Chen Y, Zhou L, Yang M, Tang Y, Zuo J, Zhang J, Mizokami A, Nice EC, Chen HN, Huang C, Wei X. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol Med 2022;:e14903. [PMID: 35023619 DOI: 10.15252/emmm.202114903] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
|
230 |
Li S, Wu Y, Xue X, Liu S. NIR and Reduction Dual-Sensitive Polymeric Prodrug Nanoparticles for Bioimaging and Combined Chemo-Phototherapy. Polymers (Basel) 2022;14:287. [PMID: 35054697 DOI: 10.3390/polym14020287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
231 |
Yildirim A, Ispirli Doğaç Y. Drug delivery systems of CoFe2O4/chitosan and MnFe2O4/chitosan magnetic composites. Prep Biochem Biotechnol 2022;:1-11. [PMID: 35001843 DOI: 10.1080/10826068.2021.2021234] [Reference Citation Analysis]
|
232 |
Liang X, Liu S, Wang X, Xia D, Li Q. Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy. Beilstein J Nanotechnol 2021;12:1372-9. [PMID: 34987950 DOI: 10.3762/bjnano.12.101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
233 |
Cheng Y, Ji Y, Ouyang D. FC-BBR/IND-induced glucose oxidase nanodrugs for targeted combination therapy. Int J Pharm 2022;611:121349. [PMID: 34871713 DOI: 10.1016/j.ijpharm.2021.121349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
234 |
Li Y, Gao J, Wang S, Li S, Hou X, Pan Y, Gao J, Qiao X, Tian Z, Chen D, Deng H, Deng Z, Hong X, Xiao Y. Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy. J Control Release 2022;342:157-69. [PMID: 34998914 DOI: 10.1016/j.jconrel.2022.01.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
|
235 |
Wu W, Pu Y, Shi J. Nanomedicine-enabled chemotherapy-based synergetic cancer treatments. J Nanobiotechnology 2022;20:4. [PMID: 34983555 DOI: 10.1186/s12951-021-01181-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
|
236 |
Zhang J, Dong M, Feng Y, Zhang D, Lin M, Yuan C, Li H, Wang L, Zhang H, Liang C. Egr1/HSP70 Promoter-Driven Activation of Gene Expression for Synergistic Anti-Hepatoma Using PEI-MZF Nanoparticles and Radiation. IJN 2022;Volume 17:423-41. [DOI: 10.2147/ijn.s334015] [Reference Citation Analysis]
|
237 |
Li J, Zeng L, Wang Z, Chen H, Fang S, Wang J, Cai CY, Xing E, Liao X, Li ZW, Ashby CR Jr, Chen ZS, Chao H, Pan Y. Cycloruthenated Self-Assembly with Metabolic Inhibition to Efficiently Overcome Multidrug Resistance in Cancers. Adv Mater 2022;34:e2100245. [PMID: 34613635 DOI: 10.1002/adma.202100245] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
238 |
C. A, Handral HK, C. P. Applications of Metal and Metal Oxide-Based Nanomaterials in Medical and Biological Activities. Handbook of Research on Green Synthesis and Applications of Nanomaterials 2022. [DOI: 10.4018/978-1-7998-8936-6.ch014] [Reference Citation Analysis]
|
239 |
Nair LV, Nair RV, Jayasree RS. Metal nanoclusters as photosensitizers. Luminescent Metal Nanoclusters 2022. [DOI: 10.1016/b978-0-323-88657-4.00017-x] [Reference Citation Analysis]
|
240 |
Mozafari F, Rashidzadeh H, Ghaffarlou M, Salehiabar M, Ertas YN, Ramazani A, Abazari M, Rahmati M, Javed Y, Sharma SK, Danafar H. ROS-Based Cancer Radiotherapy. Harnessing Materials for X-ray Based Cancer Therapy and Imaging 2022. [DOI: 10.1007/978-3-031-04071-9_10] [Reference Citation Analysis]
|
241 |
Liu J, Tang Q, Wang Y, Zhang H, Ren B, Yang S, Liu J. Targeted carbon monoxide delivery combined with chemodynamic, chemotherapeutic and photothermal therapies for enhanced antitumor efficacy. New J Chem 2022;46:8413-21. [DOI: 10.1039/d2nj01088g] [Reference Citation Analysis]
|
242 |
Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022;11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Reference Citation Analysis]
|
243 |
Potnis NS, Ali A, Pal S. Recent Developments in ROS-Based Nanotherapeutic Modalities in Preclinical Cancer Treatment. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_261] [Reference Citation Analysis]
|
244 |
Odda AH, Cheang T, Alesary HF, Liu L, Qian X, Ullah N, Wang G, Pan Y, Xu A. A multifunctional α-Fe 2 O 3 @PEDOT core–shell nanoplatform for gene and photothermal combination anticancer therapy. J Mater Chem B. [DOI: 10.1039/d1tb02625a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
245 |
Li T, Sun J, Yin Y, Zhang Q, Wang C, Wang S. Photothermal/nitric oxide synergistic anti-tumour therapy based on MOF-derived carbon composite nanoparticles. Nanoscale 2022;14:16193-16207. [DOI: 10.1039/d2nr03027f] [Reference Citation Analysis]
|
246 |
Wu Z, Lee Z, Huang Y, Tsou M, Lin H. Drug delivery system with dual imaging and dual response control drug release functions for chemo-photodynamic synergistic therapy. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111717] [Reference Citation Analysis]
|
247 |
Shafi S, Zafar S, Sarwar Z, Rasool MH, Rasheed T. Organic–Inorganic Nanohybrids in Medicine. Materials Horizons: From Nature to Nanomaterials 2022. [DOI: 10.1007/978-981-19-4538-0_5] [Reference Citation Analysis]
|
248 |
Liu F, Liu L, Liu D, Wei P, Feng W, Yi T. An excipient-free “sugar-coated bullet” for the targeted treatment of orthotopic hepatocellular carcinoma. Chem Sci . [DOI: 10.1039/d2sc03365h] [Reference Citation Analysis]
|
249 |
Gadade DD, Rathi PB, Sangshetti JN, Kulkarni DA. Multifunctional cyclodextrin nanoparticles: A promising theranostic tool for strategic targeting of cancer. Polysaccharide Nanoparticles 2022. [DOI: 10.1016/b978-0-12-822351-2.00014-0] [Reference Citation Analysis]
|
250 |
Potnis NS, Ali A, Pal S. Recent Developments in ROS-Based Nanotherapeutic Modalities in Preclinical Cancer Treatment. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_261-1] [Reference Citation Analysis]
|
251 |
Li C, Gao F, Wang Y, Zhao L, Li H, Jiang Y. Advances of bioactive tellurium nanomaterials in anti-cancer phototherapy. Mater Adv 2022;3:6397-6414. [DOI: 10.1039/d2ma00318j] [Reference Citation Analysis]
|
252 |
Ebrahimi M, Asadi M, Akhavan O. Graphene-based Nanomaterials in Fighting the Most Challenging Viruses and Immunogenic Disorders. ACS Biomater Sci Eng 2021. [PMID: 34967216 DOI: 10.1021/acsbiomaterials.1c01184] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
|
253 |
Kip B, Tunc CU, Aydin O. Triple-combination therapy assisted with ultrasound-active gold nanoparticles and ultrasound therapy against 3D cisplatin-resistant ovarian cancer model. Ultrason Sonochem 2021;82:105903. [PMID: 34974392 DOI: 10.1016/j.ultsonch.2021.105903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
254 |
Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound‐controlled drug release and drug activation for cancer therapy. Exploration 2021;1:20210023. [DOI: 10.1002/exp.20210023] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
|
255 |
Zhang W, Du XF, Liu B, Li C, Long J, Zhao MX, Yao Z, Liang XJ, Lai Y. Engineering Supramolecular Nanomedicine for Targeted Near Infrared-triggered Mitochondrial Dysfunction to Potentiate Cisplatin for Efficient Chemophototherapy. ACS Nano 2021. [PMID: 34962119 DOI: 10.1021/acsnano.1c09555] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
256 |
Guo J, Dai J, Peng X, Wang Q, Wang S, Lou X, Xia F, Zhao Z, Tang BZ. 9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano 2021;15:20042-55. [PMID: 34846125 DOI: 10.1021/acsnano.1c07730] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
|
257 |
Chen L, Zhang Y, Zhang X, Lv R, Sheng R, Sun R, Du T, Li Y, Qi Y. A GdW10@PDA-CAT Sensitizer with High-Z Effect and Self-Supplied Oxygen for Hypoxic-Tumor Radiotherapy. Molecules 2021;27:128. [DOI: 10.3390/molecules27010128] [Reference Citation Analysis]
|
258 |
Wang Q, He Z, Zhu H, Gao W, Zhang N, Li J, Yan J, He B, Ye X. Targeting drug delivery and efficient lysosomal escape for chemo-photodynamic cancer therapy by a peptide/DNA nanocomplex. J Mater Chem B 2021. [PMID: 34951442 DOI: 10.1039/d1tb02441h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
|
259 |
Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Brar B, Pal Y, Tripathi BN, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep 2021;8:1970-8. [PMID: 34934635 DOI: 10.1016/j.toxrep.2021.11.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
260 |
Wang A, Fang J, Ye S, Mao Q, Zhao Y, Cui C, Zhang Y, Feng Y, Li J, He L, Qiu L, Shi H. Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy. ACS Appl Mater Interfaces 2021;13:59787-802. [PMID: 34894664 DOI: 10.1021/acsami.1c21062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
261 |
Wang L, Zhuang L, He S, Tian F, Yang X, Guan S, Waterhouse GIN, Zhou S. Nanocarbon Framework-Supported Ultrafine Mo2C@MoOx Nanoclusters for Photothermal-Enhanced Tumor-Specific Tandem Catalysis Therapy. ACS Appl Mater Interfaces 2021;13:59649-61. [PMID: 34894645 DOI: 10.1021/acsami.1c17085] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
262 |
Thangam R, Paulmurugan R, Kang H. Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. Nanomaterials (Basel) 2021;12:18. [PMID: 35009968 DOI: 10.3390/nano12010018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
263 |
Lu D, Chen M, Yu L, Chen Z, Guo H, Zhang Y, Han Z, Xu T, Wang H, Zhou X, Zhou Z, Teng G. Smart-Polypeptide-Coated Mesoporous Fe3O4 Nanoparticles: Non-Interventional Target-Embolization/Thermal Ablation and Multimodal Imaging Combination Theranostics for Solid Tumors. Nano Lett 2021;21:10267-78. [PMID: 34878286 DOI: 10.1021/acs.nanolett.1c03340] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
264 |
Yin T, Yin J, Ran H, Ren Y, Lu C, Liu L, Shi Q, Qiu Y, Pan H, Ma A. Hypoxia-alleviated sonodynamic therapy based on a hybrid protein oxygen carrier to enhance tumor inhibition. Biomater Sci 2021;10:294-305. [PMID: 34854851 DOI: 10.1039/d1bm01710a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
265 |
Zhang P, Wang L, Chen X, Li X, Yuan Q. Ultrasmall PEI-Decorated Bi2Se3 Nanodots as a Multifunctional Theranostic Nanoplatform for in vivo CT Imaging-Guided Cancer Photothermal Therapy. Front Pharmacol 2021;12:795012. [PMID: 34925045 DOI: 10.3389/fphar.2021.795012] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
266 |
Zwiehoff S, Johny J, Behrends C, Landmann A, Mentzel F, Bäumer C, Kröninger K, Rehbock C, Timmermann B, Barcikowski S. Enhancement of Proton Therapy Efficiency by Noble Metal Nanoparticles Is Driven by the Number and Chemical Activity of Surface Atoms. Small 2021;:e2106383. [PMID: 34921500 DOI: 10.1002/smll.202106383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
267 |
Su Y, Wu F, Song Q, Wu M, Mohammadniaei M, Zhang T, Liu B, Wu S, Zhang M, Li A, Shen J. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 2021;281:121325. [PMID: 34953332 DOI: 10.1016/j.biomaterials.2021.121325] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
|
268 |
Yu J, Xiao H, Yang Z, Qiao C, Zhou B, Jia Q, Wang Z, Wang X, Zhang R, Yang Y, Wang Z, Li J. A Potent Strategy of Combinational Blow Toward Enhanced Cancer Chemo-Photodynamic Therapy via Sustainable GSH Elimination. Small 2021;:e2106100. [PMID: 34910845 DOI: 10.1002/smll.202106100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
269 |
Xu Q, Li Q, Yang Z, Huang P, Hu H, Mo Z, Qin Z, Xu Z, Chen T, Yang S. Lenvatinib and Cu2-xS nanocrystals co-encapsulated in poly(D,L-lactide-co-glycolide) for synergistic chemo-photothermal therapy against advanced hepatocellular carcinoma. J Mater Chem B 2021;9:9908-22. [PMID: 34842266 DOI: 10.1039/d1tb01808f] [Reference Citation Analysis]
|
270 |
Yan D, Xie W, Zhang J, Wang L, Wang D, Tang BZ. Donor/π-Bridge Manipulation for Constructing a Stable NIR-II Aggregation-Induced Emission Luminogen with Balanced Phototheranostic Performance*. Angew Chem Int Ed Engl 2021;60:26769-76. [PMID: 34626441 DOI: 10.1002/anie.202111767] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
|
271 |
Qi Y, Qian Z, Yuan W, Li Z. Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy. J Mater Chem B 2021;9:9734-43. [PMID: 34787633 DOI: 10.1039/d1tb01753e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
272 |
Qian C, Al-Hamyari B, Tang X, Hou B, Yang S, Zhang G, Lv H, Yang Z, Wang Z, Shi Y. Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Mol Pharm 2021;18:4531-42. [PMID: 34739255 DOI: 10.1021/acs.molpharmaceut.1c00735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
273 |
Ragab M, Abouelregal AE, AlShaibi HF, Mansouri RA. Heat Transfer in Biological Spherical Tissues during Hyperthermia of Magnetoma. Biology (Basel) 2021;10:1259. [PMID: 34943174 DOI: 10.3390/biology10121259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
274 |
Zhang Q, Zhao W, Cheng J, Deng Z, Zhang P, Zhang A, Xu Z, Pan S, Liao X, Cui D. Heat-induced manganese-doped magnetic nanocarriers combined with Yap-siRNA for MRI/NIR-guided mild photothermal and gene therapy of hepatocellular carcinoma. Chemical Engineering Journal 2021;426:130746. [DOI: 10.1016/j.cej.2021.130746] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
275 |
Zha M, Yang G, Li Y, Zhang C, Li B, Li K. Recent Advances in AIEgen-Based Photodynamic Therapy and Immunotherapy. Adv Healthc Mater 2021;10:e2101066. [PMID: 34519181 DOI: 10.1002/adhm.202101066] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
276 |
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. Sens Actuators A Phys 2021;332:112925. [PMID: 34937992 DOI: 10.1016/j.sna.2021.112925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
277 |
Guo Y, Fan Y, Li G, Wang Z, Shi X, Shen M. "Cluster Bomb" Based on Redox-Responsive Carbon Dot Nanoclusters Coated with Cell Membranes for Enhanced Tumor Theranostics. ACS Appl Mater Interfaces 2021;13:55815-26. [PMID: 34783516 DOI: 10.1021/acsami.1c15282] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
278 |
You Y, Yang C, Zhang X, Lin H, Shi J. Emerging two-dimensional silicene nanosheets for biomedical applications. Materials Today Nano 2021;16:100132. [DOI: 10.1016/j.mtnano.2021.100132] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
279 |
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021;10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
280 |
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science 2021;123:101472. [DOI: 10.1016/j.progpolymsci.2021.101472] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
|
281 |
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021;179:114036. [PMID: 34740763 DOI: 10.1016/j.addr.2021.114036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
282 |
Nie X, Yu C, Wei H. Precise modulation of spatially distributed inorganic nanoparticles in block copolymers-based self-assemblies with diverse morphologies. Materials Today Chemistry 2021;22:100616. [DOI: 10.1016/j.mtchem.2021.100616] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
283 |
Getachew G, Korupalli C, Rasal AS, Chang J. ROS generation/scavenging modulation of carbon dots as phototherapeutic candidates and peroxidase mimetics to integrate with polydopamine nanoparticles/GOx towards cooperative cancer therapy. Composites Part B: Engineering 2021;226:109364. [DOI: 10.1016/j.compositesb.2021.109364] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
284 |
Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta 2021;235:122735. [PMID: 34517602 DOI: 10.1016/j.talanta.2021.122735] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
|
285 |
Yang J, Yu G, Sessler JL, Shin I, Gale PA, Huang F. Artificial transmembrane ion transporters as potential therapeutics. Chem 2021;7:3256-91. [DOI: 10.1016/j.chempr.2021.10.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
|
286 |
Zhou Y, Fan S, Feng L, Huang X, Chen X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. Adv Mater 2021;33:e2104223. [PMID: 34580933 DOI: 10.1002/adma.202104223] [Cited by in Crossref: 38] [Cited by in F6Publishing: 47] [Article Influence: 19.0] [Reference Citation Analysis]
|
287 |
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. Adv Mater 2021;33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Cited by in Crossref: 50] [Cited by in F6Publishing: 62] [Article Influence: 25.0] [Reference Citation Analysis]
|
288 |
Han J, Wang DY, Wang Q, Meng L, Luo Z, Li J, Kang Y, Lv W, Huang Q, Wang PG, Wang Y, Shen J, Wang Y. PEGylated Poly-HDACi: A Designer Polyprodrug from Optimized Drug Units. Chemistry 2021. [PMID: 34820923 DOI: 10.1002/chem.202103114] [Reference Citation Analysis]
|
289 |
Yu J, Zhang X, Pei Z, Shuai Q. A triple-stimulus responsive melanin-based nanoplatform with an aggregation-induced emission-active photosensitiser for imaging-guided targeted synergistic phototherapy/hypoxia-activated chemotherapy. J Mater Chem B 2021;9:9142-52. [PMID: 34693960 DOI: 10.1039/d1tb01657a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
290 |
Bian W, Wang Y, Pan Z, Chen N, Li X, Wong W, Liu X, He Y, Zhang K, Lu Y. Review of Functionalized Nanomaterials for Photothermal Therapy of Cancers. ACS Appl Nano Mater 2021;4:11353-85. [DOI: 10.1021/acsanm.1c01903] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
|
291 |
Yan D, Xie W, Zhang J, Wang L, Wang D, Tang BZ. Donor/π‐Bridge Manipulation for Constructing a Stable NIR‐II Aggregation‐Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angew Chem 2021;133:26973-80. [DOI: 10.1002/ange.202111767] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
292 |
Wu G, Sun J, Zhang Z, Guo D, Liu J, Liu L. Recent advances in biological applications of nanomaterials through defect engineering. Sci Total Environ 2021;:151647. [PMID: 34785228 DOI: 10.1016/j.scitotenv.2021.151647] [Reference Citation Analysis]
|
293 |
Sun S, Song Y, Chen J, Huo M, Chen Y, Sun L. NIR -I and NIR-II irradiation tumor ablation using NbS2 nanosheets as the photothermal agent. Nanoscale 2021;13:18300-10. [PMID: 34724017 DOI: 10.1039/d1nr05449j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
294 |
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021;121:13454-619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Cited by in Crossref: 141] [Cited by in F6Publishing: 172] [Article Influence: 70.5] [Reference Citation Analysis]
|
295 |
Gong S, Shang M, Li D, Cai Y, Jin J, Yang Z. Functionalized ZIF‐90 for Gene‐mediated Chemotherapy to Ameliorate Multidrug Resistance in Breast Cancer Therapy. ChemNanoMat. [DOI: 10.1002/cnma.202100389] [Reference Citation Analysis]
|
296 |
Li R, Gong X, Hong C, Wang H, Chen Y, Tan K, Liu X, Wang F. An efficient photochemotherapy nanoplatform based on the endogenous biosynthesis of photosensitizer in macrophage-derived extracellular vesicles. Biomaterials 2021;279:121234. [PMID: 34736152 DOI: 10.1016/j.biomaterials.2021.121234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
297 |
Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021;9:8718-38. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
298 |
Yang Z, Fu X, Zhou L, Yang J, Deng T, Chen J, Wen Y, Fu X, Shen D, Yuan Z, Du Z, Luo S, Yu C. Chem-inspired synthesis of injectable metal–organic hydrogels for programmable drug carriers, hemostasis and synergistic cancer treatment. Chemical Engineering Journal 2021;423:130202. [DOI: 10.1016/j.cej.2021.130202] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
299 |
Kim C, Ercole F, Ju Y, Pan S, Chen J, Qu Y, Quinn JF, Caruso F. Synthesis of Customizable Macromolecular Conjugates as Building Blocks for Engineering Metal–Phenolic Network Capsules with Tailorable Properties. Chem Mater 2021;33:8477-88. [DOI: 10.1021/acs.chemmater.1c02912] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
300 |
Manisekaran R, García-Contreras R, Rasu Chettiar AD, Serrano-Díaz P, Lopez-Ayuso CA, Arenas-Arrocena MC, Hernández-Padrón G, López-Marín LM, Acosta-Torres LS. 2D Nanosheets-A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021;13:1803. [PMID: 34834218 DOI: 10.3390/pharmaceutics13111803] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
301 |
He P, Guan S, Ren E, Chen H, Chen H, Peng Y, Luo B, Xiong Y, Li B, Li J, Mao J, Liu G. Precision Interventional Brachytherapy: A Promising Strategy Toward Treatment of Malignant Tumors. Front Oncol 2021;11:753286. [PMID: 34692537 DOI: 10.3389/fonc.2021.753286] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
302 |
Wu L, Ishigaki Y, Zeng W, Harimoto T, Yin B, Chen Y, Liao S, Liu Y, Sun Y, Zhang X, Liu Y, Liang Y, Sun P, Suzuki T, Song G, Fan Q, Ye D. Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat Commun 2021;12:6145. [PMID: 34686685 DOI: 10.1038/s41467-021-26380-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
|
303 |
Song S, Peng J, Wu Y, Li C, Shen D, Yang G, Liu J, Gong P, Liu Z. Biomimetic synthesis of a novel O2-regeneration nanosystem for enhanced starvation/chemo-therapy. Nanotechnology 2021;33. [PMID: 34544066 DOI: 10.1088/1361-6528/ac2843] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
304 |
Wu Y, Chen F, Huang N, Li J, Wu C, Tan B, Liu Y, Li L, Yang C, Shao D, Liao J. Near-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal therapy of oral cancer. Nanoscale 2021;13:17168-82. [PMID: 34636386 DOI: 10.1039/d1nr04625j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
|
305 |
Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021;22:11306. [PMID: 34768736 DOI: 10.3390/ijms222111306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
|
306 |
Wen Y, Chen L, Leng F, Yang Z, Yu C. Bimetallic Au–Ag nanocages extended TPP conjugate structure for self-enhancing therapy of tumors. J Nanostruct Chem. [DOI: 10.1007/s40097-021-00457-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
307 |
Tang W, Han L, Duan S, Lu X, Wang Y, Wu X, Liu J, Ding B. An Aptamer-Modified DNA Tetrahedron-Based Nanogel for Combined Chemo/Gene Therapy of Multidrug-Resistant Tumors. ACS Appl Bio Mater 2021;4:7701-7. [PMID: 35006686 DOI: 10.1021/acsabm.1c00933] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
308 |
Xu Q, Li D, Zhou H, Chen B, Wang J, Wang SB, Chen A, Jiang N. MnO2-coated porous Pt@CeO2 core-shell nanostructures for photoacoustic imaging-guided tri-modal cancer therapy. Nanoscale 2021;13:16499-508. [PMID: 34585196 DOI: 10.1039/d1nr03246a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
309 |
Gong X, Pu X, Wang J, Yang L, Cui Y, Li L, Sun X, Liu J, Bai J, Wang Y. Enhancing of Nanocatalyst-Driven Chemodynaminc Therapy for Endometrial Cancer Cells Through Inhibition of PINK1/Parkin-Mediated Mitophagy. Int J Nanomedicine 2021;16:6661-79. [PMID: 34616150 DOI: 10.2147/IJN.S329341] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
310 |
Ren X, Zhang S, Liu L, Xu B, Tian W. Recent advances in assembled AIEgens for image-guided anticancer therapy. Nanotechnology 2021;32. [PMID: 34469876 DOI: 10.1088/1361-6528/ac22df] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
311 |
Xu T, Yu S, Sun Y, Wu S, Gao D, Wang M, Wang Z, Tian Y, Min Q, Zhu JJ. DNA Origami Frameworks Enabled Self-Protective siRNA Delivery for Dual Enhancement of Chemo-Photothermal Combination Therapy. Small 2021;17:e2101780. [PMID: 34611987 DOI: 10.1002/smll.202101780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
312 |
Chen Y, Wu H, Zhou H, Miao Z, Hong F, Zhao Q, Tao Z, Ma Y, Zhao W, Zha Z. PEGylated Indium Nanoparticles: A Metallic Contrast Agent for Multiwavelength Photoacoustic Imaging and Second Near-Infrared Photothermal Therapy. ACS Appl Mater Interfaces 2021;13:46343-52. [PMID: 34558285 DOI: 10.1021/acsami.1c13578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
313 |
Zhang J, Zou H, Gan S, He B, Huang JC, Peng C, Lam JWY, Zheng L, Tang BZ. Endowing AIE with Extraordinary Potential: A New Au(I)‐Containing AIEgen for Bimodal Bioimaging‐Guided Multimodal Synergistic Cancer Therapy. Adv Funct Materials 2022;32:2108199. [DOI: 10.1002/adfm.202108199] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
314 |
Uskoković V, Drofenik M. Gold-embellished mixed-valence manganite as a smart, self-regulating magnetoplasmonic nanomaterial. Materials Chemistry and Physics 2021;271:124870. [DOI: 10.1016/j.matchemphys.2021.124870] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
315 |
Munjal T, Dutta S. Biocompatible nanoreactors of catalase and nanozymes for anticancer therapeutics. Nano Select 2021;2:1849-73. [DOI: 10.1002/nano.202100040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
316 |
Liu P, Peng Y, Ding J, Zhou W. Fenton Metal Nanomedicines for Imaging-guided Combinatorial Chemodynamic Therapy against Cancer. Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
317 |
Huang W, Yang H, Hu Z, Fan Y, Guan X, Feng W, Liu Z, Sun Y. Rigidity Bridging Flexibility to Harmonize Three Excited-State Deactivation Pathways for NIR-II-Fluorescent-Imaging-Guided Phototherapy. Adv Healthc Mater 2021;10:e2101003. [PMID: 34160129 DOI: 10.1002/adhm.202101003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
318 |
Sheng S, Wei C, Ma T, Zhang Y, Zhu D, Dong X, Lv F. Multiplex fluorescence imaging‐guided programmed delivery of doxorubicin and curcumin from a nanoparticles/hydrogel system for synergistic chemotherapy. Journal of Polymer Science 2022;60:1557-70. [DOI: 10.1002/pol.20210600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
319 |
Chen J, Wang Y, Niu H, Wang Y, Wu A, Shu C, Zhu Y, Bian Y, Lin K. Metal-Organic Framework-Based Nanoagents for Effective Tumor Therapy by Dual Dynamics-Amplified Oxidative Stress. ACS Appl Mater Interfaces 2021;13:45201-13. [PMID: 34525803 DOI: 10.1021/acsami.1c11032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
320 |
Luo X, Xie J, Zhou Z, Ma S, Wang L, Li M, Liu J, Wang P, Li Y, Luo F, Yan J. Virus-Inspired Gold Nanorod-Mesoporous Silica Core-Shell Nanoparticles Integrated with tTF-EG3287 for Synergetic Tumor Photothermal Therapy and Selective Therapy for Vascular Thrombosis. ACS Appl Mater Interfaces 2021;13:44013-27. [PMID: 34494427 DOI: 10.1021/acsami.1c11947] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
321 |
Qu Y, Lu K, Zheng Y, Huang C, Wang G, Zhang Y, Yu Q. Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact Mater 2022;8:449-77. [PMID: 34541413 DOI: 10.1016/j.bioactmat.2021.05.052] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
322 |
Cao J, Pan Q, Bei S, Zheng M, Sun Z, Qi X, Shen S. Concise Nanoplatform of Phycocyanin Nanoparticle Loaded with Docetaxel for Synergetic Chemo-sonodynamic Antitumor Therapy. ACS Appl Bio Mater 2021;4:7176-85. [PMID: 35006949 DOI: 10.1021/acsabm.1c00745] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
323 |
Dai Y, Zhao H, He K, Du W, Kong Y, Wang Z, Li M, Shen Q, Sun P, Fan Q. NIR-II Excitation Phototheranostic Nanomedicine for Fluorescence/Photoacoustic Tumor Imaging and Targeted Photothermal-Photonic Thermodynamic Therapy. Small 2021;17:e2102527. [PMID: 34528387 DOI: 10.1002/smll.202102527] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
324 |
Hu J, Dong X, Jiang W, Xia F, Lou X. Multifunctional aggregates for precise cellular analysis. Sci China Chem 2021;64:1938-45. [DOI: 10.1007/s11426-021-1051-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
325 |
Zhang B, Xu Z, Zhou W, Liu Z, Zhao J, Gou S. A light-controlled multi-step drug release nanosystem targeting tumor hypoxia for synergistic cancer therapy. Chem Sci 2021;12:11810-20. [PMID: 34659720 DOI: 10.1039/d1sc01888d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
326 |
Ren SZ, Zhu XH, Wang B, Liu M, Li SK, Yang YS, An H, Zhu HL. A versatile nanoplatform based on multivariate porphyrinic metal-organic frameworks for catalytic cascade-enhanced photodynamic therapy. J Mater Chem B 2021;9:4678-89. [PMID: 34075929 DOI: 10.1039/d0tb02652b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
327 |
Cheng X, Hao Z, Chu S, Zhang T, Cong C, Liu L, Zhang W, Gu J, Ni S, Wang D, Gao D. Plasmonic enhanced enzyme activity by catalytic cascade induced mutual benefit tumor starvation/immune/photothermal therapy. Biomater Sci 2021;9:6116-25. [PMID: 34519735 DOI: 10.1039/d1bm00551k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
328 |
Liu H, Zhuang F, Zhang C, Ai W, Liu W, Zhou X. Functionalized Organic–Inorganic Liposome Nanocomposites for the Effective Photo-Thermal Therapy of Breast Cancer. Front Mater 2021;8:710187. [DOI: 10.3389/fmats.2021.710187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
329 |
Zhang X, Li G, Chen G, Wu D, Wu Y, James TD. Enzyme Mimics for Engineered Biomimetic Cascade Nanoreactors: Mechanism, Applications, and Prospects. Adv Funct Mater 2021;31:2106139. [DOI: 10.1002/adfm.202106139] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
|
330 |
Singh P, Youden B, Yang Y, Chen Y, Carrier A, Cui S, Oakes K, Servos M, Jiang R, Zhang X. Synergistic Multimodal Cancer Therapy Using Glucose Oxidase@CuS Nanocomposites. ACS Appl Mater Interfaces 2021;13:41464-72. [PMID: 34448397 DOI: 10.1021/acsami.1c12235] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
331 |
Zhao YY, Zhang L, Chen Z, Zheng BY, Ke M, Li X, Huang JD. Nanostructured Phthalocyanine Assemblies with Efficient Synergistic Effect of Type I Photoreaction and Photothermal Action to Overcome Tumor Hypoxia in Photodynamic Therapy. J Am Chem Soc 2021;143:13980-9. [PMID: 34425676 DOI: 10.1021/jacs.1c07479] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 21.5] [Reference Citation Analysis]
|
332 |
Augustine R, Uthaman S, Kalva N, Eom KH, Huh KM, Pillarisetti S, Park I, Kim I. Two-tailed tadpole-shaped synthetic polymer polypeptide bioconjugate nanomicelles for enhanced chemo-photothermal therapy. Polymer 2021;230:124061. [DOI: 10.1016/j.polymer.2021.124061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
333 |
Bao Y, Yu H, Yang L, Chen L. Combretastatin A4-combined photodynamic therapy for enhanced tumor therapeutic efficacy. Materials Today Communications 2021;28:102616. [DOI: 10.1016/j.mtcomm.2021.102616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
334 |
Meng X, Lei Y, Zhang X, Sun K, Zhang L, Wang Z. Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today 2021;24:101149. [DOI: 10.1016/j.apmt.2021.101149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
335 |
Yu K, Hai X, Yue S, Song W, Bi S. Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chemical Engineering Journal 2021;419:129535. [DOI: 10.1016/j.cej.2021.129535] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
|
336 |
Ma K, Qi G, Wang B, Yu T, Zhang Y, Li H, Kitte SA, Jin Y. Ultrasound-activated Au/ZnO-based Trojan nanogenerators for combined targeted electro-stimulation and enhanced catalytic therapy of tumor. Nano Energy 2021;87:106208. [DOI: 10.1016/j.nanoen.2021.106208] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
|
337 |
Tuo W, Xu Y, Fan Y, Li J, Qiu M, Xiong X, Li X, Sun Y. Biomedical applications of Pt(II) metallacycle/metallacage-based agents: From mono-chemotherapy to versatile imaging contrasts and theranostic platforms. Coordination Chemistry Reviews 2021;443:214017. [DOI: 10.1016/j.ccr.2021.214017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
|
338 |
Zhang M, Xu N, Xu W, Ling G, Zhang P. Potential therapies and diagnosis based on Golgi-targeted nano drug delivery systems. Pharmacol Res 2021;175:105861. [PMID: 34464677 DOI: 10.1016/j.phrs.2021.105861] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
339 |
Wahab MA, Luming L, Matin MA, Karim MR, Aijaz MO, Alharbi HF, Abdala A, Haque R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers (Basel) 2021;13:2870. [PMID: 34502910 DOI: 10.3390/polym13172870] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
340 |
Bai J, Peng C, Lv W, Liu J, Hei Y, Bo X. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors. ACS Appl Mater Interfaces 2021;13:39055-65. [PMID: 34433248 DOI: 10.1021/acsami.1c09466] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
341 |
Ren F, Li Z, Li K, Zheng X, Shi J, Zhang C, Guo H, Tong B, Xi L, Cai Z, Dong Y. Donor strategy for promoting nonradiative decay to achieve an efficient photothermal therapy for treating cancer. Sci China Chem 2021;64:1530-9. [DOI: 10.1007/s11426-021-1055-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
342 |
Wang L, Liu S, Ren C, Xiang S, Li D, Hao X, Ni S, Chen Y, Zhang K, Sun H. Construction of hollow polydopamine nanoparticle based drug sustainable release system and its application in bone regeneration. Int J Oral Sci 2021;13:27. [PMID: 34408132 DOI: 10.1038/s41368-021-00132-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
343 |
Zhang WX, Hao YN, Gao YR, Shu Y, Wang JH. Mutual Benefit between Cu(II) and Polydopamine for Improving Photothermal-Chemodynamic Therapy. ACS Appl Mater Interfaces 2021;13:38127-37. [PMID: 34347422 DOI: 10.1021/acsami.1c12199] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
|
344 |
Chen MM, Hao HL, Zhao W, Zhao X, Chen HY, Xu JJ. A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the NIR-II window. Chem Sci 2021;12:10848-54. [PMID: 34476064 DOI: 10.1039/d1sc01760h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
345 |
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials (Basel) 2021;11:2086. [PMID: 34443916 DOI: 10.3390/nano11082086] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
|
346 |
Yang C, Gao M, Zhao H, Liu Y, Gao N, Jing J, Zhang X. A dual-functional biomimetic-mineralized nanoplatform for glucose detection and therapy with cancer cells in vitro. J Mater Chem B 2021;9:3885-91. [PMID: 33928327 DOI: 10.1039/d1tb00324k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
347 |
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021;50:6013-41. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Cited by in Crossref: 101] [Cited by in F6Publishing: 116] [Article Influence: 50.5] [Reference Citation Analysis]
|
348 |
Dai H, Wang X, Shao J, Wang W, Mou X, Dong X. NIR-II Organic Nanotheranostics for Precision Oncotherapy. Small 2021;:e2102646. [PMID: 34382346 DOI: 10.1002/smll.202102646] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
|
349 |
Zhu L, Liu J, Zhou G, Liu TM, Dai Y, Nie G, Zhao Q. Remodeling of Tumor Microenvironment by Tumor-Targeting Nanozymes Enhances Immune Activation of CAR T Cells for Combination Therapy. Small 2021;:e2102624. [PMID: 34378338 DOI: 10.1002/smll.202102624] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
350 |
Li Y, Wu Q, Li D, Huang J, Wen H, Wu Y, Wang D, Tang BZ. A Nanotheranostic System Combining Lysosomal Cell Death and Nuclear Apoptosis Functions for Synergistic Cancer Therapy and Addressing Drug Resistance. Adv Funct Materials 2021;31:2106091. [DOI: 10.1002/adfm.202106091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
351 |
Hai X, Zhu X, Yu K, Yue S, Song W, Bi S. Dual-mode glucose nanosensor as an activatable theranostic platform for cancer cell recognition and cascades-enhanced synergetic therapy. Biosens Bioelectron 2021;192:113544. [PMID: 34385012 DOI: 10.1016/j.bios.2021.113544] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
352 |
Li D, Dai Q, Chen H, Lin H, Lu Z, Zheng H, Lv P, Li W, Liu G, Chu C. Metal-organic nanostructure based on TixOy/Ruthenium reaction Units: For CT/MR Imaging-Guided X-ray induced dynamic therapy. Chemical Engineering Journal 2021;417:129262. [DOI: 10.1016/j.cej.2021.129262] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
353 |
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. Adv Mater 2021;33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 22.0] [Reference Citation Analysis]
|
354 |
Wang H, Zhou J, Fu Y, Zheng Y, Shen W, Zhou J, Yin T. Deeply Infiltrating iRGD-Graphene Oxide for the Intensive Treatment of Metastatic Tumors through PTT-Mediated Chemosensitization and Strengthened Integrin Targeting-Based Antimigration. Adv Healthc Mater 2021;10:e2100536. [PMID: 34137204 DOI: 10.1002/adhm.202100536] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
355 |
Zeng L, Han Y, Chen Z, Jiang K, Golberg D, Weng Q. Biodegradable and Peroxidase-Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy. Adv Sci (Weinh) 2021;8:e2101184. [PMID: 34189868 DOI: 10.1002/advs.202101184] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
356 |
Jaymand M, Davatgaran Taghipour Y, Rezaei A, Derakhshankhah H, Foad Abazari M, Samadian H, Hamblin MR. Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy? Coordination Chemistry Reviews 2021;440:213974. [DOI: 10.1016/j.ccr.2021.213974] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
|
357 |
Yuan X, Cen J, Chen X, Jia Z, Zhu X, Huang Y, Yuan G, Liu J. Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer. J Colloid Interface Sci 2021;605:851-62. [PMID: 34371428 DOI: 10.1016/j.jcis.2021.07.136] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
|
358 |
Zhong Y, Huang S, Zheng C, Huang J, Li B, Han S, Xiao H, Wang Y, Shuai X. A light and hypoxia-activated nanodrug for cascade photodynamic-chemo cancer therapy. Biomater Sci 2021;9:5218-26. [PMID: 34169939 DOI: 10.1039/d1bm00660f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
359 |
Bu Y, Huang R, Li Z, Zhang P, Zhang L, Yang Y, Liu Z, Guo K, Gao F. Anisotropic Truncated Octahedral Au with Pt Deposition on Arris for Localized Surface Plasmon Resonance-Enhanced Photothermal and Photodynamic Therapy of Osteosarcoma. ACS Appl Mater Interfaces 2021;13:35328-41. [PMID: 34291912 DOI: 10.1021/acsami.1c07181] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
360 |
Du Z, Mao Y, Zhang P, Hu J, Fu J, You Q, Yin J. TPGS-Galactose-Modified Polydopamine Co-delivery Nanoparticles of Nitric Oxide Donor and Doxorubicin for Targeted Chemo-Photothermal Therapy against Drug-Resistant Hepatocellular Carcinoma. ACS Appl Mater Interfaces 2021;13:35518-32. [PMID: 34286569 DOI: 10.1021/acsami.1c09610] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
|
361 |
Li Z, Fan F, Ma J, Yin W, Zhu D, Zhang L, Wang Z. Oxygen- and bubble-generating polymersomes for tumor-targeted and enhanced photothermal-photodynamic combination therapy. Biomater Sci 2021;9:5841-53. [PMID: 34269778 DOI: 10.1039/d1bm00659b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
362 |
Serrà A, Limón D, Díaz-Garrido N, Pérez-García L, Gómez E. Assessing the Chemical Stability and Cytotoxicity of Electrodeposited Magnetic Mesoporous Fe-Pt Films for Biomedical Applications. Langmuir 2021;37:8801-10. [PMID: 34264678 DOI: 10.1021/acs.langmuir.1c01141] [Reference Citation Analysis]
|
363 |
Liu Y, Zhang J, Du J, Song K, Liu J, Wang X, Li B, Ouyang R, Miao Y, Sun Y, Li Y. Biodegradable BiOCl platform for oxidative stress injury-enhanced chemodynamic/radiation therapy of hypoxic tumors. Acta Biomater 2021;129:280-92. [PMID: 34033970 DOI: 10.1016/j.actbio.2021.05.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
|
364 |
Zou J, Li L, Yang Z, Chen X. Phototherapy meets immunotherapy: a win–win strategy to fight against cancer. Nanophotonics 2021;10:3229-45. [DOI: 10.1515/nanoph-2021-0209] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
|
365 |
Guo Y, Liu Y, Wu W, Ling D, Zhang Q, Zhao P, Hu X. Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials 2021;276:121018. [PMID: 34284200 DOI: 10.1016/j.biomaterials.2021.121018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
|
366 |
Zhou K, Chigan D, Xu L, Liu C, Ding R, Li G, Zhang Z, Pei D, Li A, Guo B, Yan X, He G. Anti-Sandwich Structured Photo-Electronic Wound Dressing for Highly Efficient Bacterial Infection Therapy. Small 2021;17:e2101858. [PMID: 34250738 DOI: 10.1002/smll.202101858] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
367 |
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nanomicro Lett 2021;13:154. [PMID: 34241715 DOI: 10.1007/s40820-021-00674-8] [Cited by in Crossref: 60] [Cited by in F6Publishing: 71] [Article Influence: 30.0] [Reference Citation Analysis]
|
368 |
Zhao Y, Li A, Jiang L, Gu Y, Liu J. Hybrid Membrane-Coated Biomimetic Nanoparticles (HM@BNPs): A Multifunctional Nanomaterial for Biomedical Applications. Biomacromolecules 2021;22:3149-67. [PMID: 34225451 DOI: 10.1021/acs.biomac.1c00440] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
369 |
Zhang S, Chen H, Wang L, Qin X, Jiang BP, Ji SC, Shen XC, Liang H. A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo. Angew Chem Int Ed Engl 2021;:e202107076. [PMID: 34227715 DOI: 10.1002/anie.202107076] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
370 |
Wu J, Ma S, Li M, Hu X, Jiao N, Tung S, Liu L. Enzymatic/Magnetic Hybrid Micromotors for Synergistic Anticancer Therapy. ACS Appl Mater Interfaces 2021;13:31514-26. [PMID: 34213305 DOI: 10.1021/acsami.1c07593] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
371 |
Zheng S, Dou P, Jin S, Jiao M, Wang W, Jin Z, Wang Y, Li J, Xu K. Tumor microenvironment/NIR-responsive carbon monoxide delivery with hollow mesoporous CuS nanoparticles for MR imaging guided synergistic therapy. Materials & Design 2021;205:109731. [DOI: 10.1016/j.matdes.2021.109731] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
372 |
Yang A, Dong X, Bai Y, Sheng S, Zhang Y, Liu T, Zhu D, Lv F. Doxorubicin/CpG self-assembled nanoparticles prodrug and dendritic cells co-laden hydrogel for cancer chemo-assisted immunotherapy. Chemical Engineering Journal 2021;416:129192. [DOI: 10.1016/j.cej.2021.129192] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
|
373 |
Younis MR, He G, Gurram B, Lin J, Huang P. Inorganic cancer phototheranostics in second biowindow. APL Materials 2021;9:070901. [DOI: 10.1063/5.0048915] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
374 |
Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, Xu Y, Qian X, Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater 2021;128:435-46. [PMID: 33862284 DOI: 10.1016/j.actbio.2021.04.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
|
375 |
Du F, Liu L, Wu Z, Zhao Z, Geng W, Zhu B, Ma T, Xiang X, Ma L, Cheng C, Qiu L. Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies. Adv Mater 2021;33:e2101095. [PMID: 34096109 DOI: 10.1002/adma.202101095] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 26.5] [Reference Citation Analysis]
|
376 |
Liang Y, Liu ZY, Wang PY, Li YJ, Wang RR, Xie SY. Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J Control Release 2021;336:396-409. [PMID: 34175367 DOI: 10.1016/j.jconrel.2021.06.034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
|
377 |
Wang X, Li C, Qian J, Lv X, Li H, Zou J, Zhang J, Meng X, Liu H, Qian Y, Lin W, Wang H. NIR-II Responsive Hollow Magnetite Nanoclusters for Targeted Magnetic Resonance Imaging-Guided Photothermal/Chemo-Therapy and Chemodynamic Therapy. Small 2021;17:e2100794. [PMID: 34165871 DOI: 10.1002/smll.202100794] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
378 |
Sun J, Li L, Cai W, Chen A, Zhang R. Multifunctional Hybrid Nanoprobe for Photoacoustic/PET/MR Imaging-Guided Photothermal Therapy of Laryngeal Cancer. ACS Appl Bio Mater 2021;4:5312-23. [PMID: 35007012 DOI: 10.1021/acsabm.1c00423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
379 |
Bajpai S, Tiwary SK, Sonker M, Joshi A, Gupta V, Kumar Y, Shreyash N, Biswas S. Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Appl Nano Mater 2021;4:6441-70. [DOI: 10.1021/acsanm.1c00779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
|
380 |
Li Y, Hou H, Zhang P, Zhang Z. Co-delivery of doxorubicin and paclitaxel by reduction/pH dual responsive nanocarriers for osteosarcoma therapy. Drug Deliv 2020;27:1044-53. [PMID: 32633576 DOI: 10.1080/10717544.2020.1785049] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
|
381 |
Liu L, Dou H. Obstacles impeding the development of nanocarriers for anticancer drugs. Nanomedicine (Lond) 2021;16:1447-50. [PMID: 34142559 DOI: 10.2217/nnm-2021-0101] [Reference Citation Analysis]
|
382 |
Zhang Y, Guo L, Kong F, Duan L, Li H, Fang C, Zhang K. Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1733. [PMID: 34137183 DOI: 10.1002/wnan.1733] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
383 |
Chen J, Chen F, Zhang L, Yang Z, Deng T, Zhao Y, Zheng T, Gan X, Zhong H, Geng Y, Fu X, Wang Y, Yu C. Self-Assembling Porphyrins as a Single Therapeutic Agent for Synergistic Cancer Therapy: A One Stone Three Birds Strategy. ACS Appl Mater Interfaces 2021;13:27856-67. [PMID: 34110146 DOI: 10.1021/acsami.1c04868] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
|
384 |
Liu X, Sui B, Camargo PH, Wang J, Sun J. Tuning band gap of MnO2 nanoflowers by Alkali metal doping for enhanced Ferroptosis/phototherapy synergism in Cancer. Applied Materials Today 2021;23:101027. [DOI: 10.1016/j.apmt.2021.101027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
|
385 |
Lin W, Liu H, Chen L, Chen J, Zhang D, Cheng Q, Yang F, Zeng Q, Chen T. Pre-clinical MRI-guided intravesical instillation theranosis of bladder cancer by tumor-selective oxygen nanogenerator. Nano Today 2021;38:101124. [DOI: 10.1016/j.nantod.2021.101124] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
386 |
Lin T, Wu M, Lin Y, Tsao C, Chang Y, Chiang K, Huang Y, Lu Y. Solar-triggered photothermal therapy for tumor ablation by Ag nanoparticles self-precipitated on structural titanium oxide nanofibers. Applied Surface Science 2021;552:149428. [DOI: 10.1016/j.apsusc.2021.149428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
387 |
Wu W, Pu Y, Lu X, Lin H, Shi J. Transitional Metal-Based Noncatalytic Medicine for Tumor Therapy. Adv Healthc Mater 2021;10:e2001819. [PMID: 33857353 DOI: 10.1002/adhm.202001819] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
388 |
Zhan G, Xu Q, Zhang Z, Wei Z, Yong T, Bie N, Zhang X, Li X, Li J, Gan L, Yang X. Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates Anti-PD-1 therapy in hypoxic tumors. Nano Today 2021;38:101195. [DOI: 10.1016/j.nantod.2021.101195] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
|
389 |
Du X, Li Y, Long J, Zhang W, Wang D, Li C, Zhao M, Lai Y. Fabrication of cisplatin-loaded polydopamine nanoparticles via supramolecular self-assembly for photoacoustic imaging guided chemo-photothermal cancer therapy. Applied Materials Today 2021;23:101019. [DOI: 10.1016/j.apmt.2021.101019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
390 |
Liu S, Xu J, Li X, Yan T, Yu S, Sun H, Liu J. Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules 2021;26:3310. [PMID: 34072932 DOI: 10.3390/molecules26113310] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
391 |
Sun Y, Ma X, Hu H. Application of Nano-Drug Delivery System Based on Cascade Technology in Cancer Treatment. Int J Mol Sci 2021;22:5698. [PMID: 34071794 DOI: 10.3390/ijms22115698] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
|
392 |
Biswas MC, Islam MT, Nandy PK, Hossain MM. Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. ACS Materials Lett 2021;3:889-911. [DOI: 10.1021/acsmaterialslett.0c00550] [Cited by in Crossref: 31] [Cited by in F6Publishing: 42] [Article Influence: 15.5] [Reference Citation Analysis]
|
393 |
Chen D, Xu Q, Wang W, Shao J, Huang W, Dong X. Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small 2021;17:e2006742. [PMID: 34038611 DOI: 10.1002/smll.202006742] [Cited by in Crossref: 54] [Cited by in F6Publishing: 65] [Article Influence: 27.0] [Reference Citation Analysis]
|
394 |
Jia W, Qi Y, Hu Z, Xiong Z, Luo Z, Xiang Z, Hu J, Lu W. Facile fabrication of monodisperse CoFe2O4 nanocrystals@dopamine@DOX hybrids for magnetic-responsive on-demand cancer theranostic applications. Adv Compos Hybrid Mater 2021;4:989-1001. [DOI: 10.1007/s42114-021-00276-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
395 |
Yan G, Shi L, Zhang F, Luo M, Zhang G, Liu P, Liu K, Chen WR, Wang X. Transcriptomic analysis of mechanism of melanoma cell death induced by photothermal therapy. J Biophotonics 2021;14:e202100034. [PMID: 33729683 DOI: 10.1002/jbio.202100034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
396 |
Yu W, Li X, Huang Y, Chen Y, Gao Q, Wang Y, Ji J. Build an implanted "arsenal": detachable microneedles for NIR-triggered cancer photothermo-chemotherapy. Biomater Sci 2021;9:4737-45. [PMID: 34036974 DOI: 10.1039/d1bm00520k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
397 |
Zhang Q, Zhang J, Song J, Liu Y, Ren X, Zhao Y. Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS Nano 2021;15:8001-38. [PMID: 33900074 DOI: 10.1021/acsnano.1c00476] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
|
398 |
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS Nano 2021;15:8039-68. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Cited by in Crossref: 69] [Cited by in F6Publishing: 83] [Article Influence: 34.5] [Reference Citation Analysis]
|
399 |
Tan C, Wu J, Wen Z. Doxorubicin-Loaded MnO2@Zeolitic Imidazolate Framework-8 Nanoparticles as a Chemophotothermal System for Lung Cancer Therapy. ACS Omega 2021;6:12977-83. [PMID: 34056448 DOI: 10.1021/acsomega.0c05922] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
400 |
Cheng F, Wang S, Zheng H, Yang S, Zhou L, Liu K, Zhang Q, Zhang H. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf B Biointerfaces 2021;205:111878. [PMID: 34058693 DOI: 10.1016/j.colsurfb.2021.111878] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
|
401 |
Zhu D, Liu Y, Liu M, Liu X, Prasad PN, Swihart MT. Galvanic replacement synthesis of multi-branched gold nanocrystals for photothermal cancer therapy. J Mater Chem B 2020;8:5491-9. [PMID: 32478780 DOI: 10.1039/d0tb00748j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
402 |
Liu Z, Gao Y, Jin X, Deng Q, Yin Z, Tong S, Qing W, Huang Y. Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics. J Mater Chem B 2020;8:5535-44. [PMID: 32495813 DOI: 10.1039/d0tb00566e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
403 |
Liu J, Wang D, Wang G. Magnetic-gold theranostic nanoagent used for targeting quad modalities T 1 & T 2-MRI/CT/PA imaging and photothermal therapy of tumours. RSC Adv 2021;11:18440-7. [PMID: 35480951 DOI: 10.1039/d1ra02041b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
404 |
Tu L, Luo Z, Wu YL, Huo S, Liang XJ. Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med 2021:j. [PMID: 34002583 DOI: 10.20892/j.issn.2095-3941.2020.0524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
405 |
Tong Z, Gao Y, Yang H, Wang W, Mao Z. Nanomaterials for cascade promoted catalytic cancer therapy. VIEW 2021;2:20200133. [DOI: 10.1002/viw.20200133] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
|
406 |
Beik J, Alamzadeh Z, Mirrahimi M, Sarikhani A, Ardakani TS, Asadi M, Irajirad R, Mirrahimi M, Mahabadi VP, Eslahi N, Bulte JWM, Ghaznavi H, Shakeri-Zadeh A. Multifunctional Theranostic Graphene Oxide Nanoflakes as MR Imaging Agents with Enhanced Photothermal and Radiosensitizing Properties. ACS Appl Bio Mater 2021;4:4280-91. [PMID: 35006840 DOI: 10.1021/acsabm.1c00104] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
407 |
Lu R, Zhou L, Liu Q, Wang S, Yang C, Hai L, Guo L, Wu Y. Skillfully collaborating chemosynthesis with GOx-enabled tumor survival microenvironment deteriorating strategy for amplified chemotherapy and enhanced tumor ablation. Biomater Sci 2021;9:1855-71. [PMID: 33464244 DOI: 10.1039/d0bm01950j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
408 |
Liu Y, Yu B, Dai X, Zhao N, Xu FJ. Biomineralized calcium carbonate nanohybrids for mild photothermal heating-enhanced gene therapy. Biomaterials 2021;274:120885. [PMID: 34022740 DOI: 10.1016/j.biomaterials.2021.120885] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
409 |
Wen H, Zhang Z, Kang M, Li H, Xu W, Guo H, Li Y, Tan Y, Wen Z, Wu Q, Huang J, Xi L, Li K, Wang L, Wang D, Tang BZ. One-for-all phototheranostics: Single component AIE dots as multi-modality theranostic agent for fluorescence-photoacoustic imaging-guided synergistic cancer therapy. Biomaterials 2021;274:120892. [PMID: 34020267 DOI: 10.1016/j.biomaterials.2021.120892] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
|
410 |
Zhou M, Liu X, Chen F, Yang L, Yuan M, Fu DY, Wang W, Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed Mater 2021;16. [PMID: 33882463 DOI: 10.1088/1748-605X/abfa6e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
411 |
Cui Y, Chen X, Cheng Y, Lu X, Meng J, Chen Z, Li M, Lin C, Wang Y, Yang J. CuWO4 Nanodots for NIR-Induced Photodynamic and Chemodynamic Synergistic Therapy. ACS Appl Mater Interfaces 2021;13:22150-8. [PMID: 33957748 DOI: 10.1021/acsami.1c00970] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
412 |
Liu Y. Observation on Nursing Effect of Nano Trauma Patch for Intravenous Indwelling Needle Fixation. Integrated Ferroelectrics 2021;216:1-15. [DOI: 10.1080/10584587.2021.1911238] [Reference Citation Analysis]
|
413 |
Zhang Y, Liao Y, Tang Q, Lin J, Huang P. Biomimetic Nanoemulsion for Synergistic Photodynamic-Immunotherapy Against Hypoxic Breast Tumor. Angew Chem Int Ed Engl 2021;60:10647-53. [PMID: 33555085 DOI: 10.1002/anie.202015590] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 20.0] [Reference Citation Analysis]
|
414 |
Lee KW, Wan Y, Li X, Cui X, Li S, Lee CS. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Adv Healthc Mater 2021;10:e2100055. [PMID: 33738983 DOI: 10.1002/adhm.202100055] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
415 |
Meng QF, Tian R, Long H, Wu X, Lai J, Zharkova O, Wang JW, Chen X, Rao L. Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVID-19 Cytokine Storm. Adv Mater 2021;33:e2100012. [PMID: 33837596 DOI: 10.1002/adma.202100012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
|
416 |
Wang S, Yu G, Yang W, Wang Z, Jacobson O, Tian R, Deng H, Lin L, Chen X. Photodynamic-Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. Adv Sci (Weinh) 2021;8:2002927. [PMID: 34026433 DOI: 10.1002/advs.202002927] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
|
417 |
Liang S, Xiao X, Bai L, Liu B, Yuan M, Ma P, Pang M, Cheng Z, Lin J. Conferring Ti-Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy. Adv Mater 2021;33:e2100333. [PMID: 33792083 DOI: 10.1002/adma.202100333] [Cited by in Crossref: 65] [Cited by in F6Publishing: 73] [Article Influence: 32.5] [Reference Citation Analysis]
|
418 |
Zhu LB, Xu WL, Zhang WW, Wu MC, Li WZ, Ge F, Tao YG, Song P. De novosynthesis of pH-responsive, self-assembled, and targeted polypeptide nano-micelles for enhanced delivery of doxorubicin. Nanotechnology 2021;32. [PMID: 33711826 DOI: 10.1088/1361-6528/abee49] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
419 |
Schneible JD, Shi K, Young AT, Ramesh S, He N, Dowdey CE, Dubnansky JM, Lilova RL, Gao W, Santiso E, Daniele M, Menegatti S. Modified gaphene oxide (GO) particles in peptide hydrogels: a hybrid system enabling scheduled delivery of synergistic combinations of chemotherapeutics. J Mater Chem B 2020;8:3852-68. [PMID: 32219269 DOI: 10.1039/d0tb00064g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
420 |
Paus C, van der Voort R, Cambi A. Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. Exploration of Medicine. [DOI: 10.37349/emed.2021.00040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
421 |
Liao L, Cen D, Fu Y, Liu B, Fang C, Wang Y, Cai X, Li X, Wu HB, Han G. Biodegradable MnFe-hydroxide nanocapsules to enable multi-therapeutics delivery and hypoxia-modulated tumor treatment. J Mater Chem B 2020;8:3929-38. [PMID: 32232281 DOI: 10.1039/d0tb00243g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
422 |
Chin AL, Wang X, Tong R. Aliphatic Polyester-Based Materials for Enhanced Cancer Immunotherapy. Macromol Biosci 2021;21:e2100087. [PMID: 33909344 DOI: 10.1002/mabi.202100087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
423 |
Liu L, Luan S, Zhang C, Wang R, Zhang Y, Zhang M, Sheng Q, Han G, Wang T, Song S. Encapsulation and pH-responsive release of bortezomib by dopamine grafted hyaluronate nanogels. Int J Biol Macromol 2021;183:369-78. [PMID: 33932413 DOI: 10.1016/j.ijbiomac.2021.04.161] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
424 |
Yang Z, Zhang Z, Lei Z, Wang D, Ma H, Tang BZ. Precise Molecular Engineering of Small Organic Phototheranostic Agents toward Multimodal Imaging-Guided Synergistic Therapy. ACS Nano 2021;15:7328-39. [PMID: 33797216 DOI: 10.1021/acsnano.1c00585] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
|
425 |
Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS Appl Mater Interfaces 2021;13:19543-71. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Cited by in Crossref: 49] [Cited by in F6Publishing: 58] [Article Influence: 24.5] [Reference Citation Analysis]
|
426 |
Lage T, Rodrigues RO, Catarino S, Gallo J, Bañobre-López M, Minas G. Graphene-Based Magnetic Nanoparticles for Theranostics: An Overview for Their Potential in Clinical Application. Nanomaterials (Basel) 2021;11:1073. [PMID: 33921993 DOI: 10.3390/nano11051073] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
427 |
Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS Appl Mater Interfaces 2021;13:19679-94. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
428 |
Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics 2021;11:6477-90. [PMID: 33995669 DOI: 10.7150/thno.55708] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
429 |
Srinivasulu YG, Mozhi A, Goswami N, Yao Q, Xie J. Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS Appl Bio Mater 2021;4:3232-3245. [DOI: 10.1021/acsabm.0c01611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
430 |
Wang H, Zhang C, Zhang Y, Tian R, Cheng G, Pan H, Cui M, Chang J. An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles. J Mater Chem B 2020;8:2876-86. [PMID: 32191252 DOI: 10.1039/d0tb00235f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
431 |
Wan S, Zhang B, Li S, He B, Pu Y. Combination of PEG-decorated black phosphorus nanosheets and immunoadjuvant for photoimmunotherapy of melanoma. J Mater Chem B 2020;8:2805-13. [PMID: 32163088 DOI: 10.1039/d0tb00434k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
|
432 |
Zhang DY, Huang F, Ma Y, Liang G, Peng Z, Guan S, Zhai J. Tumor Microenvironment-Responsive Theranostic Nanoplatform for Guided Molecular Dynamic/Photodynamic Synergistic Therapy. ACS Appl Mater Interfaces 2021;13:17392-403. [PMID: 33829761 DOI: 10.1021/acsami.1c03277] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
433 |
Zhao N, Xin H, Zhang L. Advanced Biomedical Applications of Reactive Oxygen Species-Based Nanomaterials in Lung Cancer. Front Chem 2021;9:649772. [PMID: 33898390 DOI: 10.3389/fchem.2021.649772] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
434 |
Zuo M, Duan Q, Li C, Ge J, Wang Q, Li Z, Liu Z. A Versatile Strategy for Constructing Ratiometric Upconversion Luminescent Probe with Sensitized Emission of Energy Acceptor. Anal Chem 2021;93:5635-43. [PMID: 33749233 DOI: 10.1021/acs.analchem.1c00470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
435 |
Li X, Zhao X, Lv R, Hao L, Huo F, Yao X. Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromol Biosci 2021;21:e2000424. [PMID: 33811465 DOI: 10.1002/mabi.202000424] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
436 |
Liang P, Ballou B, Lv X, Si W, Bruchez MP, Huang W, Dong X. Monotherapy and Combination Therapy Using Anti-Angiogenic Nanoagents to Fight Cancer. Adv Mater 2021;33:e2005155. [PMID: 33684242 DOI: 10.1002/adma.202005155] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
|
437 |
Liu XL, Dong X, Yang SC, Lai X, Liu HJ, Gao Y, Feng HY, Zhu MH, Yuan Y, Lu Q, Lovell JF, Chen HZ, Fang C. Biomimetic Liposomal Nanoplatinum for Targeted Cancer Chemophototherapy. Adv Sci (Weinh) 2021;8:2003679. [PMID: 33898179 DOI: 10.1002/advs.202003679] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
|
438 |
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J, Santos HA. Engineered Extracellular Vesicles for Cancer Therapy. Adv Mater 2021;33:e2005709. [PMID: 33644908 DOI: 10.1002/adma.202005709] [Cited by in Crossref: 49] [Cited by in F6Publishing: 60] [Article Influence: 24.5] [Reference Citation Analysis]
|
439 |
Pan Q, Peng X, Cun J, Li J, Pu Y, He B. In-situ drug generation and controllable loading: rational design of copper-based nanosystems for chemo-photothermal cancer therapy. Chemical Engineering Journal 2021;409:128222. [DOI: 10.1016/j.cej.2020.128222] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
|
440 |
Yang M, Liu H, Zhang Y, Wang X, Xu Z. Moxifloxacin-isatin Hybrids Tethered by 1,2,3-triazole and their Anticancer Activities. Curr Top Med Chem 2020;20:1461-7. [PMID: 31994464 DOI: 10.2174/1568026620666200128144825] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
441 |
Wu Y, Liang Y, Liu Y, Hao Y, Tao N, Li J, Sun X, Zhou M, Liu YN. A Bi2S3-embedded gellan gum hydrogel for localized tumor photothermal/antiangiogenic therapy. J Mater Chem B 2021;9:3224-34. [PMID: 33885626 DOI: 10.1039/d1tb00257k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
442 |
Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021;16:2389-404. [PMID: 33790556 DOI: 10.2147/IJN.S295300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
443 |
Zhong S, Liu P, Ding J, Zhou W. Hyaluronic Acid-Coated MTX-PEI Nanoparticles for Targeted Rheumatoid Arthritis Therapy. Crystals 2021;11:321. [DOI: 10.3390/cryst11040321] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
444 |
Jia Z, Dai R, Zheng Z, Qin Y, Duan A, Peng X, Xie X, Zhang R. Hollow carbon-based nanosystem for photoacoustic imaging-guided hydrogenothermal therapy in the second near-infrared window. RSC Adv 2021;11:12022-9. [PMID: 35423779 DOI: 10.1039/d1ra00093d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
445 |
Zhang Y, Liao Y, Tang Q, Lin J, Huang P. Biomimetic Nanoemulsion for Synergistic Photodynamic‐Immunotherapy Against Hypoxic Breast Tumor. Angew Chem 2021;133:10742-8. [DOI: 10.1002/ange.202015590] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
446 |
Kage Y, Kang S, Mori S, Mamada M, Adachi C, Kim D, Furuta H, Shimizu S. An Electron-Accepting aza-BODIPY-Based Donor-Acceptor-Donor Architecture for Bright NIR Emission. Chemistry 2021;27:5259-67. [PMID: 33442895 DOI: 10.1002/chem.202005360] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
|
447 |
Zhang M, Qin X, Xu W, Wang Y, Song Y, Garg S, Luan Y. Engineering of a dual-modal phototherapeutic nanoplatform for single NIR laser-triggered tumor therapy. J Colloid Interface Sci 2021;594:493-501. [PMID: 33774405 DOI: 10.1016/j.jcis.2021.03.050] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 24.5] [Reference Citation Analysis]
|
448 |
Weng X, Bao Z, Wei X. Binary organic nanoparticles with enhanced reactive oxygen species generation capability for photodynamic therapy. J Innov Opt Health Sci 2021;14:2150009. [DOI: 10.1142/s1793545821500097] [Reference Citation Analysis]
|
449 |
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021;38:101119. [PMID: 34267794 DOI: 10.1016/j.nantod.2021.101119] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 32.0] [Reference Citation Analysis]
|
450 |
Liu P, Shi X, Zhong S, Peng Y, Qi Y, Ding J, Zhou W. Metal-phenolic networks for cancer theranostics. Biomater Sci 2021;9:2825-49. [PMID: 33688863 DOI: 10.1039/d0bm02064h] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
|
451 |
Chang T, Moses OA, Tian C, Wang H, Song L, Zhao G. Synergistic Ice Inhibition Effect Enhances Rapid Freezing Cryopreservation with Low Concentration of Cryoprotectants. Adv Sci (Weinh) 2021;8:2003387. [PMID: 33747736 DOI: 10.1002/advs.202003387] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
452 |
Lei C, Liu X, Chen Q, Li Y, Zhou J, Zhou L, Zou T. Hyaluronic acid and albumin based nanoparticles for drug delivery. Journal of Controlled Release 2021;331:416-33. [DOI: 10.1016/j.jconrel.2021.01.033] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 19.5] [Reference Citation Analysis]
|
453 |
Liu P, Xie X, Liu M, Hu S, Ding J, Zhou W. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin B 2021;11:823-34. [PMID: 33777684 DOI: 10.1016/j.apsb.2020.07.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
|
454 |
Liu W, Dong A, Wang B, Zhang H. Current Advances in Black Phosphorus-Based Drug Delivery Systems for Cancer Therapy. Adv Sci (Weinh) 2021;8:2003033. [PMID: 33717847 DOI: 10.1002/advs.202003033] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
|
455 |
Wang S, Sun Z, Hou Y. Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Adv Healthc Mater 2021;10:e2000845. [PMID: 32790039 DOI: 10.1002/adhm.202000845] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
|
456 |
Younis MR, He G, Lin J, Huang P. Graphene-semiconductor nanocomposites for cancer phototherapy. Biomed Mater 2021;16:022007. [PMID: 33470976 DOI: 10.1088/1748-605X/abdd6e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
457 |
Zou Y, Long S, Xiong T, Zhao X, Sun W, Du J, Fan J, Peng X. Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS Cent Sci 2021;7:327-34. [PMID: 33655070 DOI: 10.1021/acscentsci.0c01551] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
|
458 |
Dai X, Zhao X, Liu Y, Chen B, Ding X, Zhao N, Xu FJ. Controlled Synthesis and Surface Engineering of Janus Chitosan-Gold Nanoparticles for Photoacoustic Imaging-Guided Synergistic Gene/Photothermal Therapy. Small 2021;17:e2006004. [PMID: 33619841 DOI: 10.1002/smll.202006004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 17.5] [Reference Citation Analysis]
|
459 |
Lu F, Wang M, Li N, Tang B. Polyoxometalate-Based Nanomaterials Toward Efficient Cancer Diagnosis and Therapy. Chemistry 2021;27:6422-34. [PMID: 33314442 DOI: 10.1002/chem.202004500] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
460 |
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021;50:4432-83. [PMID: 33595004 DOI: 10.1039/d0cs00908c] [Cited by in Crossref: 77] [Cited by in F6Publishing: 87] [Article Influence: 38.5] [Reference Citation Analysis]
|
461 |
Prasad R, Jain NK, Yadav AS, Jadhav M, Radharani NNV, Gorain M, Kundu GC, Conde J, Srivastava R. Ultrahigh Penetration and Retention of Graphene Quantum Dot Mesoporous Silica Nanohybrids for Image Guided Tumor Regression. ACS Appl Bio Mater 2021;4:1693-703. [PMID: 35014516 DOI: 10.1021/acsabm.0c01478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
462 |
He J, Fu LH, Qi C, Lin J, Huang P. Metal peroxides for cancer treatment. Bioact Mater 2021;6:2698-710. [PMID: 33665502 DOI: 10.1016/j.bioactmat.2021.01.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
|
463 |
Garg U, Azim Y. Challenges and opportunities of pharmaceutical cocrystals: a focused review on non-steroidal anti-inflammatory drugs. RSC Med Chem 2021;12:705-21. [PMID: 34124670 DOI: 10.1039/d0md00400f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
464 |
Powsner EH, Harris JC, Day ES. Biomimetic Nanoparticles for the Treatment of Hematologic Malignancies. Adv NanoBio Res 2021;1:2000047. [DOI: 10.1002/anbr.202000047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
465 |
Ren X, Yang S, Yu N, Sharjeel A, Jiang Q, Macharia DK, Yan H, Lu C, Geng P, Chen Z. Cell membrane camouflaged bismuth nanoparticles for targeted photothermal therapy of homotypic tumors. J Colloid Interface Sci 2021;591:229-38. [PMID: 33609894 DOI: 10.1016/j.jcis.2021.02.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
|
466 |
Xu Y, Wang S, Chen Z, Hu R, Li S, Zhao Y, Liu L, Qu J. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment. J Nanobiotechnology 2021;19:37. [PMID: 33541369 DOI: 10.1186/s12951-021-00782-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
467 |
Cassano R, Cuconato M, Calviello G, Serini S, Trombino S. Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules 2021;26:785. [PMID: 33546290 DOI: 10.3390/molecules26040785] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
|
468 |
Xu N, Lin H, Lin S, Zhang W, Han S, Nakajima H, Mao S, Lin JM. A Fluidic Isolation-Assisted Homogeneous-Flow-Pressure Chip-Solid Phase Extraction-Mass Spectrometry System for Online Dynamic Monitoring of 25-Hydroxyvitamin D3 Biotransformation in Cells. Anal Chem 2021;93:2273-80. [PMID: 33443406 DOI: 10.1021/acs.analchem.0c04147] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
|
469 |
Zhou R, Yan L, Dong X, Zhu S, Chen K, Wu Y, Xiang H, Li L, Zhang G, Gu Z, Zhao Y. Fractionated regimen-suitable immunoradiotherapy sensitizer based on ultrasmall Fe4Se2W18 nanoclusters enable tumor-specific radiosensitization augment and antitumor immunity boost. Nano Today 2021;36:101003. [DOI: 10.1016/j.nantod.2020.101003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
470 |
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Cited by in Crossref: 118] [Cited by in F6Publishing: 132] [Article Influence: 59.0] [Reference Citation Analysis]
|
471 |
Liu Q, Duo Y, Fu J, Qiu M, Sun Z, Adah D, Kang J, Xie Z, Fan T, Bao S, Zhang H, Liu L, Cao Y. Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy. Nano Today 2021;36:101023. [DOI: 10.1016/j.nantod.2020.101023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
|
472 |
Liu J, Li L, Zhang R, Xu ZP. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment. Journal of Materials Science & Technology 2021;63:73-80. [DOI: 10.1016/j.jmst.2020.02.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
473 |
Mao J, Li Y, Cai Q, Tang Z, Yang Y, Yuan C, Xu Y, Zeng B, Luo W, Kuo S, Dai L. Tumor microenvironment-activated self-charge-generable metallosupramolecular polymer nanocapsules for photoacoustic imaging-guided targeted synergistic photothermal-chemotherapy. Chemical Engineering Journal 2021;405:126690. [DOI: 10.1016/j.cej.2020.126690] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
474 |
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi MA. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021;10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 34.0] [Reference Citation Analysis]
|
475 |
Ling X, Han W, Jiang X, Chen X, Rodriguez M, Zhu P, Wu T, Lin W. Point-source burst of coordination polymer nanoparticles for tri-modality cancer therapy. Biomaterials 2021;270:120690. [PMID: 33561626 DOI: 10.1016/j.biomaterials.2021.120690] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
476 |
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2020;8:631351. [PMID: 33585406 DOI: 10.3389/fchem.2020.631351] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
477 |
Yu S, Zhou Y, Sun Y, Wu S, Xu T, Chang YC, Bi S, Jiang LP, Zhu JJ. Endogenous mRNA Triggered DNA-Au Nanomachine for In Situ Imaging and Targeted Multimodal Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2021;60:5948-58. [PMID: 33289255 DOI: 10.1002/anie.202012801] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 18.5] [Reference Citation Analysis]
|
478 |
Yu S, Zhou Y, Sun Y, Wu S, Xu T, Chang Y, Bi S, Jiang L, Zhu J. Endogenous mRNA Triggered DNA‐Au Nanomachine for In Situ Imaging and Targeted Multimodal Synergistic Cancer Therapy. Angew Chem 2021;133:6013-23. [DOI: 10.1002/ange.202012801] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
479 |
Lu J, Wang K, Lei W, Mao Y, Di D, Zhao Q, Wang S. Polydopamine-carbon dots functionalized hollow carbon nanoplatform for fluorescence-imaging and photothermal-enhanced thermochemotherapy. Mater Sci Eng C Mater Biol Appl 2021;122:111908. [PMID: 33641904 DOI: 10.1016/j.msec.2021.111908] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
480 |
Qi C, He J, Fu LH, He T, Blum NT, Yao X, Lin J, Huang P. Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano 2021;15:1627-39. [PMID: 33356128 DOI: 10.1021/acsnano.0c09223] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
|
481 |
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021;18:849-76. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
|
482 |
Tang W, Yang Z, He L, Deng L, Fathi P, Zhu S, Li L, Shen B, Wang Z, Jacobson O, Song J, Zou J, Hu P, Wang M, Mu J, Cheng Y, Ma Y, Tang L, Fan W, Chen X. A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat Commun 2021;12:523. [PMID: 33483518 DOI: 10.1038/s41467-020-20860-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
|
483 |
Morais M, Machado V, Dias F, Palmeira C, Martins G, Fonseca M, Martins CSM, Teixeira AL, Prior JAV, Medeiros R. Starch-Capped AgNPs' as Potential Cytotoxic Agents against Prostate Cancer Cells. Nanomaterials (Basel) 2021;11:256. [PMID: 33498166 DOI: 10.3390/nano11020256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
484 |
Sun X, He G, Xiong C, Wang C, Lian X, Hu L, Li Z, Dalgarno SJ, Yang YW, Tian J. One-Pot Fabrication of Hollow Porphyrinic MOF Nanoparticles with Ultrahigh Drug Loading toward Controlled Delivery and Synergistic Cancer Therapy. ACS Appl Mater Interfaces 2021;13:3679-93. [PMID: 33464038 DOI: 10.1021/acsami.0c20617] [Cited by in Crossref: 49] [Cited by in F6Publishing: 56] [Article Influence: 24.5] [Reference Citation Analysis]
|
485 |
Shen Y, Dong C, Xiang H, Li C, Zhuang F, Chen Y, Lu Q, Chen Y, Huang B. Engineering Oxygen‐Irrelevant Radical Nanogenerator for Hypoxia‐Independent Magnetothermodynamic Tumor Nanotherapy. Small Methods 2021;5:2001087. [DOI: 10.1002/smtd.202001087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
486 |
Bai L, Wang M, Zhang L, Zhao M, Ren M, Zheng L, Lei M, Shen H. Poly(Amino Acid) Coordination Nanoparticle as a Potent Sonosensitizer for Cancer Therapy. ACS Appl Bio Mater 2021;4:881-889. [DOI: 10.1021/acsabm.0c01383] [Reference Citation Analysis]
|
487 |
Song N, Xiao P, Ma K, Kang M, Zhu W, Huang J, Wang D, Tang BZ. Recent Advances of AIEgens for Targeted Imaging of Subcellular Organelles. Chem Res Chin Univ 2021;37:52-65. [DOI: 10.1007/s40242-021-0430-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
488 |
Wu H, Wang MD, Liang L, Xing H, Zhang CW, Shen F, Huang DS, Yang T. Nanotechnology for Hepatocellular Carcinoma: From Surveillance, Diagnosis to Management. Small 2021;17:e2005236. [PMID: 33448111 DOI: 10.1002/smll.202005236] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
489 |
Zhang X, Jiang D, Yang G, Zhu Y, Tian J, Cao H, Gao Y, Zhang W. A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOO−) to Enhance Phototherapeutic Efficacy. Chin J Polym Sci 2021;39:692-701. [DOI: 10.1007/s10118-021-2540-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
490 |
Lyu P, Zhu J, Han C, Qiang L, Zhang L, Mei B, He J, Liu X, Bian Z, Li H. Self-Driven Reactive Oxygen Species Generation via Interfacial Oxygen Vacancies on Carbon-Coated TiO2-x with Versatile Applications. ACS Appl Mater Interfaces 2021;13:2033-43. [PMID: 33378149 DOI: 10.1021/acsami.0c19414] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
|
491 |
Sun R, Ge Y, Liu H, He P, Song W, Zhang X. Erythrocyte Membrane-Encapsulated Glucose Oxidase and Manganese/Ferrite Nanocomposite as a Biomimetic “All in One” Nanoplatform for Cancer Therapy. ACS Appl Bio Mater 2021;4:701-10. [DOI: 10.1021/acsabm.0c01226] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
492 |
Zhao Q, Sun X, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J Nanobiotechnology 2021;19:8. [PMID: 33407527 DOI: 10.1186/s12951-020-00738-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
|
493 |
Liu F, Ma F, Chen Q, Zhou E, Zhang P, Cui Z, Liu Z, Huang Y. Synergistic non-bonding interactions based on diketopyrrolo-pyrrole for elevated photoacoustic imaging-guided photothermal therapy. Biomater Sci 2021;9:908-16. [DOI: 10.1039/d0bm01569e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
494 |
Feng H, Kang J, Qi S, Kishimura A, Mori T, Katayama Y. Preparation of a PEGylated liposome that co-encapsulates l-arginine and doxorubicin to achieve a synergistic anticancer effect. RSC Adv 2021;11:34101-34106. [DOI: 10.1039/d1ra06514a] [Reference Citation Analysis]
|
495 |
Pei M, Xu R, Zhang C, Wang X, Li C, Hu Y. Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation. Colloids and Surfaces B: Biointerfaces 2021;197:111378. [DOI: 10.1016/j.colsurfb.2020.111378] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
|
496 |
Gao F, Sun Z, Zhao L, Chen F, Stenzel M, Wang F, Li H, Zhang L, Jiang Y. Bioactive engineered photothermal nanomaterials: from theoretical understanding to cutting-edge application strategies in anti-cancer therapy. Mater Chem Front 2021;5:5257-97. [DOI: 10.1039/d1qm00402f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
497 |
Liu X, Meng C, Ji G, Liu J, Zhu P, Qian J, Zhu S, Zhang Y, Ling Y. Tumor microenvironment-activatable boolean logic supramolecular nanotheranostics based on a pillar[6]arene for tumor hypoxia imaging and multimodal synergistic therapy. Mater Chem Front 2021;5:5846-56. [DOI: 10.1039/d1qm00411e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
498 |
Nosrati H, Baghdadchi Y, Abbasi R, Barsbay M, Ghaffarlou M, Abhari F, Mohammadi A, Kavetskyy T, Bochani S, Rezaeejam H, Davaran S, Danafar H. Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. J Mater Chem B 2021;9:4510-22. [PMID: 34027529 DOI: 10.1039/d0tb02561e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
499 |
Horst FH, Rodrigues CVDS, Carvalho PHPR, Leite AM, Azevedo RB, Neto BAD, Corrêa JR, Garcia MP, Alotaibi S, Henini M, Chaves SB, Rodrigues MO. From cow manure to bioactive carbon dots: a light-up probe for bioimaging investigations, glucose detection and potential immunotherapy agent for melanoma skin cancer. RSC Adv 2021;11:6346-52. [DOI: 10.1039/d0ra10859f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
500 |
Xu L, Wang H, Tian H, Zhang M, He J, Ni P. Facile construction of noncovalent graft copolymers with triple stimuli-responsiveness for triggered drug delivery. Polym Chem 2021;12:2152-64. [DOI: 10.1039/d1py00135c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
501 |
Cai Z, Zhang Y, Jiang L, Zhu J. The Construction and Application of Mn 3 O 4 /DOX@Lip Nano-drug Delivery System Based on Fenton-Like Reaction. Acta Chimica Sinica 2021;79:481. [DOI: 10.6023/a20120583] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
502 |
Wen J, Yang K, Huang J, Sun S. Recent advances in LDH-based nanosystems for cancer therapy. Materials & Design 2021;198:109298. [DOI: 10.1016/j.matdes.2020.109298] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
|
503 |
Bao Z, Li K, Hou P, Xiao R, Yuan Y, Sun Z. Nanoscale metal–organic framework composites for phototherapy and synergistic therapy of cancer. Mater Chem Front 2021;5:1632-54. [DOI: 10.1039/d0qm00786b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
504 |
Yang J, Yang Y. Diagnosis Employing MOFs (Fluorescence, MRI). Metal-Organic Frameworks in Biomedical and Environmental Field 2021. [DOI: 10.1007/978-3-030-63380-6_13] [Reference Citation Analysis]
|
505 |
Huang X, Gu R, Zhong Z, Ou C, Si W, Wang F, Zhang T, Dong X. Nitric oxide-sensitized mitoxantrone chemotherapy integrated with photothermal therapy against multidrug-resistant tumors. Mater Chem Front 2021;5:5798-805. [DOI: 10.1039/d1qm00523e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
|
506 |
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. Adv Mater 2021;33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Cited by in Crossref: 88] [Cited by in F6Publishing: 94] [Article Influence: 44.0] [Reference Citation Analysis]
|
507 |
Malik P, Gupta R, Ameta RK. Unique attributes of metal-organic frameworks in drug delivery. Metal-Organic Frameworks for Chemical Reactions 2021. [DOI: 10.1016/b978-0-12-822099-3.00016-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
508 |
Wang N, Zeng Q, Zhang R, Xing D, Zhang T. Eradication of solid tumors by chemodynamic theranostics with H2O2-catalyzed hydroxyl radical burst. Theranostics 2021;11:2334-48. [PMID: 33500728 DOI: 10.7150/thno.49277] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
509 |
Dadigala R, Bandi R, Alle M, Gangapuram BR, Lee S. Graphene-Based Smart Nanomaterials for Photothermal Therapy. Smart Nanomaterials in Biomedical Applications 2021. [DOI: 10.1007/978-3-030-84262-8_5] [Reference Citation Analysis]
|
510 |
Jia D, Ma X, Lu Y, Li X, Hou S, Gao Y, Xue P, Kang Y, Xu Z. ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chinese Chemical Letters 2021;32:162-7. [DOI: 10.1016/j.cclet.2020.11.052] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 27.5] [Reference Citation Analysis]
|
511 |
Ding Y, Huang R, Luo L, Guo W, Zhu C, Shen X. Full-spectrum responsive WO 3−x @HA nanotheranostics for NIR-II photoacoustic imaging-guided PTT/PDT/CDT synergistic therapy. Inorg Chem Front 2021;8:636-46. [DOI: 10.1039/d0qi01249a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
|
512 |
Zheng B, He Q, Li X, Yoon J, Huang J. Phthalocyanines as contrast agents for photothermal therapy. Coordination Chemistry Reviews 2021;426:213548. [DOI: 10.1016/j.ccr.2020.213548] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 30.0] [Reference Citation Analysis]
|
513 |
Li M, Cui X, Wei F, Wang Z, Han X. Red blood cell membrane-coated biomimetic upconversion nanoarchitectures for synergistic chemo-photodynamic therapy. New J Chem 2021;45:22269-79. [DOI: 10.1039/d1nj04305f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
514 |
Wang Z, Fu L, Zhu Y, Wang S, Shen G, Jin L, Liang R. Chemodynamic/photothermal synergistic therapy based on Ce-doped Cu–Al layered double hydroxides. J Mater Chem B 2021;9:710-8. [DOI: 10.1039/d0tb02547j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
|
515 |
Zhang Y, Zhang J, Jia Q, Ge J, Wang P. Innovative strategies of hydrogen peroxide-involving tumor therapeutics. Mater Chem Front 2021;5:4474-501. [DOI: 10.1039/d1qm00134e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
516 |
Li Y, Chu J, Wang D, Zhu L, Kong D. DNA nanolantern as biocompatible drug carrier for simple preparation of a porphyrin/G-quadruplex nanocomposite photosensitizer with high photodynamic efficacy. Mater Chem Front 2021;5:3139-48. [DOI: 10.1039/d1qm00141h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
517 |
Kang M, Zhang Z, Song N, Li M, Sun P, Chen X, Wang D, Tang BZ. Aggregation‐enhanced theranostics: AIE sparkles in biomedical field. Aggregate 2020;1:80-106. [DOI: 10.1002/agt2.7] [Cited by in Crossref: 163] [Cited by in F6Publishing: 171] [Article Influence: 54.3] [Reference Citation Analysis]
|
518 |
Wen C, Chen H, Guo X, Lin Z, Zhang S, Shen XC, Liang H. Lysosome-Targeted Gold Nanotheranostics for In Situ SERS Monitoring pH and Multimodal Imaging-Guided Phototherapy. Langmuir 2021;37:569-77. [PMID: 33356328 DOI: 10.1021/acs.langmuir.0c03290] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
519 |
Biglione C, Glitscher EA, Arora S, Klemke B, Giulbudagian M, Laux P, Luch A, Bergueiro J, Calderón M. Galvanic Replacement as a Synthetic Tool for the Construction of Anisotropic Magnetoplasmonic Nanocomposites with Synergistic Phototransducing and Magnetic Properties. ACS Appl Mater Interfaces 2020;12:56839-49. [PMID: 33290035 DOI: 10.1021/acsami.0c18096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
520 |
Zhu XH, Du JX, Zhu D, Ren SZ, Chen K, Zhu HL. Recent Research on Methods to Improve Tumor Hypoxia Environment. Oxid Med Cell Longev 2020;2020:5721258. [PMID: 33343807 DOI: 10.1155/2020/5721258] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
521 |
Astani S, Salehi R, Massoumi B, Massoudi A. Co-delivery of cisplatin and doxorubicin by carboxylic acid functionalized poly (hydroxyethyl methacrylate)/reduced graphene nanocomposite for combination chemotherapy of breast cancer cells. J Biomater Sci Polym Ed 2021;32:657-77. [PMID: 33347395 DOI: 10.1080/09205063.2020.1855393] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
522 |
Hsin T, Dhenadhayalan N, Lin K. Ligusticum Striatum-Derived Carbon Dots as Nanocarriers to Deliver Methotrexate for Effective Therapy of Cancer Cells. ACS Appl Bio Mater 2020;3:8786-8794. [DOI: 10.1021/acsabm.0c01151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
523 |
Amani H, Shahbazi MA, D'Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Control Release 2021;330:185-217. [PMID: 33340568 DOI: 10.1016/j.jconrel.2020.12.019] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 23.3] [Reference Citation Analysis]
|
524 |
Zhang J, Liu Y, Wang X, Du J, Song K, Li B, Chang H, Ouyang R, Miao Y, Sun Y, Li Y. Nanozyme-Incorporated Biodegradable Bismuth Mesoporous Radiosensitizer for Tumor Microenvironment-Modulated Hypoxic Tumor Thermoradiotherapy. ACS Appl Mater Interfaces 2020;12:57768-81. [DOI: 10.1021/acsami.0c18853] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
|
525 |
Cordeiro AP, Feuser PE, Araújo PHH, Sayer C. Encapsulation of Magnetic Nanoparticles and Copaíba Oil in Poly(methyl methacrylate) Nanoparticles via Miniemulsion Polymerization for Biomedical Application. Macromol Symp 2020;394:2000112. [DOI: 10.1002/masy.202000112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
526 |
Sun J, Cai W, Sun Y, Guo C, Zhang R. Facile Synthesis of Melanin-Dye Nanoagent for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal Therapy. Int J Nanomedicine 2020;15:10199-213. [PMID: 33364754 DOI: 10.2147/IJN.S284520] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
|
527 |
Ye S, Cui C, Cheng X, Zhao M, Mao Q, Zhang Y, Wang A, Fang J, Zhao Y, Shi H. Red Light-Initiated Cross-Linking of NIR Probes to Cytoplasmic RNA: An Innovative Strategy for Prolonged Imaging and Unexpected Tumor Suppression. J Am Chem Soc 2020;142:21502-12. [PMID: 33306393 DOI: 10.1021/jacs.0c10755] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
528 |
Overchuk M, Harmatys KM, Sindhwani S, Rajora MA, Koebel A, Charron DM, Syed AM, Chen J, Pomper MG, Wilson BC, Chan WCW, Zheng G. Subtherapeutic Photodynamic Treatment Facilitates Tumor Nanomedicine Delivery and Overcomes Desmoplasia. Nano Lett 2021;21:344-52. [PMID: 33301689 DOI: 10.1021/acs.nanolett.0c03731] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
529 |
Chen Z, Wang W, Li Y, Wei C, Zhong P, He D, Liu H, Wang P, Huang Z, Zhu W, Zhou Y, Qin L. Folic Acid-Modified Erythrocyte Membrane Loading Dual Drug for Targeted and Chemo-Photothermal Synergistic Cancer Therapy. Mol Pharm 2021;18:386-402. [PMID: 33296217 DOI: 10.1021/acs.molpharmaceut.0c01008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
530 |
Wang Y, Luo S, Wu Y, Tang P, Liu J, Liu Z, Shen S, Ren H, Wu D. Highly Penetrable and On-Demand Oxygen Release with Tumor Activity Composite Nanosystem for Photothermal/Photodynamic Synergetic Therapy. ACS Nano 2020. [PMID: 33290657 DOI: 10.1021/acsnano.0c06415] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 20.0] [Reference Citation Analysis]
|
531 |
Liang Y, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. Nano Select 2021;2:216-50. [DOI: 10.1002/nano.202000169] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
532 |
Fathi P, Rao L, Chen X. Extracellular vesicle‐coated nanoparticles. View 2021;2:20200187. [DOI: 10.1002/viw.20200187] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
533 |
Wen C, Cheng R, Gong T, Huang Y, Li D, Zhao X, Yu B, Su D, Song Z, Liang W. β-Cyclodextrin-cholic acid-hyaluronic acid polymer coated Fe3O4-graphene oxide nanohybrids as local chemo-photothermal synergistic agents for enhanced liver tumor therapy. Colloids Surf B Biointerfaces 2021;199:111510. [PMID: 33341438 DOI: 10.1016/j.colsurfb.2020.111510] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
|
534 |
Li L, Dai K, Li J, Shi Y, Zhang Z, Liu T, Jun Xie, Ruiping Zhang, Liu Z. A Boron-10 nitride nanosheet for combinational boron neutron capture therapy and chemotherapy of tumor. Biomaterials 2021;268:120587. [PMID: 33296793 DOI: 10.1016/j.biomaterials.2020.120587] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
|
535 |
Gao D, Gao Y, Shen J, Wang Q. Modified nanoscale metal organic framework-based nanoplatforms in photodynamic therapy and further applications. Photodiagnosis Photodyn Ther 2020;32:102026. [PMID: 32979544 DOI: 10.1016/j.pdpdt.2020.102026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
536 |
Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Adv Sci (Weinh) 2020;7:2003584. [PMID: 33344143 DOI: 10.1002/advs.202003584] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
|
537 |
Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today 2020;35:100972. [DOI: 10.1016/j.nantod.2020.100972] [Cited by in Crossref: 63] [Cited by in F6Publishing: 73] [Article Influence: 21.0] [Reference Citation Analysis]
|
538 |
Zhang Y, Song T, Feng T, Wan Y, Blum NT, Liu C, Zheng C, Zhao Z, Jiang T, Wang J, Li Q, Lin J, Tang L, Huang P. Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. Nano Today 2020;35:100987. [DOI: 10.1016/j.nantod.2020.100987] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 12.3] [Reference Citation Analysis]
|
539 |
Qin Y, Guo Q, Wu S, Huang C, Zhang Z, Zhang L, Zhang L, Zhu D. LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma. Chinese Chemical Letters 2020;31:3121-6. [DOI: 10.1016/j.cclet.2020.06.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
|
540 |
Sun Y, Zhang Y, Gao Y, Wang P, He G, Blum NT, Lin J, Liu Q, Wang X, Huang P. Six Birds with One Stone: Versatile Nanoporphyrin for Single-Laser-Triggered Synergistic Phototheranostics and Robust Immune Activation. Adv Mater 2020;32:e2004481. [PMID: 33015905 DOI: 10.1002/adma.202004481] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 14.7] [Reference Citation Analysis]
|
541 |
Chen X, Bian Y, Li M, Zhang Y, Gao X, Su D. Activatable Off-on Near-Infrared QCy7-based Fluorogenic Probes for Bioimaging. Chem Asian J 2020;15:3983-94. [PMID: 33034939 DOI: 10.1002/asia.202001057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
542 |
Wang C, Zhao N, Huang Y, He R, Xu S, Yuan W. Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy. Chemical Engineering Journal 2020;401:126100. [DOI: 10.1016/j.cej.2020.126100] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
543 |
Gao Y, Li Q, Li C, Gao L, Chen H, Liu T, Huang Y, Liu Z, Li S. Terselenophene Regioisomer Conjugated Polymer Materials for High-Performance Cancer Phototheranostics. ACS Appl Mater Interfaces 2020;12:55605-13. [PMID: 33258595 DOI: 10.1021/acsami.0c16064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
544 |
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. Adv Sci (Weinh) 2020;7:2001669. [PMID: 33304747 DOI: 10.1002/advs.202001669] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
|
545 |
Meng X, Zhang X, Liu M, Cai B, He N, Wang Z. Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today 2020;21:100864. [DOI: 10.1016/j.apmt.2020.100864] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 13.7] [Reference Citation Analysis]
|
546 |
Wang X, Zhong X, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 2020;35:100946. [DOI: 10.1016/j.nantod.2020.100946] [Cited by in Crossref: 176] [Cited by in F6Publishing: 199] [Article Influence: 58.7] [Reference Citation Analysis]
|
547 |
Wang H, Yang J, Cao P, Guo N, Li Y, Zhao Y, Zhou S, Ouyang R, Miao Y. Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics. Chinese Chemical Letters 2020;31:3015-26. [DOI: 10.1016/j.cclet.2020.05.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
548 |
Wang Z, Li Z, Sun Z, Wang S, Ali Z, Zhu S, Liu S, Ren Q, Sheng F, Wang B, Hou Y. Visualization nanozyme based on tumor microenvironment "unlocking" for intensive combination therapy of breast cancer. Sci Adv 2020;6:eabc8733. [PMID: 33246959 DOI: 10.1126/sciadv.abc8733] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 18.3] [Reference Citation Analysis]
|
549 |
Hao YN, Zhang WX, Gao YR, Wei YN, Shu Y, Wang JH. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. J Mater Chem B 2021;9:250-66. [PMID: 33237121 DOI: 10.1039/d0tb02360d] [Cited by in Crossref: 40] [Cited by in F6Publishing: 50] [Article Influence: 13.3] [Reference Citation Analysis]
|
550 |
Gao Y, Gao D, Shen J, Wang Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front Chem 2020;8:598722. [PMID: 33330389 DOI: 10.3389/fchem.2020.598722] [Cited by in Crossref: 32] [Cited by in F6Publishing: 38] [Article Influence: 10.7] [Reference Citation Analysis]
|
551 |
Cao Y, Wu C, Liu Y, Hu L, Shang W, Gao Z, Xia N. Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721. Drug Deliv 2020;27:258-68. [PMID: 32009475 DOI: 10.1080/10717544.2020.1718801] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
|
552 |
Watanabe T, Yamamoto E, Uchida S, Cheng L, Wada H, Shimojima A, Kuroda K. Preparation of Sub-50 nm Colloidal Monodispersed Hollow Siloxane-Based Nanoparticles with Controlled Shell Structures. Langmuir 2020;36:13833-42. [PMID: 33190504 DOI: 10.1021/acs.langmuir.0c02190] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
553 |
Del Valle AC, Su CK, Sun YC, Huang YF. NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors. Biomater Sci 2020;8:1934-50. [PMID: 32039412 DOI: 10.1039/c9bm01813a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
554 |
Pan Y, Luo Z, Wang X, Chen Q, Chen J, Guan Y, Liu D, Xu H, Liu J. A versatile and multifunctional metal-organic framework nanocomposite toward chemo-photodynamic therapy. Dalton Trans 2020;49:5291-301. [PMID: 32242552 DOI: 10.1039/c9dt04804a] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 19.0] [Reference Citation Analysis]
|
555 |
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021;50:945-85. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 12.7] [Reference Citation Analysis]
|
556 |
Jiang M, Mu J, Jacobson O, Wang Z, He L, Zhang F, Yang W, Lin Q, Zhou Z, Ma Y, Lin J, Qu J, Huang P, Chen X. Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS Nano 2020. [PMID: 33206522 DOI: 10.1021/acsnano.0c05722] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
|
557 |
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. Adv Therap 2021;4:2000207. [DOI: 10.1002/adtp.202000207] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
558 |
Gao Z, Zhang Z, Guo J, Hao J, Zhang P, Cui J. Polypeptide Nanoparticles with pH-Sheddable PEGylation for Improved Drug Delivery. Langmuir 2020;36:13656-62. [PMID: 33147977 DOI: 10.1021/acs.langmuir.0c02532] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
559 |
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. Nanomaterials (Basel) 2020;10:E2276. [PMID: 33212974 DOI: 10.3390/nano10112276] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
560 |
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020;173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
561 |
Huang Y, Tian Y, Shu J, Wang F, Wei X. Oxygen self-enriched single-component "black carbon nitride" for near-infrared phototheranostics. Nanoscale 2020;12:21812-20. [PMID: 33103711 DOI: 10.1039/d0nr05871h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
562 |
Feuser PE, Cordeiro AP, de Bem Silveira G, Borges Corrêa MEA, Lock Silveira PC, Sayer C, de Araújo PHH, Machado-de-Ávila RA, Dal Bó AG. Co-encapsulation of sodium diethyldithiocarbamate (DETC) and zinc phthalocyanine (ZnPc) in liposomes promotes increases phototoxic activity against (MDA-MB 231) human breast cancer cells. Colloids Surf B Biointerfaces 2021;197:111434. [PMID: 33166932 DOI: 10.1016/j.colsurfb.2020.111434] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
563 |
Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021;10:257-68. [PMID: 33141513 DOI: 10.1002/cam4.3592] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
|
564 |
Tian Z, Liu H, Guo Z, Gou W, Liang Z, Qu Y, Han L, Liu L. A pH‐Responsive Polymer‐CeO 2 Hybrid to Catalytically Generate Oxidative Stress for Tumor Therapy. Small 2020;16:2004654. [DOI: 10.1002/smll.202004654] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
|
565 |
Shao J, Zhang J, Jiang C, Lin J, Huang P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chemical Engineering Journal 2020;400:126009. [DOI: 10.1016/j.cej.2020.126009] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 23.0] [Reference Citation Analysis]
|
566 |
Liu H, Li J, Hu P, Sun S, Shi L, Sun L. Facile synthesis of Er3+/Tm3+ co-doped magnetic/luminescent nanosystems for possible bioimaging and therapy applications. Journal of Rare Earths 2020. [DOI: 10.1016/j.jre.2020.11.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
|
567 |
Cheng Y, Ji Y, Tong J. Triple stimuli-responsive supramolecular nanoassembly with mitochondrial targetability for chemophotothermal therapy. Journal of Controlled Release 2020;327:35-49. [DOI: 10.1016/j.jconrel.2020.08.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
568 |
Li R, Zheng D, Han Z, Xie T, Zhang C, An J, Xu R, Sun Y, Zhang X. mHealth: A smartphone-controlled, wearable platform for tumour treatment. Materials Today 2020;40:91-100. [DOI: 10.1016/j.mattod.2020.07.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
569 |
Liu Y, Han Q, Yang W, Gan X, Yang Y, Xie K, Xie L, Deng Y. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Materials Science and Engineering: C 2020;116:111212. [DOI: 10.1016/j.msec.2020.111212] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
|
570 |
Zhou Y, Liu C, Yu Y, Yin M, Sun J, Huang J, Chen N, Wang H, Fan C, Song H. An Organelle-Specific Nanozyme for Diabetes Care in Genetically or Diet-Induced Models. Adv Mater 2020;32:e2003708. [PMID: 33015921 DOI: 10.1002/adma.202003708] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
|
571 |
Xu Y, Zhang Y, Li J, An J, Li C, Bai S, Sharma A, Deng G, Kim JS, Sun Y. NIR-II emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens. Biomaterials 2020;259:120315. [DOI: 10.1016/j.biomaterials.2020.120315] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 24.0] [Reference Citation Analysis]
|
572 |
Yang B, Dai Z, Zhang G, Hu Z, Yao X, Wang S, Liu Q, Zheng X. Ultrasmall Ternary FePtMn Nanocrystals with Acidity-Triggered Dual-Ions Release and Hypoxia Relief for Multimodal Synergistic Chemodynamic/Photodynamic/Photothermal Cancer Therapy. Adv Healthc Mater 2020;9:e1901634. [PMID: 32959536 DOI: 10.1002/adhm.201901634] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
|
573 |
Wang Z, Yu W, Yu N, Li X, Feng Y, Geng P, Wen M, Li M, Zhang H, Chen Z. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors. Chemical Engineering Journal 2020;400:125877. [DOI: 10.1016/j.cej.2020.125877] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
|
574 |
Chen Q, Zheng Z, He X, Rong S, Qin Y, Peng X, Zhang R. A tumor-targeted theranostic nanomedicine with strong absorption in the NIR-II biowindow for image-guided multi-gradient therapy. J Mater Chem B 2020;8:9492-501. [PMID: 33001118 DOI: 10.1039/d0tb01915a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
575 |
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 19.3] [Reference Citation Analysis]
|
576 |
Racca L, Cauda V. Remotely Activated Nanoparticles for Anticancer Therapy. Nanomicro Lett 2020;13:11. [PMID: 34138198 DOI: 10.1007/s40820-020-00537-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
|
577 |
Qiao B, Luo Y, Cheng HB, Ren J, Cao J, Yang C, Liang B, Yang A, Yuan X, Li J, Deng L, Li P, Ran HT, Hao L, Zhou Z, Li M, Zhang Y, Timashev PS, Liang XJ, Wang Z. Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS Nano 2020;14:12652-67. [PMID: 32986406 DOI: 10.1021/acsnano.0c00771] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 12.0] [Reference Citation Analysis]
|
578 |
Xu M, Zhou L, Zheng L, Zhou Q, Liu K, Mao Y, Song S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett 2021;497:229-42. [PMID: 33122099 DOI: 10.1016/j.canlet.2020.10.037] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 11.7] [Reference Citation Analysis]
|
579 |
Gao D, Lo P. Combined pH-responsive chemotherapy and glutathione-triggered photosensitization to overcome drug-resistant hepatocellular carcinoma — a SPP/JPP Young Investigator Award paper. J Porphyrins Phthalocyanines 2020;24:1387-401. [DOI: 10.1142/s1088424620500212] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
580 |
Wang C, Wang H, Xu B, Liu H. Photo‐responsive nanozymes: Mechanism, activity regulation, and biomedical applications. View 2021;2:20200045. [DOI: 10.1002/viw.20200045] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
581 |
Gao X, Jiang S, Li C, Chen Y, Zhang Y, Huang P, Lin J. Highly photostable croconium dye-anchored cell membrane vesicle for tumor pH-responsive duplex imaging-guided photothermal therapy. Biomaterials 2021;267:120454. [PMID: 33160122 DOI: 10.1016/j.biomaterials.2020.120454] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
|
582 |
Gonçalves ASC, Rodrigues CF, Moreira AF, Correia IJ. Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater 2020;116:105-37. [PMID: 32911109 DOI: 10.1016/j.actbio.2020.09.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
|
583 |
Thorat ND, Bauer J. Functional smart hybrid nanostructures based nanotheranostic approach for advanced cancer treatment. Applied Surface Science 2020;527:146809. [DOI: 10.1016/j.apsusc.2020.146809] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
584 |
Sabzi A, Rahmani A, Edalati M, Kahroba H, Dadpour MR, Salehi R, Zarebkohan A. Targeted co-delivery of curcumin and doxorubicin by citric acid functionalized Poly (ε-caprolactone) based micelle in MDA-MB-231 cell. Colloids and Surfaces B: Biointerfaces 2020;194:111225. [DOI: 10.1016/j.colsurfb.2020.111225] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
585 |
Chang M, Hou Z, Jin D, Zhou J, Wang M, Wang M, Shu M, Ding B, Li C, Lin J. Colorectal Tumor Microenvironment-Activated Bio-Decomposable and Metabolizable Cu2 O@CaCO3 Nanocomposites for Synergistic Oncotherapy. Adv Mater 2020;32:e2004647. [PMID: 32945002 DOI: 10.1002/adma.202004647] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 22.3] [Reference Citation Analysis]
|
586 |
Zhao H, Zhao Y, Xu J, Feng X, Liu G, Zhao Y, Yang X. Programmable co-assembly of various drugs with temperature sensitive nanogels for optimizing combination chemotherapy. Chemical Engineering Journal 2020;398:125614. [DOI: 10.1016/j.cej.2020.125614] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
|
587 |
Han L, Wang Y, Huang X, Liu F, Ma C, Feng F, Zhang J, Liu W, Qu W, Pang H, Xue J. Specific-oxygen-supply functionalized core-shell nanoparticles for smart mutual-promotion between photodynamic therapy and gambogic acid-induced chemotherapy. Biomaterials 2020;257:120228. [DOI: 10.1016/j.biomaterials.2020.120228] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
|
588 |
Wang Y, Li Z, Hu Y, Liu J, Guo M, Wei H, Zheng S, Jiang T, Sun X, Ma Z, Sun Y, Besenbacher F, Chen C, Yu M. Photothermal conversion-coordinated Fenton-like and photocatalytic reactions of Cu2-xSe-Au Janus nanoparticles for tri-combination antitumor therapy. Biomaterials 2020;255:120167. [DOI: 10.1016/j.biomaterials.2020.120167] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 16.3] [Reference Citation Analysis]
|
589 |
Zhou T, Wan G, Kong X, Li B, Wu L. Biocompatible Polymer Nanocomposites Integrating Magnetic Polyoxomolybdates for Enhanced MRI and On‐Site Activated Photothermal Properties. Macromol Rapid Commun 2020;41:2000468. [DOI: 10.1002/marc.202000468] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
590 |
Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. Colloid J 2020;82:479-501. [DOI: 10.1134/s1061933x20050038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
591 |
Li C, Jia P, Xu Y, Ding F, Yang W, Sun Y, Li X, Yin G, Xu L, Yang G. Photoacoustic imaging-guided chemo-photothermal combinational therapy based on emissive Pt(II) metallacycle-loaded biomimic melanin dots. Sci China Chem 2021;64:134-42. [DOI: 10.1007/s11426-020-9856-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
|
592 |
Dong L, Li K, Wen D, Gao X, Feng J, Zhang H. Engineering Gadolinium-Integrated Tellurium Nanorods for Theory-Oriented Photonic Hyperthermia in the NIR-II Biowindow. Small 2020;16:e2003508. [PMID: 32985135 DOI: 10.1002/smll.202003508] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
593 |
Katari O, Shunmugaperumal T, Pawde DM, Goswami A. OVERVIEW OF TOCOL‐BASED EMULSIONS, OXYGEN‐CARRYING EMULSIONS, EMULSIONS WITH DOUBLE OR TRIPLE CARGOS AND EMULSION‐LIKE DISPERSIONS. Oil‐in‐Water Nanosized Emulsions for Drug Delivery and Targeting 2020. [DOI: 10.1002/9781119585275.ch7] [Reference Citation Analysis]
|
594 |
Wang M, Zhou B, Wang L, Zhou F, Smith N, Saunders D, Towner RA, Song J, Qu J, Chen WR. Biodegradable pH-responsive amorphous calcium carbonate nanoparticles as immunoadjuvants for multimodal imaging and enhanced photoimmunotherapy. J Mater Chem B 2020;8:8261-70. [PMID: 32812632 DOI: 10.1039/d0tb01453b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
595 |
Wan X, Song L, Pan W, Zhong H, Li N, Tang B. Tumor-Targeted Cascade Nanoreactor Based on Metal-Organic Frameworks for Synergistic Ferroptosis-Starvation Anticancer Therapy. ACS Nano 2020;14:11017-28. [PMID: 32786253 DOI: 10.1021/acsnano.9b07789] [Cited by in Crossref: 108] [Cited by in F6Publishing: 118] [Article Influence: 36.0] [Reference Citation Analysis]
|
596 |
Croissant JG, Butler KS, Zink JI, Brinker CJ. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nat Rev Mater 2020;5:886-909. [DOI: 10.1038/s41578-020-0230-0] [Cited by in Crossref: 88] [Cited by in F6Publishing: 93] [Article Influence: 29.3] [Reference Citation Analysis]
|
597 |
Banstola A, Jeong JH, Yook S. Immunoadjuvants for cancer immunotherapy: A review of recent developments. Acta Biomater 2020;114:16-30. [PMID: 32777293 DOI: 10.1016/j.actbio.2020.07.063] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
|
598 |
Jiang S, Xiao M, Sun W, Crespy D, Mailänder V, Peng X, Fan J, Landfester K. Synergistic Anticancer Therapy by Ovalbumin Encapsulation‐Enabled Tandem Reactive Oxygen Species Generation. Angew Chem 2020;132:20183-91. [DOI: 10.1002/ange.202006649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
599 |
Jiang S, Xiao M, Sun W, Crespy D, Mailänder V, Peng X, Fan J, Landfester K. Synergistic Anticancer Therapy by Ovalbumin Encapsulation-Enabled Tandem Reactive Oxygen Species Generation. Angew Chem Int Ed Engl 2020;59:20008-16. [PMID: 32686218 DOI: 10.1002/anie.202006649] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
|
600 |
Jiang S, Huang K, Qu J, Lin J, Huang P. Cancer nanotheranostics in the second near‐infrared window. View 2021;2:20200075. [DOI: 10.1002/viw.20200075] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
|
601 |
Yu Z, Zhou J, Ji X, Lin G, Xu S, Dong X, Zhao W. Discovery of a Monoiodo Aza-BODIPY Near-Infrared Photosensitizer: in vitro and in vivo Evaluation for Photodynamic Therapy. J Med Chem 2020;63:9950-64. [PMID: 32787080 DOI: 10.1021/acs.jmedchem.0c00882] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
602 |
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 22.3] [Reference Citation Analysis]
|
603 |
Zhang W, Li Y, Xu L, Wang D, Long J, Zhang M, Wang Y, Lai Y, Liang X. Near-Infrared-Absorbing Conjugated Polymer Nanoparticles Loaded with Doxorubicin for Combinatorial Photothermal-Chemotherapy of Cancer. ACS Appl Polym Mater 2020;2:4180-7. [DOI: 10.1021/acsapm.0c00777] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
604 |
Yang J, Dai J, Wang Q, Cheng Y, Guo J, Zhao Z, Hong Y, Lou X, Xia F. Tumor‐Triggered Disassembly of a Multiple‐Agent‐Therapy Probe for Efficient Cellular Internalization. Angew Chem 2020;132:20585-90. [DOI: 10.1002/ange.202009196] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
605 |
Yang J, Dai J, Wang Q, Cheng Y, Guo J, Zhao Z, Hong Y, Lou X, Xia F. Tumor-Triggered Disassembly of a Multiple-Agent-Therapy Probe for Efficient Cellular Internalization. Angew Chem Int Ed Engl 2020;59:20405-10. [PMID: 32720727 DOI: 10.1002/anie.202009196] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
|
606 |
Huang J, Huang Y, Xue Z, Zeng S. Tumor microenvironment responsive hollow mesoporous Co9S8@MnO2-ICG/DOX intelligent nanoplatform for synergistically enhanced tumor multimodal therapy. Biomaterials 2020;262:120346. [PMID: 32927232 DOI: 10.1016/j.biomaterials.2020.120346] [Cited by in Crossref: 42] [Cited by in F6Publishing: 49] [Article Influence: 14.0] [Reference Citation Analysis]
|
607 |
Wang D, Liu C, You S, Zhang K, Li M, Cao Y, Wang C, Dong H, Zhang X. Bacterial Vesicle-Cancer Cell Hybrid Membrane-Coated Nanoparticles for Tumor Specific Immune Activation and Photothermal Therapy. ACS Appl Mater Interfaces 2020;12:41138-47. [PMID: 32830477 DOI: 10.1021/acsami.0c13169] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 14.3] [Reference Citation Analysis]
|
608 |
Fu Q, Li H, Duan D, Wang C, Shen S, Ma H, Liu Z. External‐Radiation‐Induced Local Hydroxylation Enables Remote Release of Functional Molecules in Tumors. Angew Chem 2020;132:21730-6. [DOI: 10.1002/ange.202005612] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
609 |
Fu Q, Li H, Duan D, Wang C, Shen S, Ma H, Liu Z. External‐Radiation‐Induced Local Hydroxylation Enables Remote Release of Functional Molecules in Tumors. Angew Chem Int Ed 2020;59:21546-52. [DOI: 10.1002/anie.202005612] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
610 |
Liu N, Zhu M, Niu N, Ren J, Yang N, Yu C. Aza-BODIPY Probe-Decorated Mesoporous Black TiO2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS Appl Mater Interfaces 2020;12:41071-8. [PMID: 32806896 DOI: 10.1021/acsami.0c10531] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
611 |
Sim T, Lim C, Hoang NH, Shin Y, Kim JC, Park JY, Her J, Lee ES, Youn YS, Oh KT. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics 2020;12:E839. [PMID: 32887273 DOI: 10.3390/pharmaceutics12090839] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
612 |
Wang H, Zeng X, Pang L, Wang H, Lin B, Deng Z, Qi ELX, Miao N, Wang D, Huang P, Hu H, Li J. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds. Chemical Engineering Journal 2020;396:125081. [DOI: 10.1016/j.cej.2020.125081] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
|
613 |
Lu Z, Gao J, Fang C, Zhou Y, Li X, Han G. Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen-Inductive Starvation/Electrodynamic Tumor Therapy. Adv Sci (Weinh) 2020;7:2001223. [PMID: 32995127 DOI: 10.1002/advs.202001223] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 15.7] [Reference Citation Analysis]
|
614 |
Mirrahimi M, Beik J, Mirrahimi M, Alamzadeh Z, Teymouri S, Mahabadi VP, Eslahi N, Ebrahimi Tazehmahalleh F, Ghaznavi H, Shakeri-zadeh A, Moustakis C. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. International Journal of Biological Macromolecules 2020;158:617-26. [DOI: 10.1016/j.ijbiomac.2020.04.272] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
|
615 |
Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li K, Wang L, Wang D, Tang BZ. An All-Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imaging-Guided Synergistic Therapy. Adv Mater 2020;32:e2003210. [PMID: 32696561 DOI: 10.1002/adma.202003210] [Cited by in Crossref: 135] [Cited by in F6Publishing: 139] [Article Influence: 45.0] [Reference Citation Analysis]
|
616 |
Liu J, Zhang J, Huang F, Deng Y, Li B, Ouyang R, Miao Y, Sun Y, Li Y. X-ray and NIR light dual-triggered mesoporous upconversion nanophosphor/Bi heterojunction radiosensitizer for highly efficient tumor ablation. Acta Biomater 2020;113:570-83. [PMID: 32629190 DOI: 10.1016/j.actbio.2020.06.044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
617 |
Huang J, He B, Zhang Z, Li Y, Kang M, Wang Y, Li K, Wang D, Tang BZ. Aggregation-Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly Efficient Multimodal Theranostics. Adv Mater 2020;32:e2003382. [PMID: 32761671 DOI: 10.1002/adma.202003382] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 24.3] [Reference Citation Analysis]
|
618 |
Dolatkhah M, Hashemzadeh N, Barar J, Adibkia K, Aghanejad A, Barzegar-jalali M, Omidi Y. Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids and Surfaces B: Biointerfaces 2020;193:111104. [DOI: 10.1016/j.colsurfb.2020.111104] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
619 |
Hu Y, Xue S, Long T, Lyu P, Zhang X, Chen J, Chen S, Liu C, Chen X. Opto-acoustic synergistic irradiation for vaporization of natural melanin-cored nanodroplets at safe energy levels and efficient sono-chemo-photothermal cancer therapy. Theranostics 2020;10:10448-65. [PMID: 32929359 DOI: 10.7150/thno.44879] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
620 |
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
621 |
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Adv Therap 2020;3:2000061. [DOI: 10.1002/adtp.202000061] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 12.3] [Reference Citation Analysis]
|
622 |
Zhao Y, Chen B, Kankala RK, Wang S, Chen A. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomater Sci Eng 2020;6:4799-815. [DOI: 10.1021/acsbiomaterials.0c00830] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|
623 |
Ding L, Lin X, Lin Z, Wu Y, Liu X, Liu J, Wu M, Zhang X, Zeng Y. Cancer Cell-Targeted Photosensitizer and Therapeutic Protein Co-Delivery Nanoplatform Based on a Metal-Organic Framework for Enhanced Synergistic Photodynamic and Protein Therapy. ACS Appl Mater Interfaces 2020;12:36906-16. [PMID: 32706242 DOI: 10.1021/acsami.0c09657] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 10.3] [Reference Citation Analysis]
|
624 |
Ma Y, Zhang DY, Peng Z, Guan S, Zhai J. Delivery of Platinum(IV) Prodrugs via Bi2Te3 Nanoparticles for Photothermal-Chemotherapy and Photothermal/Photoacoustic Imaging. Mol Pharm 2020;17:3403-11. [PMID: 32692573 DOI: 10.1021/acs.molpharmaceut.0c00458] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
625 |
Das CA, Kumar VG, Dhas TS, Karthick V, Govindaraju K, Joselin JM, Baalamurugan J. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology 2020;27:101593. [DOI: 10.1016/j.bcab.2020.101593] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 16.7] [Reference Citation Analysis]
|
626 |
Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater 2020;112:1-13. [PMID: 32470527 DOI: 10.1016/j.actbio.2020.05.028] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 25.0] [Reference Citation Analysis]
|
627 |
Xiao F, Chen Z, Wei Z, Tian L. Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. Adv Sci (Weinh) 2020;7:2001048. [PMID: 32832360 DOI: 10.1002/advs.202001048] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
|
628 |
Hu X, Gao J, Chen F, Guo D. A host-guest drug delivery nanosystem for supramolecular chemotherapy. Journal of Controlled Release 2020;324:124-33. [DOI: 10.1016/j.jconrel.2020.05.008] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
|
629 |
Lin J, Yin Q, Chen B, Zhang H, Mei D, Fu J, He B, Zhang H, Dai W, Wang X, Wang Y, Zhang Q. A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharm Sin B 2020;10:1549-62. [PMID: 32963949 DOI: 10.1016/j.apsb.2019.12.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
630 |
Wang Z, Thang DC, Han Q, Zhao X, Xie X, Wang Z, Lin J, Xing B. Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. Journal of Controlled Release 2020;324:104-23. [DOI: 10.1016/j.jconrel.2020.05.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
631 |
Zhao H, Chen H, Guo Z, Zhang W, Yu H, Zhuang Z, Zhong H, Liu Z. In situ photothermal activation of necroptosis potentiates black phosphorus-mediated cancer photo-immunotherapy. Chemical Engineering Journal 2020;394:124314. [DOI: 10.1016/j.cej.2020.124314] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 12.3] [Reference Citation Analysis]
|
632 |
Gao F, Li X, Zhang T, Ghosal A, Zhang G, Fan HM, Zhao L. Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. Journal of Controlled Release 2020;324:598-609. [DOI: 10.1016/j.jconrel.2020.06.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
|
633 |
Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Res 2020;13:2898-908. [DOI: 10.1007/s12274-020-2992-5] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 15.3] [Reference Citation Analysis]
|
634 |
Ahn J, Jin H, Park J, Lee B, Ok M, Lee JH, Bae J, Jung JH. Coassembled Nanoparticles Composed of Functionalized Mesoporous Silica and Pillar[5]arene‐Appended Gold Nanoparticles as Mitochondrial‐Selective Dual‐Drug Carriers. Part Part Syst Charact 2020;37:2000136. [DOI: 10.1002/ppsc.202000136] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
635 |
Zheng D, Zhang K, Chen B, Zhao N, Xu FJ. Flexible Photothermal Assemblies with Tunable Gold Patterns for Improved Imaging-Guided Synergistic Therapy. Small 2020;16:e2002790. [PMID: 32696542 DOI: 10.1002/smll.202002790] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
636 |
Chu C, Bao Z, Sun M, Wang X, Zhang H, Chen W, Sui Y, Li J, Zhuang Y, Wang D. NIR Stimulus-Responsive PdPt Bimetallic Nanoparticles for Drug Delivery and Chemo-Photothermal Therapy. Pharmaceutics 2020;12:E675. [PMID: 32709022 DOI: 10.3390/pharmaceutics12070675] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
637 |
Xiang H, Chen Y. Materdicine: Interdiscipline of materials and medicine. View 2020;1:20200016. [DOI: 10.1002/viw.20200016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
638 |
Skóra B, Szychowski KA, Gmiński J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur J Pharm Biopharm 2020;154:153-65. [PMID: 32681962 DOI: 10.1016/j.ejpb.2020.07.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
|
639 |
Kareliotis G, Tremi I, Kaitatzi M, Drakaki E, Serafetinides AA, Makropoulou M, Georgakilas AG. Combined radiation strategies for novel and enhanced cancer treatment. Int J Radiat Biol 2020;96:1087-103. [PMID: 32602416 DOI: 10.1080/09553002.2020.1787544] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
|
640 |
Wu T, Liu Q, Cao Y, Tian R, Liu J, Ding B. Multifunctional Double-Bundle DNA Tetrahedron for Efficient Regulation of Gene Expression. ACS Appl Mater Interfaces 2020;12:32461-7. [PMID: 32613824 DOI: 10.1021/acsami.0c08886] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
641 |
He G, Huang P, Chen X. Theranostic multimodal gold nanoclusters. Nat Biomed Eng 2020;4:668-9. [DOI: 10.1038/s41551-020-0588-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
642 |
Zou M, Liu W, Chen H, Bai X, Gao F, Ye J, Cheng H, Zhang X. Advances in nanomaterials for treatment of hypoxic tumor. National Science Review 2021;8:nwaa160. [DOI: 10.1093/nsr/nwaa160] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
643 |
Martínez-Carmona M, Ho QP, Morand J, García A, Ortega E, Erthal LCS, Ruiz-Hernandez E, Santana MD, Ruiz J, Vallet-Regí M, Gun'ko YK. Amino-Functionalized Mesoporous Silica Nanoparticle-Encapsulated Octahedral Organoruthenium Complex as an Efficient Platform for Combatting Cancer. Inorg Chem 2020;59:10275-84. [PMID: 32628466 DOI: 10.1021/acs.inorgchem.0c01436] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
|
644 |
Zhang Z, Wang L, Liu W, Yan Z, Zhu Y, Zhou S, Guan S. Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. Natl Sci Rev 2021;8:nwaa155. [PMID: 34691632 DOI: 10.1093/nsr/nwaa155] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
645 |
Ren C, Liu H, Lv F, Zhao W, Gao S, Yang X, Jin Y, Tan Y, Zhang J, Liang X, Li Z. Prodrug-Based Nanoreactors with Tumor-Specific In Situ Activation for Multisynergistic Cancer Therapy. ACS Appl Mater Interfaces 2020;12:34667-77. [DOI: 10.1021/acsami.0c09489] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
|
646 |
Chu C, Yu J, Ren E, Ou S, Zhang Y, Wu Y, Wu H, Zhang Y, Zhu J, Dai Q, Wang X, Zhao Q, Li W, Liu Z, Chen X, Liu G. Multimodal Photoacoustic Imaging-Guided Regression of Corneal Neovascularization: A Non-Invasive and Safe Strategy. Adv Sci (Weinh) 2020;7:2000346. [PMID: 32714751 DOI: 10.1002/advs.202000346] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
647 |
Liu M, Peng Y, Nie Y, Liu P, Hu S, Ding J, Zhou W. Co-delivery of doxorubicin and DNAzyme using ZnO@polydopamine core-shell nanocomposites for chemo/gene/photothermal therapy. Acta Biomater 2020;110:242-53. [PMID: 32438113 DOI: 10.1016/j.actbio.2020.04.041] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
|
648 |
Xu C, Hu W, Zhang N, Qi Y, Nie J, Zhao N, Yu B, Xu F. Genetically multimodal therapy mediated by one polysaccharides-based supramolecular nanosystem. Biomaterials 2020;248:120031. [DOI: 10.1016/j.biomaterials.2020.120031] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
|
649 |
Yang J, Wang C, Shi S, Dong C. Nanotechnologies for enhancing cancer immunotherapy. Nano Res 2020;13:2595-616. [DOI: 10.1007/s12274-020-2904-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
650 |
Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee CS, Wang P. Hypocrellin-Based Multifunctional Phototheranostic Agent for NIR-Triggered Targeted Chemo/Photodynamic/Photothermal Synergistic Therapy against Glioblastoma. ACS Appl Bio Mater 2020;3:3817-26. [PMID: 35025252 DOI: 10.1021/acsabm.0c00386] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
651 |
Zhao Z, Yang F, Zhang X, Sun J, He Z, Luo C. Emerging nanotherapeutics for antithrombotic treatment. Biomaterials 2020;255:120200. [PMID: 32563945 DOI: 10.1016/j.biomaterials.2020.120200] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
|
652 |
Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X. Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics. ACS Appl Mater Interfaces 2020;12:26914-25. [PMID: 32463220 DOI: 10.1021/acsami.0c05021] [Cited by in Crossref: 64] [Cited by in F6Publishing: 70] [Article Influence: 21.3] [Reference Citation Analysis]
|
653 |
Younis MR, He G, Lin J, Huang P. Recent Advances on Graphene Quantum Dots for Bioimaging Applications. Front Chem 2020;8:424. [PMID: 32582629 DOI: 10.3389/fchem.2020.00424] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 27.0] [Reference Citation Analysis]
|
654 |
Chen H, Cheng H, Wu W, Li D, Mao J, Chu C, Liu G. The blooming intersection of transcatheter hepatic artery chemoembolization and nanomedicine. Chinese Chemical Letters 2020;31:1375-81. [DOI: 10.1016/j.cclet.2020.03.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
655 |
Qiu J, Huo D, Xia Y. Phase-Change Materials for Controlled Release and Related Applications. Adv Mater 2020;32:e2000660. [PMID: 32383215 DOI: 10.1002/adma.202000660] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 26.0] [Reference Citation Analysis]
|
656 |
Zhou K, Qiu X, Xu L, Li G, Rao B, Guo B, Pei D, Li A, He G. Poly(selenoviologen)-Assembled Upconversion Nanoparticles for Low-Power Single-NIR Light-Triggered Synergistic Photodynamic and Photothermal Antibacterial Therapy. ACS Appl Mater Interfaces 2020;12:26432-43. [PMID: 32429664 DOI: 10.1021/acsami.0c04506] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
|
657 |
Chen B, Zhang R, Wu H, Li M, Zhou G, Ji M. Thermoresponsive magnetoliposome encapsulating doxorubicin and high performance Ferumoxytol for effective tumor synergistic therapy in vitro. Journal of Drug Delivery Science and Technology 2020;57:101677. [DOI: 10.1016/j.jddst.2020.101677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
|
658 |
Chen B, Kankala RK, Zhang Y, Xiang S, Tang H, Wang Q, Yang D, Wang S, Zhang YS, Liu G, Chen A. Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression. Chemical Engineering Journal 2020;390:124312. [DOI: 10.1016/j.cej.2020.124312] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 18.7] [Reference Citation Analysis]
|
659 |
Chen B, Xing J, Li M, Liu Y, Ji M. DOX@Ferumoxytol-Medical Chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro. Colloids and Surfaces B: Biointerfaces 2020;190:110896. [DOI: 10.1016/j.colsurfb.2020.110896] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
660 |
Yang C, Younis MR, Zhang J, Qu J, Lin J, Huang P. Programmable NIR-II Photothermal-Enhanced Starvation-Primed Chemodynamic Therapy using Glucose Oxidase-Functionalized Ancient Pigment Nanosheets. Small 2020;16:e2001518. [PMID: 32468633 DOI: 10.1002/smll.202001518] [Cited by in Crossref: 90] [Cited by in F6Publishing: 96] [Article Influence: 30.0] [Reference Citation Analysis]
|
661 |
Zhang Y, Wan Y, Chen Y, Blum NT, Lin J, Huang P. Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin "Nanoglue"-Based Nanotheranostics. ACS Nano 2020;14:5560-9. [PMID: 32343559 DOI: 10.1021/acsnano.9b09827] [Cited by in Crossref: 48] [Cited by in F6Publishing: 55] [Article Influence: 16.0] [Reference Citation Analysis]
|
662 |
Yang J, Yang Y. Metal‐organic framework‐based cancer theranostic nanoplatforms. View 2020;1. [DOI: 10.1002/viw2.20] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
|
663 |
Luo Y, Qiao B, Zhang P, Yang C, Cao J, Yuan X, Ran H, Wang Z, Hao L, Cao Y, Ren J, Zhou Z. TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics 2020;10:6987-7001. [PMID: 32550917 DOI: 10.7150/thno.44569] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
|
664 |
Wen K, Wu L, Wu X, Lu Y, Duan T, Ma H, Peng A, Shi Q, Huang H. Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angew Chem Int Ed 2020;59:12756-61. [DOI: 10.1002/anie.202004181] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
|
665 |
Wen K, Wu L, Wu X, Lu Y, Duan T, Ma H, Peng A, Shi Q, Huang H. Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angew Chem 2020;132:12856-61. [DOI: 10.1002/ange.202004181] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
666 |
Jia W, Zhen M, Li L, Zhou C, Sun Z, Liu S, Zhao Z, Li J, Wang C, Bai C. Gadofullerene nanoparticles for robust treatment of aplastic anemia induced by chemotherapy drugs. Theranostics 2020;10:6886-97. [PMID: 32550910 DOI: 10.7150/thno.46794] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
667 |
Li M, Lin H, Paidi SK, Mesyngier N, Preheim S, Barman I. A Fluorescence and Surface-Enhanced Raman Spectroscopic Dual-Modal Aptasensor for Sensitive Detection of Cyanotoxins. ACS Sens 2020;5:1419-26. [PMID: 32314582 DOI: 10.1021/acssensors.0c00307] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
|
668 |
Guo B, Wu M, Shi Q, Dai T, Xu S, Jiang J, Liu B. All-in-One Molecular Aggregation-Induced Emission Theranostics: Fluorescence Image Guided and Mitochondria Targeted Chemo- and Photodynamic Cancer Cell Ablation. Chem Mater 2020;32:4681-91. [DOI: 10.1021/acs.chemmater.0c01187] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
|
669 |
Qi C, Jiang C, Fu L, Sun T, Wang T, Lin J, Nie Z, Huang P. Melanin-instructed biomimetic synthesis of copper sulfide for cancer phototheranostics. Chemical Engineering Journal 2020;388:124232. [DOI: 10.1016/j.cej.2020.124232] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
670 |
Liu Z, Zhang R, Fan Y, Guan C, Chu J. Demolding improvement for multidirectional nanostructures by nanoimprint lithography. Journal of Vacuum Science & Technology B 2020;38:032603. [DOI: 10.1116/1.5144504] [Reference Citation Analysis]
|
671 |
Kang Y, Yu X, Fan X, Aodenggerile, Zhao S, Tu C, Yan Z, Wang R, Li W, Qiu H. Tetramodal Imaging and Synergistic Cancer Radio-Chemotherapy Enabled by Multiple Component-Encapsulated Zeolitic Imidazolate Frameworks. ACS Nano 2020;14:4336-51. [PMID: 32275394 DOI: 10.1021/acsnano.9b09858] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
|
672 |
Hu Q, Huang Z, Duan Y, Fu Z, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjug Chem 2020;31:1268-78. [PMID: 32271563 DOI: 10.1021/acs.bioconjchem.0c00135] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
|
673 |
Li Y, Wong RCH, Yan X, Ng DKP, Lo P. Self-Assembled Nanophotosensitizing Systems with Zinc(II) Phthalocyanine-Peptide Conjugates as Building Blocks for Targeted Chemo-Photodynamic Therapy. ACS Appl Bio Mater 2020;3:5463-73. [DOI: 10.1021/acsabm.0c00214] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
674 |
Chen D, Wang Z, Dai H, Lv X, Ma Q, Yang D, Shao J, Xu Z, Dong X. Boosting O 2•− Photogeneration via Promoting Intersystem‐Crossing and Electron‐Donating Efficiency of Aza‐BODIPY‐Based Nanoplatforms for Hypoxic‐Tumor Photodynamic Therapy. Small Methods 2020;4:2000013. [DOI: 10.1002/smtd.202000013] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
|
675 |
Zhang Y, Wan Y, Liao Y, Hu Y, Jiang T, He T, Bi W, Lin J, Gong P, Tang L, Huang P. Janus γ-Fe(2)O(3)/SiO(2)-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy. Sci Bull (Beijing) 2020;65:564-72. [PMID: 36659188 DOI: 10.1016/j.scib.2019.12.024] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 23.0] [Reference Citation Analysis]
|
676 |
Khodadadi M, Alijani S, Montazeri M, Esmaeilizadeh N, Sadeghi‐soureh S, Pilehvar‐soltanahmadi Y. Recent advances in electrospun nanofiber‐ mediated drug delivery strategies for localized cancer chemotherapy. J Biomed Mater Res 2020;108:1444-58. [DOI: 10.1002/jbm.a.36912] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
|
677 |
Odda AH, Li H, Kumar N, Ullah N, Khan MI, Wang G, Liang K, Liu T, Pan YY, Xu AW. Polydopamine Coated PB-MnO2 Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjug Chem 2020;31:1474-85. [PMID: 32286806 DOI: 10.1021/acs.bioconjchem.0c00165] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
678 |
Guan G, Li B, Zhang W, Cui Z, He SA, Zou R, Lu X, Hu J. High-efficiency and safe sulfur-doped iron oxides for magnetic resonance imaging-guided photothermal/magnetic hyperthermia therapy. Dalton Trans 2020;49:5493-502. [PMID: 32266911 DOI: 10.1039/d0dt00297f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
679 |
Zhang X, Li N, Zhang S, Sun B, Chen Q, He Z, Luo C, Sun J. Emerging carrier‐free nanosystems based on molecular self‐assembly of pure drugs for cancer therapy. Med Res Rev 2020;40:1754-75. [DOI: 10.1002/med.21669] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 14.7] [Reference Citation Analysis]
|
680 |
Qiao J, Tian F, Deng Y, Shang Y, Chen S, Chang E, Yao J. Bio-orthogonal click-targeting nanocomposites for chemo-photothermal synergistic therapy in breast cancer. Theranostics 2020;10:5305-21. [PMID: 32373214 DOI: 10.7150/thno.42445] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
681 |
Gessner I, Neundorf I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2020;21:E2536. [PMID: 32268473 DOI: 10.3390/ijms21072536] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 22.0] [Reference Citation Analysis]
|
682 |
He X, Peng C, Qiang S, Xiong L, Zhao Z, Wang Z, Kwok RT, Lam JW, Ma N, Tang BZ. Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials 2020;238:119834. [DOI: 10.1016/j.biomaterials.2020.119834] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 11.7] [Reference Citation Analysis]
|
683 |
Wei C, Liu Y, Zhu X, Chen X, Zhou Y, Yuan G, Gong Y, Liu J. Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer. Biomaterials 2020;238:119848. [DOI: 10.1016/j.biomaterials.2020.119848] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 18.7] [Reference Citation Analysis]
|
684 |
Wang Y, An L, Lin J, Tian Q, Yang S. A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. Chemical Engineering Journal 2020;385:123925. [DOI: 10.1016/j.cej.2019.123925] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 14.3] [Reference Citation Analysis]
|
685 |
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. Adv Sci (Weinh) 2020;7:1903129. [PMID: 32274309 DOI: 10.1002/advs.201903129] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 20.7] [Reference Citation Analysis]
|
686 |
Zhang Q, Guo Q, Chen Q, Zhao X, Pennycook SJ, Chen H. Highly Efficient 2D NIR-II Photothermal Agent with Fenton Catalytic Activity for Cancer Synergistic Photothermal-Chemodynamic Therapy. Adv Sci (Weinh) 2020;7:1902576. [PMID: 32274298 DOI: 10.1002/advs.201902576] [Cited by in Crossref: 103] [Cited by in F6Publishing: 106] [Article Influence: 34.3] [Reference Citation Analysis]
|
687 |
Ma H, Yang X, Ke J, Wang C, Peng L, Hu F, Yuan H. Smart Assembled Human Serum Albumin Nanocarrier Enhanced Breast Cancer Treatment and Antitumor Immunity by Chemo- photothermal Therapy. ACS Biomater Sci Eng 2020;6:3217-29. [DOI: 10.1021/acsbiomaterials.0c00286] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
688 |
Badrigilan S, Choupani J, Khanbabaei H, Hoseini-Ghahfarokhi M, Webster TJ, Tayebi L. Bismuth-Based Nanomaterials: Recent Advances in Tumor Targeting and Synergistic Cancer Therapy Techniques. Adv Healthc Mater 2020;9:e1901695. [PMID: 32142225 DOI: 10.1002/adhm.201901695] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
|
689 |
Zhou H, Qiu X, Shen Z. [T1-weighted magnetic resonance imaging contrast agents and their theranostic nanoprobes]. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:427-44. [PMID: 32376585 DOI: 10.12122/j.issn.1673-4254.2020.03.24] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
690 |
Chen D, Qu X, Shao J, Wang W, Dong X. Anti-vascular nano agents: a promising approach for cancer treatment. J Mater Chem B 2020;8:2990-3004. [PMID: 32211649 DOI: 10.1039/c9tb02957e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
691 |
Pan Q, Tian J, Zhu H, Hong L, Mao Z, Oliveira JM, Reis RL, Li X. Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomater Sci Eng 2020;6:2175-85. [DOI: 10.1021/acsbiomaterials.0c00163] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
|
692 |
Park W, Song KH, Lim J, Park CG, Doh J, Han DK. Biomaterial-based strategies to prime dendritic cell-mediated anti-cancer immune responses. International Materials Reviews 2020;65:445-62. [DOI: 10.1080/09506608.2020.1735117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
|
693 |
Guo H, Li F, Qiu H, Liu J, Qin S, Hou Y, Wang C. Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front Pharmacol 2020;11:317. [PMID: 32231576 DOI: 10.3389/fphar.2020.00317] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
|
694 |
Hu J, Wu W, Qin Y, Liu C, Wei P, Hu J, Seeberger PH, Yin J. Fabrication of Glyco‐Metal‐Organic Frameworks for Targeted Interventional Photodynamic/Chemotherapy for Hepatocellular Carcinoma through Percutaneous Transperitoneal Puncture. Adv Funct Mater 2020;30:1910084. [DOI: 10.1002/adfm.201910084] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
|
695 |
Moore J, Alzate‐correa D, Dasgupta D, Lawrence W, Dodd D, Mathews C, Valerio I, Rink C, Higuita‐castro N, Gallego‐perez D. Micro‐ and Nanoscale Biointerrogation and Modulation of Neural Tissue – From Fundamental to Clinical and Military Applications. Nanotechnology and Microfluidics 2020. [DOI: 10.1002/9783527818341.ch12] [Reference Citation Analysis]
|
696 |
Zhang P, Gao D, An K, Shen Q, Wang C, Zhang Y, Pan X, Chen X, Lyv Y, Cui C, Liang T, Duan X, Liu J, Yang T, Hu X, Zhu J, Xu F, Tan W. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat Chem 2020;12:381-90. [DOI: 10.1038/s41557-020-0426-3] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 24.3] [Reference Citation Analysis]
|
697 |
Ang EH, Zeng J, Subramanian GS, Chellappan V, Sudhaharan T, Padmanabhan P, Gulyás B, Tamil Selvan S. Silica-Coated Mn-Doped ZnS Nanocrystals for Cancer Theranostics. ACS Appl Nano Mater 2020;3:3088-96. [DOI: 10.1021/acsanm.0c00598] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
698 |
Li J, Xue Y, Tian J, Liu Z, Zhuang A, Gu P, Zhou H, Zhang W, Fan X. Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydr Polym 2020;237:116119. [PMID: 32241431 DOI: 10.1016/j.carbpol.2020.116119] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
|
699 |
Ni J, Song J, Wang B, Hua H, Zhu H, Guo X, Xiong S, Zhao Y. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother 2020;126:110046. [PMID: 32145586 DOI: 10.1016/j.biopha.2020.110046] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
|
700 |
Li S, Gu K, Wang H, Xu B, Li H, Shi X, Huang Z, Liu H. Degradable Holey Palladium Nanosheets with Highly Active 1D Nanoholes for Synergetic Phototherapy of Hypoxic Tumors. J Am Chem Soc 2020;142:5649-56. [DOI: 10.1021/jacs.9b12929] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 21.7] [Reference Citation Analysis]
|
701 |
Ding B, Zheng P, Ma P, Lin J. Manganese Oxide Nanomaterials: Synthesis, Properties, and Theranostic Applications. Adv Mater 2020;32:e1905823. [PMID: 31990409 DOI: 10.1002/adma.201905823] [Cited by in Crossref: 181] [Cited by in F6Publishing: 191] [Article Influence: 60.3] [Reference Citation Analysis]
|
702 |
Sheng J, Zhang L, Deng L, Han Y, Wang L, He H, Liu Y. Fabrication of dopamine enveloped WO3−x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer. Chemical Engineering Journal 2020;383:123071. [DOI: 10.1016/j.cej.2019.123071] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
|
703 |
Alamzadeh Z, Beik J, Mirrahimi M, Shakeri-zadeh A, Ebrahimi F, Komeili A, Ghalandari B, Ghaznavi H, Kamrava SK, Moustakis C. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. European Journal of Pharmaceutical Sciences 2020;145:105235. [DOI: 10.1016/j.ejps.2020.105235] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 13.7] [Reference Citation Analysis]
|
704 |
Liang S, Deng X, Xu G, Xiao X, Wang M, Guo X, Ma P, Cheng Z, Zhang D, Lin J. A Novel Pt–TiO 2 Heterostructure with Oxygen‐Deficient Layer as Bilaterally Enhanced Sonosensitizer for Synergistic Chemo‐Sonodynamic Cancer Therapy. Adv Funct Mater 2020;30:1908598. [DOI: 10.1002/adfm.201908598] [Cited by in Crossref: 121] [Cited by in F6Publishing: 123] [Article Influence: 40.3] [Reference Citation Analysis]
|
705 |
Liang Y, Wang H, Yu H, Feng G, Liu F, Ma M, Zhang Y, Gu N. Magnetic navigation helps PLGA drug loaded magnetic microspheres achieve precise chemoembolization and hyperthermia. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;588:124364. [DOI: 10.1016/j.colsurfa.2019.124364] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
706 |
Jiao X, Wang Z, Xiu J, Dai W, Zhao L, Xu T, Du X, Wen Y, Zhang X. NIR powered Janus nanocarrier for deep tumor penetration. Applied Materials Today 2020;18:100504. [DOI: 10.1016/j.apmt.2019.100504] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
|
707 |
Zhao LP, Zheng RR, Chen HQ, Liu LS, Zhao XY, Liu HH, Qiu XZ, Yu XY, Cheng H, Li SY. Self-Delivery Nanomedicine for O2-Economized Photodynamic Tumor Therapy. Nano Lett 2020;20:2062-71. [PMID: 32096643 DOI: 10.1021/acs.nanolett.0c00047] [Cited by in Crossref: 102] [Cited by in F6Publishing: 111] [Article Influence: 34.0] [Reference Citation Analysis]
|
708 |
Zeng X, Yan S, Di C, Lei M, Chen P, Du W, Jin Y, Liu BF. "All-in-One" Silver Nanoprism Platform for Targeted Tumor Theranostics. ACS Appl Mater Interfaces 2020;12:11329-40. [PMID: 32072808 DOI: 10.1021/acsami.9b21166] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
709 |
Liang T, Wang Q, Li Z, Wang P, Wu J, Zuo M, Liu Z. Removing the Obstacle of Dye‐Sensitized Upconversion Luminescence in Aqueous Phase to Achieve High‐Contrast Deep Imaging In Vivo. Adv Funct Mater 2020;30:1910765. [DOI: 10.1002/adfm.201910765] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
710 |
Wu F, Zhang Q, Zhang M, Sun B, She Z, Ge M, Lu T, Chu X, Wang Y, Wang J, Zhou N, Li A. Hollow Porous Carbon Coated FeS2-Based Nanocatalysts for Multimodal Imaging-Guided Photothermal, Starvation, and Triple-Enhanced Chemodynamic Therapy of Cancer. ACS Appl Mater Interfaces 2020;12:10142-55. [PMID: 32043350 DOI: 10.1021/acsami.0c00170] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 18.0] [Reference Citation Analysis]
|
711 |
Gao P, Shi M, Wei R, Pan W, Liu X, Li N, Tang B. A biomimetic MOF nanoreactor enables synergistic suppression of intracellular defense systems for augmented tumor ablation. Chem Commun (Camb) 2020;56:924-7. [PMID: 31850458 DOI: 10.1039/c9cc08498c] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
|
712 |
He X, Yang Y, Guo Y, Lu S, Du Y, Li JJ, Zhang X, Leung NLC, Zhao Z, Niu G, Yang S, Weng Z, Kwok RTK, Lam JWY, Xie G, Tang BZ. Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. J Am Chem Soc 2020;142:3959-69. [PMID: 31999445 DOI: 10.1021/jacs.9b12936] [Cited by in Crossref: 83] [Cited by in F6Publishing: 88] [Article Influence: 27.7] [Reference Citation Analysis]
|
713 |
Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtar ML, Li Y. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomater Sci 2019;7:3683-92. [PMID: 31361291 DOI: 10.1039/c9bm00641a] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 16.0] [Reference Citation Analysis]
|
714 |
Qiao L, Hu S, Huang K, Su T, Li Z, Vandergriff A, Cores J, Dinh PU, Allen T, Shen D, Liang H, Li Y, Cheng K. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics 2020;10:3474-87. [PMID: 32206102 DOI: 10.7150/thno.39434] [Cited by in Crossref: 122] [Cited by in F6Publishing: 128] [Article Influence: 40.7] [Reference Citation Analysis]
|
715 |
Guo L, He N, Zhao Y, Liu T, Deng Y. Autophagy Modulated by Inorganic Nanomaterials. Theranostics 2020;10:3206-22. [PMID: 32194863 DOI: 10.7150/thno.40414] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 25.3] [Reference Citation Analysis]
|
716 |
Gu W, Zhang T, Gao J, Wang Y, Li D, Zhao Z, Jiang B, Dong Z, Liu H. Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma. Drug Deliv 2019;26:918-27. [PMID: 31526064 DOI: 10.1080/10717544.2019.1662513] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
717 |
Zheng K, Liu H, Liu X, Wang Y, Li L, Li S, Xue J, Huang M. Tumor Targeting Chemo- and Photodynamic Therapy Packaged in Albumin for Enhanced Anti-Tumor Efficacy. Int J Nanomedicine 2020;15:151-67. [PMID: 32021171 DOI: 10.2147/IJN.S227144] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
718 |
Yang J, Yang YW. Metal-Organic Frameworks for Biomedical Applications. Small 2020;16:e1906846. [PMID: 32026590 DOI: 10.1002/smll.201906846] [Cited by in Crossref: 234] [Cited by in F6Publishing: 244] [Article Influence: 78.0] [Reference Citation Analysis]
|
719 |
Geng S, Zhao H, Zhan G, Zhao Y, Yang X. Injectable in Situ Forming Hydrogels of Thermosensitive Polypyrrole Nanoplatforms for Precisely Synergistic Photothermo-Chemotherapy. ACS Appl Mater Interfaces 2020;12:7995-8005. [DOI: 10.1021/acsami.9b22654] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 15.0] [Reference Citation Analysis]
|
720 |
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020;10:2631-44. [PMID: 32194825 DOI: 10.7150/thno.40808] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
|
721 |
Liu X, Wu X, Xing Y, Zhang Y, Zhang X, Pu Q, Wu M, Zhao JX. Reduced Graphene Oxide/Mesoporous Silica Nanocarriers for pH-Triggered Drug Release and Photothermal Therapy. ACS Appl Bio Mater 2020;3:2577-87. [DOI: 10.1021/acsabm.9b01108] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
722 |
Ariga K, Yamauchi Y. Nanoarchitectonics from Atom to Life. Chem Asian J 2020. [PMID: 32017354 DOI: 10.1002/asia.202000106] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 14.0] [Reference Citation Analysis]
|
723 |
Li Y, Wu Q, Kang M, Song N, Wang D, Tang BZ. Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials 2020;232:119749. [DOI: 10.1016/j.biomaterials.2019.119749] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
|
724 |
Dong X, Yang A, Bai Y, Kong D, Lv F. Dual fluorescence imaging-guided programmed delivery of doxorubicin and CpG nanoparticles to modulate tumor microenvironment for effective chemo-immunotherapy. Biomaterials 2020;230:119659. [DOI: 10.1016/j.biomaterials.2019.119659] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 14.3] [Reference Citation Analysis]
|
725 |
Xiang H, Feng W, Chen Y. Single-Atom Catalysts in Catalytic Biomedicine. Adv Mater 2020;32:e1905994. [PMID: 31930751 DOI: 10.1002/adma.201905994] [Cited by in Crossref: 142] [Cited by in F6Publishing: 147] [Article Influence: 47.3] [Reference Citation Analysis]
|
726 |
Cardoso RM, Deda DK, Toma SH, Baptista MS, Araki K. Beyond electrostatic interactions: Ligand shell modulated uptake of bis-conjugated iron oxide nanoparticles by cells. Colloids and Surfaces B: Biointerfaces 2020;186:110717. [DOI: 10.1016/j.colsurfb.2019.110717] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
727 |
He R, Wang Q, Li B, Jia J, Lu W, Shuang S. Construction of Protein-mediated Copper Sulfide Bonded Mesoporous Silica Nanoparticles Vector for Chemo-photothermal Synergistic Therapy of Cancer. Chinese Journal of Analytical Chemistry 2020;48:197-205. [DOI: 10.1016/s1872-2040(19)61216-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
728 |
Cheng Y, Hu J, Qin S, Zhang A, Zhang X. Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer. Biomaterials 2020;232:119738. [DOI: 10.1016/j.biomaterials.2019.119738] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 16.0] [Reference Citation Analysis]
|
729 |
Song C, Li Y, Li T, Yang Y, Huang Z, de la Fuente JM, Ni J, Cui D. Long‐Circulating Drug‐Dye‐Based Micelles with Ultrahigh pH‐Sensitivity for Deep Tumor Penetration and Superior Chemo‐Photothermal Therapy. Adv Funct Mater 2020;30:1906309. [DOI: 10.1002/adfm.201906309] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 15.7] [Reference Citation Analysis]
|
730 |
Cheng HB, Li Y, Tang BZ, Yoon J. Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. Chem Soc Rev 2020;49:21-31. [PMID: 31799523 DOI: 10.1039/c9cs00326f] [Cited by in Crossref: 220] [Cited by in F6Publishing: 230] [Article Influence: 73.3] [Reference Citation Analysis]
|
731 |
Sarkar S, Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev 2020;163-164:40-64. [PMID: 32001326 DOI: 10.1016/j.addr.2020.01.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 16.0] [Reference Citation Analysis]
|
732 |
Ma K, Dong P, Liang M, Yu S, Chen Y, Wang F. Facile Assembly of Multifunctional Antibacterial Nanoplatform Leveraging Synergistic Sensitization between Silver Nanostructure and Vancomycin. ACS Appl Mater Interfaces 2020;12:6955-65. [DOI: 10.1021/acsami.9b22043] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
|
733 |
Wang X, Cheng L. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. Nanoscale 2019;11:15685-708. [PMID: 31355405 DOI: 10.1039/c9nr04044g] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 17.7] [Reference Citation Analysis]
|
734 |
Liu Y, Wei C, Lin A, Pan J, Chen X, Zhu X, Gong Y, Yuan G, Chen L, Liu J, Luo Z. Responsive functionalized MoSe2 nanosystem for highly efficient synergistic therapy of breast cancer. Colloids Surf B Biointerfaces 2020;189:110820. [PMID: 32045843 DOI: 10.1016/j.colsurfb.2020.110820] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
735 |
He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu WG, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 2020;10:2453-62. [PMID: 32194812 DOI: 10.7150/thno.42981] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 25.0] [Reference Citation Analysis]
|
736 |
Zhao M, Wan S, Peng X, Zhang B, Pan Q, Li S, He B, Pu Y. Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo-photodynamic therapy. J Mater Chem B 2020;8:1235-44. [PMID: 31957757 DOI: 10.1039/c9tb02400j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
737 |
Wang K, Tu Y, Yao W, Zong Q, Xiao X, Yang R, Jiang X, Yuan Y. Size-Switchable Nanoparticles with Self-Destructive and Tumor Penetration Characteristics for Site-Specific Phototherapy of Cancer. ACS Appl Mater Interfaces 2020;12:6933-43. [DOI: 10.1021/acsami.9b21525] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
|
738 |
Song Y, Li D, Lu Y, Jiang K, Yang Y, Xu Y, Dong L, Yan X, Ling D, Yang X, Yu S. Ferrimagnetic mPEG- b -PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia–chemotherapy. National Science Review 2020;7:723-36. [DOI: 10.1093/nsr/nwz201] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
|
739 |
Zhao S, Tian R, Shao B, Feng Y, Yuan S, Dong L, Zhang L, Wang Z, You H. UCNP–Bi 2 Se 3 Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. Chem Eur J 2020;26:1127-35. [DOI: 10.1002/chem.201904586] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
740 |
Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int J Nanomedicine 2020;15:275-300. [PMID: 32021180 DOI: 10.2147/IJN.S233789] [Cited by in Crossref: 123] [Cited by in F6Publishing: 136] [Article Influence: 41.0] [Reference Citation Analysis]
|
741 |
Feng J, Yu W, Xu Z, Wang F. An intelligent ZIF-8-gated polydopamine nanoplatform for in vivo cooperatively enhanced combination phototherapy. Chem Sci 2020;11:1649-56. [PMID: 32206284 DOI: 10.1039/c9sc06337d] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 16.7] [Reference Citation Analysis]
|
742 |
Zeng L, Huang K, Wan Y, Zhang J, Yao X, Jiang C, Lin J, Huang P. Programmable starving-photodynamic synergistic cancer therapy. Sci China Mater 2020;63:611-9. [DOI: 10.1007/s40843-019-1226-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
|
743 |
Zhang A, Zhang Q, Alfranca G, Pan S, Huang Z, Cheng J, Ma Q, Song J, Pan Y, Ni J, Ma L, Cui D. GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like Au/Pt enzyme carrier system. Nano Res 2020;13:160-72. [DOI: 10.1007/s12274-019-2591-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
|
744 |
Wu Y, Lv F, Kan J, Guan Q, Xue A, Wang Q, Li Y, Dong Y. Near-infrared and metal-free tetra(butylamino)phthalocyanine nanoparticles for dual modal cancer phototherapy. RSC Adv 2020;10:25958-25965. [DOI: 10.1039/d0ra03898a] [Reference Citation Analysis]
|
745 |
Bai L, Yi W, Sun T, Tian Y, Zhang P, Si J, Hou X, Hou J. Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer. J Mater Chem B 2020;8:6402-17. [DOI: 10.1039/d0tb01084g] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
|
746 |
Hashimoto T, Yuba E, Harada A, Kono K. Preparation of photothermal-chemotherapy nanohybrids by complexation of gold nanorods with polyamidoamine dendrimers having poly(ethylene glycol) and hydrophobic chains. J Mater Chem B 2020;8:2826-33. [DOI: 10.1039/c9tb02163a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
747 |
Zhang Y, Ma J, Wang D, Xu C, Sheng S, Cheng J, Bao C, Li Y, Tian H. Fe-TCPP@CS nanoparticles as photodynamic and photothermal agents for efficient antimicrobial therapy. Biomater Sci 2020;8:6526-32. [DOI: 10.1039/d0bm01427c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
|
748 |
Yu Z, Li H, Jia Y, Qiao Y, Wang C, Zhou Q, He X, Yu S, Yang T, Wu H. Ratiometric co-delivery of doxorubicin and docetaxel by covalently conjugating with mPEG-poly(β-malic acid) for enhanced synergistic breast tumor therapy. Polym Chem 2020;11:7330-9. [DOI: 10.1039/d0py01130d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
749 |
Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive Nanotherapeutics by Metal Peroxide Based Nanomedicine. Adv Sci (Weinh) 2020;8:2000494. [PMID: 33437566 DOI: 10.1002/advs.202000494] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
|
750 |
Yang C, Liu Y, Su S, Gao N, Jing J, Zhang X. A multifunctional oxygen-producing MnO 2 -based nanoplatform for tumor microenvironment-activated imaging and combination therapy in vitro. J Mater Chem B 2020;8:9943-50. [DOI: 10.1039/d0tb00529k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
751 |
Chen L, Zhuang W, Hu C, Yu T, Su X, Liang Z, Li G, Wang Y. pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. J Mater Chem B 2020;8:5645-54. [DOI: 10.1039/d0tb00622j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
752 |
Pattanayak S, Bose P, Priyam A. Herniarin, a natural coumarin loaded novel targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy in preclinical model of breast cancer. Phcog Mag 2020;16:474. [DOI: 10.4103/pm.pm_223_20] [Reference Citation Analysis]
|
753 |
Kawawaki T, Negishi Y, Kawasaki H. Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Adv 2020;2:17-36. [DOI: 10.1039/c9na00583h] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
|
754 |
Ding M, Miao Z, Zhang F, Liu J, Shuai X, Zha Z, Cao Z. Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic efficiency for overcoming tumor hypoxia. Biomater Sci 2020;8:4157-65. [DOI: 10.1039/d0bm00625d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
|
755 |
Tao K, Liu S, Wang L, Qiu H, Li B, Zhang M, Guo M, Liu H, Zhang X, Liu Y, Hou Y, Zhang H. Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer. Biomater Sci 2020;8:342-52. [DOI: 10.1039/c9bm01377f] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
|
756 |
Gao Z, Mu W, Tian Y, Su Y, Sun H, Zhang G, Li A, Yu D, Zhang N, Hao J, Liu Y, Cui J. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J Mater Chem B 2020;8:6866-76. [DOI: 10.1039/d0tb00405g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
|
757 |
Zheng Z, Chen Q, Dai R, Jia Z, Yang C, Peng X, Zhang R. A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy. Nanoscale 2020;12:11562-72. [DOI: 10.1039/d0nr02543g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
|
758 |
Wu R, Wang H, Hai L, Wang T, Hou M, He D, He X, Wang K. A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chinese Chemical Letters 2020;31:189-92. [DOI: 10.1016/j.cclet.2019.05.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
|
759 |
Liu S, Wang L, Zhao B, Wang Z, Wang Y, Sun B, Liu Y. Doxorubicin-loaded Cu2S/Tween-20 nanocomposites for light-triggered tumor photothermal therapy and chemotherapy. RSC Adv 2020;10:26059-26066. [DOI: 10.1039/d0ra03069d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
760 |
Zhu H, Cao G, Qiang C, Fu Y, Wu Y, Li X, Han G. Hollow ferric-tannic acid nanocapsules with sustained O 2 and ROS induction for synergistic tumor therapy. Biomater Sci 2020;8:3844-55. [DOI: 10.1039/d0bm00533a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
761 |
Kandasamy G, Kumar K. Synergy between nanoparticles and breast cancer theranostics. Nanomedicines for Breast Cancer Theranostics 2020. [DOI: 10.1016/b978-0-12-820016-2.00005-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
762 |
Wen T, Liu J, He W, Yang A. Nanomaterials and Reactive Oxygen Species (ROS). Nanotechnology in Regenerative Medicine and Drug Delivery Therapy 2020. [DOI: 10.1007/978-981-15-5386-8_8] [Reference Citation Analysis]
|
763 |
Li C, Yang XQ, An J, Cheng K, Hou XL, Zhang XS, Hu YG, Liu B, Zhao YD. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics 2020;10:867-79. [PMID: 31903156 DOI: 10.7150/thno.37930] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 23.0] [Reference Citation Analysis]
|
764 |
Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics 2020;10:615-29. [PMID: 31903141 DOI: 10.7150/thno.40066] [Cited by in Crossref: 62] [Cited by in F6Publishing: 68] [Article Influence: 20.7] [Reference Citation Analysis]
|
765 |
Hu C, Zhuang W, Yu T, Chen L, Liang Z, Li G, Wang Y. Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. J Mater Chem B 2020;8:5267-79. [DOI: 10.1039/d0tb00539h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
|
766 |
Zhu C, Ding Z, Guo Z, Guo X, Yang A, Li Z, Jiang B, Shen X. Full-spectrum responsive ZrO 2 -based phototheranostic agent for NIR-II photoacoustic imaging-guided cancer phototherapy. Biomater Sci 2020;8:6515-25. [DOI: 10.1039/d0bm01482f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
767 |
Long Y, Wu X, Li Z, Fan J, Hu X, Liu B. PEGylated WS 2 nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer. Biomater Sci 2020;8:5088-105. [DOI: 10.1039/d0bm00972e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
|
768 |
Liu Y, Xu C, Teng L, Liu H, Ren T, Xu S, Lou X, Guo H, Yuan L, Zhang X. pH stimulus-disaggregated BODIPY: an activated photodynamic/photothermal sensitizer applicable to tumor ablation. Chem Commun 2020;56:1956-9. [DOI: 10.1039/c9cc09790b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
|
769 |
Zhang D, Xu H, He T, Younis MR, Zeng L, Liu H, Jiang C, Lin J, Huang P. Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy. Nanoscale 2020;12:7174-9. [DOI: 10.1039/d0nr00468e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
770 |
Ren X, Shi L, Yu X, Liu W, Sheng J, Wan J, Li Y, Wan Y, Luo Z, Yang X. Multifunctional hierarchical mesoporous silica and black phosphorus nanohybrids as chemo-photothermal synergistic agents for enhanced cancer therapy. Nanoscale 2020;12:12578-88. [DOI: 10.1039/d0nr02044c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
|
771 |
Zhan X, Nie X, Gao F, Zhang C, You Y, Yu Y. An NIR-activated polymeric nanoplatform with ROS- and temperature-sensitivity for combined photothermal therapy and chemotherapy of pancreatic cancer. Biomater Sci 2020;8:5931-40. [DOI: 10.1039/d0bm01324b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
772 |
Eltohamy M. Mesoporous silica nanoparticles for cancer theranostic applications. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00024-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
773 |
Zhang Q, Xiao Q, Yin H, Xia C, Pu Y, He Z, Hu Q, Wang J, Wang Y. Milk-exosome based pH/light sensitive drug system to enhance anticancer activity against oral squamous cell carcinoma. RSC Adv 2020;10:28314-23. [DOI: 10.1039/d0ra05630h] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
|
774 |
He T, Xu H, Zhang Y, Yi S, Cui R, Xing S, Wei C, Lin J, Huang P. Glucose Oxidase-Instructed Traceable Self-Oxygenation/Hyperthermia Dually Enhanced Cancer Starvation Therapy. Theranostics 2020;10:1544-54. [PMID: 32042321 DOI: 10.7150/thno.40439] [Cited by in Crossref: 89] [Cited by in F6Publishing: 95] [Article Influence: 29.7] [Reference Citation Analysis]
|
775 |
Mao W, Liao Y, Ma D. A supramolecular assembly mediated by host–guest interactions for improved chemo–photodynamic combination therapy. Chem Commun 2020;56:4192-5. [DOI: 10.1039/d0cc01096k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
776 |
Xiang Z, Qi Y, Lu Y, Hu Z, Wang X, Jia W, Hu J, Ji J, Lu W. MOF-derived novel porous Fe 3 O 4 @C nanocomposites as smart nanomedical platforms for combined cancer therapy: magnetic-triggered synergistic hyperthermia and chemotherapy. J Mater Chem B 2020;8:8671-83. [DOI: 10.1039/d0tb01021a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
|
777 |
Cao J, Qiao B, Luo Y, Cheng C, Yang A, Wang M, Yuan X, Fan K, Li M, Wang Z. A multimodal imaging-guided nanoreactor for cooperative combination of tumor starvation and multiple mechanism-enhanced mild temperature phototherapy. Biomater Sci 2020;8:6561-78. [DOI: 10.1039/d0bm01350a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
|
778 |
Li M, Zhang H, Hou Y, Wang X, Xue C, Li W, Cai K, Zhao Y, Luo Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz 2020;5:202-17. [DOI: 10.1039/c9nh00577c] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 15.7] [Reference Citation Analysis]
|
779 |
Zhang Y, Yang Z, Zheng X, Chen L, Xie Z. Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. J Mater Chem B 2020;8:5305-11. [DOI: 10.1039/d0tb00991a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
780 |
Peng H. Other Fiber Electronic Devices. Fiber Electronics 2020. [DOI: 10.1007/978-981-15-9945-3_12] [Reference Citation Analysis]
|
781 |
Fu LH, Hu YR, Qi C, He T, Jiang S, Jiang C, He J, Qu J, Lin J, Huang P. Biodegradable Manganese-Doped Calcium Phosphate Nanotheranostics for Traceable Cascade Reaction-Enhanced Anti-Tumor Therapy. ACS Nano 2019;13:13985-94. [PMID: 31833366 DOI: 10.1021/acsnano.9b05836] [Cited by in Crossref: 182] [Cited by in F6Publishing: 194] [Article Influence: 45.5] [Reference Citation Analysis]
|
782 |
Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, Bagherzadeh M, Rabiee M, Tayebi L, Tahriri M, Hamblin MR. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 2020;232:119707. [PMID: 31874428 DOI: 10.1016/j.biomaterials.2019.119707] [Cited by in Crossref: 89] [Cited by in F6Publishing: 98] [Article Influence: 22.3] [Reference Citation Analysis]
|
783 |
Yi C, Yang Y, Liu B, He J, Nie Z. Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev 2020;49:465-508. [PMID: 31845685 DOI: 10.1039/c9cs00725c] [Cited by in Crossref: 122] [Cited by in F6Publishing: 129] [Article Influence: 30.5] [Reference Citation Analysis]
|
784 |
Jiao X, Wang Z, Wang F, Wen Y. Dual Stimuli-Responsive Controlled Release Nanocarrier for Multidrug Resistance Cancer Therapy. Chemphyschem 2019;20:3271-5. [PMID: 31654459 DOI: 10.1002/cphc.201900935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
785 |
Zeng D, Wang L, Tian L, Zhao S, Zhang X, Li H. Synergistic photothermal/photodynamic suppression of prostatic carcinoma by targeted biodegradable MnO2 nanosheets. Drug Deliv 2019;26:661-72. [PMID: 31257941 DOI: 10.1080/10717544.2019.1631409] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
|
786 |
Ma C, Shi J, Dong B, Zhang H. Supramolecular Vesicles of β-CD Dimer as Enzyme Carrier for Cancer Therapy. Chem Lett 2019;48:1555-7. [DOI: |