BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Cited by in Crossref: 56] [Cited by in F6Publishing: 69] [Article Influence: 56.0] [Reference Citation Analysis]
Number Citing Articles
1 Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews 2023;476:214908. [DOI: 10.1016/j.ccr.2022.214908] [Reference Citation Analysis]
2 Li J, Feng Z, Yu X, Wu D, Wu T, Qian J. Aggregation-induced emission fluorophores towards the second near-infrared optical windows with suppressed imaging background. Coordination Chemistry Reviews 2022;472:214792. [DOI: 10.1016/j.ccr.2022.214792] [Reference Citation Analysis]
3 Laia AS, Brandão-silva AC, Gomes MA, Macedo ZS, Valério ME, Rodrigues JJ, Alencar MA. Temperature sensing with Er3+ doped Y2O3 nanoparticles operating within the 1st and 2nd biological window: The influence of particle size on the relative sensitivity of thermally decoupled levels. Journal of Alloys and Compounds 2022;926:166816. [DOI: 10.1016/j.jallcom.2022.166816] [Reference Citation Analysis]
4 Li J, Zhao M, Huang J, Liu P, Luo X, Zhang Y, Yan C, Zhu W, Guo Z. A “crossbreeding” dyad strategy for bright and small-molecular weight near-infrared fluorogens: From the structural design to boost aggregation-induced emission. Coordination Chemistry Reviews 2022;473:214813. [DOI: 10.1016/j.ccr.2022.214813] [Reference Citation Analysis]
5 Li Y, Tang Y, Hu W, Wang Z, Li X, Lu X, Chen S, Huang W, Fan Q. Incorporation of Robust NIR‐II Fluorescence Brightness and Photothermal Performance in a Single Large π ‐Conjugated Molecule for Phototheranostics. Advanced Science 2022. [DOI: 10.1002/advs.202204695] [Reference Citation Analysis]
6 Bian H, Ma D, Pan F, Zhang X, Xin K, Zhang X, Yang Y, Peng X, Xiao Y. Cardiolipin-Targeted NIR-II Fluorophore Causes “Avalanche Effects” for Re-Engaging Cancer Apoptosis and Inhibiting Metastasis. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c08602] [Reference Citation Analysis]
7 Feng R, Li G, Ko C, Zhang Z, Wan J, Zhang Q. Long‐Lived Second Near‐Infrared Luminescent Probes: An Emerging Role in Time‐Resolved Luminescence Bioimaging and Biosensing. Small Structures 2022. [DOI: 10.1002/sstr.202200131] [Reference Citation Analysis]
8 Liu J, Xiong Y, Gao Y, Xu X, Chen K, Shen Q, Huang W, Fan Q, Wang Q. Molecular Oligomerization and Donor Engineering Strategies for Achieving Superior NIR‐II Fluorescence Imaging and Thermotherapy under 1064 nm Laser Irradiation. Small 2022. [DOI: 10.1002/smll.202205640] [Reference Citation Analysis]
9 Luo P, Wang M, Liu W, Liu L, Xu P. Activity-Based Fluorescent Probes Based on Hemicyanine for Biomedical Sensing. Molecules 2022;27:7750. [DOI: 10.3390/molecules27227750] [Reference Citation Analysis]
10 Huang C, Shi T, Zhang J, Sun Y, Ma T, Li W, Li Y, Qiu H, Yin S. An NIR-II-absorbing photothermal agent containing multiple rotors with enhanced photothermal conversion capacity for multimodal-imaging-guided photothermal therapy. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110932] [Reference Citation Analysis]
11 Yang G, Wang Y, Zhou S, Chen L, Chen Y, Liu Y, Liang X, Yin C, Zhou H, Fan Q. Water-dispersed semiconducting polymer for NIR-II fluorescence imaging and NIR-II laser-triggered photothermal therapy. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110960] [Reference Citation Analysis]
12 Du P, An R, Liang Y, Lei P, Zhang H. Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coordination Chemistry Reviews 2022;471:214745. [DOI: 10.1016/j.ccr.2022.214745] [Reference Citation Analysis]
13 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wang J, Li L, Wei R, Dong R. Quantum Dot-Based Micromotors with NIR-I Light Photocatalytic Propulsion and NIR-II Fluorescence. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c13254] [Reference Citation Analysis]
15 Liu S, Xu W, Li X, Pang DW, Xiong H. BOIMPY-Based NIR-II Fluorophore with High Brightness and Long Absorption beyond 1000 nm for In Vivo Bioimaging: Synergistic Steric Regulation Strategy. ACS Nano 2022. [PMID: 36239245 DOI: 10.1021/acsnano.2c08619] [Reference Citation Analysis]
16 Yin S, Song J, Liu D, Wang K, Qi J. NIR-II AIEgens with Photodynamic Effect for Advanced Theranostics. Molecules 2022;27. [PMID: 36235186 DOI: 10.3390/molecules27196649] [Reference Citation Analysis]
17 Teng C, Dang H, Zhang S, Xu Y, Yin D, Yan L. J-aggregates of Br- and piperazine-modified cyanine dye with the assistance of amphiphilic polypeptides for efficient NIR-IIa phototheranostics under 1064 nm irradiation. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.10.025] [Reference Citation Analysis]
18 Liu X, Yu B, Shen Y, Cong H. Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coordination Chemistry Reviews 2022;468:214609. [DOI: 10.1016/j.ccr.2022.214609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Liu P, Zhao R, Li H, Zhu T, Li Y, Wang H, Zhang X. Near-infrared-II deep tissue fluorescence microscopy and application. Nano Res . [DOI: 10.1007/s12274-022-4836-y] [Reference Citation Analysis]
20 Shi W, Diao S, Liang T, Zhang X, Guo Z, Liu Y, Zhou W, Xie C, Fan Q. A Renal-Clearable PEGylated Semiconducting Oligomer for the NIR-II Fluorescence Imaging of Tumor. ACS Appl Bio Mater 2022. [PMID: 36167499 DOI: 10.1021/acsabm.2c00682] [Reference Citation Analysis]
21 Xu W, Liu S, Chen Z, Wu F, Cao W, Tian Y, Xiong H. Bichromatic Imaging with Hemicyanine Fluorophores Enables Simultaneous Visualization of Non-alcoholic Fatty Liver Disease and Metastatic Intestinal Cancer. Anal Chem 2022. [PMID: 36124440 DOI: 10.1021/acs.analchem.2c03100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhang C, An J, Wu J, Liu W, Rha H, Kim JS, Wang P. Structural modification of NIR-II fluorophores for angiography beyond 1300 nm: Expanding the xanthene universe. Biosens Bioelectron 2022;217:114701. [PMID: 36115125 DOI: 10.1016/j.bios.2022.114701] [Reference Citation Analysis]
23 Wang X, Zhang C, Zeng J, Mao X, Redshaw C, Niu G, Yu X, Feng X. One-Pot Synthesis of Pyreno[2,1-b]furan Molecules with Two-Photon Absorption Properties. J Org Chem 2022. [PMID: 36074893 DOI: 10.1021/acs.joc.2c01303] [Reference Citation Analysis]
24 Fan F, Hou Y, Zhang Y, Zeng Y, Zhang Y, Zhang S, Meng X, Wang X. Tumor imaging and photothermal therapy in second near infrared window: A systematic review and meta-analysis. Front Oncol 2022;12:987491. [DOI: 10.3389/fonc.2022.987491] [Reference Citation Analysis]
25 Chen S, Qiu M, Wang R, Zhang L, Li C, Ye C, Zhou X. Photoactivated Nanohybrid for Dual-Nuclei MR/US/PA Multimodal-Guided Photothermal Therapy. Bioconjug Chem 2022. [PMID: 36053016 DOI: 10.1021/acs.bioconjchem.2c00343] [Reference Citation Analysis]
26 Huang Z, Zhang Y, Zhao S, Xu Y, Qi X, Zhang L, Zhao Y. Two-dimensional covalent organic frameworks with spatial-distribution defined D-A structures for efficient near-infrared photothermal conversion. Microporous and Mesoporous Materials 2022;343:112191. [DOI: 10.1016/j.micromeso.2022.112191] [Reference Citation Analysis]
27 Lu X, Zhan Y, He W. Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. Journal of Photochemistry and Photobiology B: Biology 2022;234:112528. [DOI: 10.1016/j.jphotobiol.2022.112528] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Wu Z, Reichert H, Reichelt H, Basché T, Müllen K. Photostable NIR‐II Pigments from Extended Rylenecarboximides. Chemistry A European J 2022. [DOI: 10.1002/chem.202202291] [Reference Citation Analysis]
29 Liu X, Sun H, Shu W, Zhai Z, Xiao H, Zhang T, Liu Y. A New Deep‐Red to Near‐infrared Emission and Polarity Sensitive Fluorescent Probe Based on β‐Diketone‐boron Difluoride and Coumarin Derivative. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202272] [Reference Citation Analysis]
30 Kang X, Li Y, Yin S, Li W, Qi J. Reactive Species-Activatable AIEgens for Biomedical Applications. Biosensors 2022;12:646. [DOI: 10.3390/bios12080646] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Hu X, Chen Z, Ao H, Fan Q, Yang Z, Huang W. Rational Molecular Engineering of Organic Semiconducting Nanoplatforms for Advancing NIR‐II Fluorescence Theranostics. Advanced Optical Materials. [DOI: 10.1002/adom.202201067] [Reference Citation Analysis]
32 Nakano T, Fujikawa S. Aryl/Heteroaryl Substituted Boron-Difluoride Complexes Bearing 2-(Isoquinol-1-yl)pyrrole Ligands Exhibiting High Luminescence Efficiency with a Large Stokes Shift. J Org Chem 2022. [PMID: 35969831 DOI: 10.1021/acs.joc.2c01343] [Reference Citation Analysis]
33 Deng X, Xu Z, Zhang Z, Zhang W, Li J, Zheng L, Chen X, Pan Y, Qiu P, Wang D, Xu G, Wang K. In Vivo 3‐Photon Fluorescence Imaging of Mouse Subcortical Vasculature Labeled by AIEgen Before and After Craniotomy. Adv Funct Materials. [DOI: 10.1002/adfm.202205151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Li C, Guan X, Zhang X, Zhou D, Son S, Xu Y, Deng M, Guo Z, Sun Y, Kim JS. NIR-II bioimaging of small molecule fluorophores: From basic research to clinical applications. Biosens Bioelectron 2022;216:114620. [PMID: 36001931 DOI: 10.1016/j.bios.2022.114620] [Reference Citation Analysis]
35 Shen H, Sun F, Zhu X, Zhang J, Ou X, Zhang J, Xu C, Sung HHY, Williams ID, Chen S, Kwok RTK, Lam JWY, Sun J, Zhang F, Tang BZ. Rational Design of NIR-II AIEgens with Ultrahigh Quantum Yields for Photo- and Chemiluminescence Imaging. J Am Chem Soc 2022. [PMID: 35948438 DOI: 10.1021/jacs.2c07443] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
36 Xu Y, Li C, Ma X, Tuo W, Tu L, Li X, Sun Y, Stang PJ, Sun Y. Long wavelength-emissive Ru(II) metallacycle-based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment. Proc Natl Acad Sci U S A 2022;119:e2209904119. [PMID: 35914164 DOI: 10.1073/pnas.2209904119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
37 Xie B, Meng Q, Yu H, Shen K, Cheng Y, Dong C, Zhou H. Estrogen receptor β-targeted hypoxia-responsive near-infrared fluorescence probes for prostate cancer study. European Journal of Medicinal Chemistry 2022;238:114506. [DOI: 10.1016/j.ejmech.2022.114506] [Reference Citation Analysis]
38 Zhang X, Li C, Zhang Y, Guan X, Mei L, Feng H, Li J, Tu L, Feng G, Deng G, Sun Y. Construction of Long‐Wavelength Emissive Organic Nanosonosensitizer Targeting Mitochondria for Precise and Efficient In Vivo Sonotherapy. Adv Funct Materials. [DOI: 10.1002/adfm.202207259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Lu S, Xue L, Yang M, Wang J, Li Y, Jiang Y, Hong X, Wu M, Xiao Y. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Res . [DOI: 10.1007/s12274-022-4592-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Zhang L, Zhang Y, Chi W, Yan C, Zhao Z, Liu X, Zhu W, Guo Z. “Crossbreeding” Small-Molecular Weight NIR-II Flavchromenes Endows Activatable Multiplexed In Vivo Imaging. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.2c00451] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022;51:6177-209. [PMID: 35792133 DOI: 10.1039/d2cs00275b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
43 Li L, Li S, Fan Z, Huang G, Tang J, Nie L. Current Strategies of Photoacoustic Imaging Assisted Cancer Theragnostics toward Clinical Studies. ACS Photonics. [DOI: 10.1021/acsphotonics.2c00440] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Song S, Wang Y, Zhao Y, Huang W, Zhang F, Zhu S, Wu Q, Fu S, Tang BZ, Wang D. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph nodes. Matter 2022. [DOI: 10.1016/j.matt.2022.06.030] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Zhang C, Wu J, Liu W, Zhang W, Lee CS, Wang P. New Xanthene Dyes with NIR-II Emission Beyond 1200 nm for Efficient Tumor Angiography and Photothermal Therapy. Small 2022;:e2202078. [PMID: 35730913 DOI: 10.1002/smll.202202078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Jin GQ, Guo LJ, Zhang J, Gao S, Zhang JL. Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Cham) 2022;380:31. [PMID: 35715540 DOI: 10.1007/s41061-022-00386-6] [Reference Citation Analysis]
47 Han M, Kang R, Zhang C. Lymph Node Mapping for Tumor Micrometastasis. ACS Biomater Sci Eng 2022;8:2307-20. [PMID: 35548973 DOI: 10.1021/acsbiomaterials.2c00111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Chen J, Chen L, Zeng F, Wu S. Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging. Anal Chem . [DOI: 10.1021/acs.analchem.2c01241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Li Q, Liu Y, Zhao B, Lei J, Lu S, Gong W, Liang K, Wu J, Hong X, Xiao Y. A single-molecular ruthenium(II) complex-based NIR-II fluorophore for enhanced chemo-photothermal therapy. Chem Commun (Camb) 2022;58:6546-9. [PMID: 35579558 DOI: 10.1039/d2cc00082b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Zhang L, Zhuang W, Yuan Y, Shen J, Shi W, Liu G, Wu W, Zhang Q, Shao G, Mei Q, Fan Q. Novel Glutathione Activated Smart Probe for Photoacoustic Imaging, Photothermal Therapy, and Safe Postsurgery Treatment. ACS Appl Mater Interfaces 2022;14:24174-86. [PMID: 35604134 DOI: 10.1021/acsami.2c04470] [Reference Citation Analysis]
51 Yang T, Qin J, Zhang J, Guo L, Yang M, Wu X, You M, Peng H. Recent Progresses in NIR-II Luminescent Bio/Chemo Sensors Based on Lanthanide Nanocrystals. Chemosensors 2022;10:206. [DOI: 10.3390/chemosensors10060206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Wang Q, Unno M, Liu H. Organic–Inorganic Hybrid Near-Infrared Emitting Porous Polymer for Detection and Photodegradation of Antibiotics. ACS Sustainable Chem Eng 2022;10:7309-20. [DOI: 10.1021/acssuschemeng.2c00935] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Yuan Y, Feng Z, Li S, Huang Z, Wan Y, Cao C, Lin S, Wu L, Zhou J, Liao LS, Qian J, Lee CS. Molecular Programming of NIR-IIb-Emissive Semiconducting Small Molecules for In Vivo High-Contrast Bioimaging Beyond 1500 nm. Adv Mater 2022;34:e2201263. [PMID: 35307885 DOI: 10.1002/adma.202201263] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
54 Jiang Z, Chen H, Yu Z, Yang T, Liu Y, Wu Z. Development of a cationic Aggregate Induced Emission fluorescent probe for detection of Aromatase. Tetrahedron Letters 2022. [DOI: 10.1016/j.tetlet.2022.153858] [Reference Citation Analysis]
55 Li Y, Zhang P, Tang W, McHugh KJ, Kershaw SV, Jiao M, Huang X, Kalytchuk S, Perkinson CF, Yue S, Qiao Y, Zhu L, Jing L, Gao M, Han B. Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS Nano 2022. [PMID: 35442624 DOI: 10.1021/acsnano.2c01153] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
56 Xu Y, Li C, Lu S, Wang Z, Liu S, Yu X, Li X, Sun Y. Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-29572-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
57 Li DH, Smith BD. Supramolecular Mitigation of the Cyanine Limit Problem. J Org Chem 2022. [PMID: 35417170 DOI: 10.1021/acs.joc.2c00179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Feng Z, Li Y, Chen S, Yu X, Ying Y, Zheng J, Wu T, Li J, Fan X, Zhang D, Qian J. Fluorescence visualization of deep-buried hollow organs.. [DOI: 10.1101/2022.01.07.475462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Liu Y, Li Q, Gu M, Lu D, Xiong X, Zhang Z, Pan Y, Liao Y, Ding Q, Gong W, Chen DS, Guan M, Wu J, Tian Z, Deng H, Gu L, Hong X, Xiao Y. A Second Near-Infrared Ru(II) Polypyridyl Complex for Synergistic Chemo-Photothermal Therapy. J Med Chem 2022. [PMID: 34994554 DOI: 10.1021/acs.jmedchem.1c01736] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
60 Gao D, Li Y, Wu Y, Liu Y, Hu D, Liang S, Liao J, Pan M, Zhang P, Li K, Liu X, Zheng H, Sheng Z. Albumin-Consolidated AIEgens for Boosting Glioma and Cerebrovascular NIR-II Fluorescence Imaging. ACS Appl Mater Interfaces 2022. [PMID: 34995067 DOI: 10.1021/acsami.1c22700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Li Y, Gao J, Wang S, Li S, Hou X, Pan Y, Gao J, Qiao X, Tian Z, Chen D, Deng H, Deng Z, Hong X, Xiao Y. Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy. J Control Release 2022;342:157-69. [PMID: 34998914 DOI: 10.1016/j.jconrel.2022.01.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
62 Li C, Xu Y, Tu L, Choi M, Fan Y, Chen X, Sessler JL, Kim JS, Sun Y. Rationally designed Ru( ii )-metallacycle chemo-phototheranostic that emits beyond 1000 nm. Chem Sci . [DOI: 10.1039/d2sc01518h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
63 Hsu K, Su S, Lu H, Liu M, Chang YJ, Lee Y, Chiang HK, Hsu C, Lu C, Chan Y. TADF-based NIR-II semiconducting polymer dots for in vivo 3D bone imaging. Chem Sci 2022;13:10074-81. [DOI: 10.1039/d2sc03271f] [Reference Citation Analysis]
64 She Z, Chen J, Sun L, Zeng F, Wu S. An NO-responsive probe for detecting acute inflammation using NIR-II fluorescence/optoacoustic imaging. Chem Commun 2022. [DOI: 10.1039/d2cc05386a] [Reference Citation Analysis]
65 Zhao X, Zhang F, Lei Z. The pursuit of polymethine fluorophores with NIR-II emission and high brightness for in vivo applications. Chem Sci . [DOI: 10.1039/d2sc03136a] [Reference Citation Analysis]
66 Meng J, Cui Y, Wang Y. Rare earth-doped nanocrystals for bioimaging in the near-infrared region. J Mater Chem B 2022;10:8596-8615. [DOI: 10.1039/d2tb01731h] [Reference Citation Analysis]
67 Li Y, Gao J, Wang S, Du M, Hou X, Tian T, Qiao X, Tian Z, Stang PJ, Li S, Hong X, Xiao Y. Self-assembled NIR-II Fluorophores with Ultralong Blood Circulation for Cancer Imaging and Image-guided Surgery. J Med Chem 2021. [PMID: 34949094 DOI: 10.1021/acs.jmedchem.1c01615] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]