BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021;121:7957-8094. [PMID: 34129337 DOI: 10.1021/acs.chemrev.1c00138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Bahr G, González LJ, Vila AJ. Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface. Curr Opin Chem Biol 2021;66:102103. [PMID: 34864439 DOI: 10.1016/j.cbpa.2021.102103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chen C, Oelschlaeger P, Wang D, Xu H, Wang Q, Wang C, Zhao A, Yang KW. Structure and Mechanism-Guided Design of Dual Serine/Metallo-Carbapenemase Inhibitors. J Med Chem 2022. [PMID: 35420040 DOI: 10.1021/acs.jmedchem.2c00213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Iqbal Z, Sun J, Yang H, Ji J, He L, Zhai L, Ji J, Zhou P, Tang D, Mu Y, Wang L, Yang Z. Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition. Molecules 2022;27:3832. [PMID: 35744953 DOI: 10.3390/molecules27123832] [Reference Citation Analysis]
4 López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022;:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Acharya Y, Dhanda G, Sarkar P, Haldar J. Pursuit of next-generation glycopeptides: a journey with vancomycin. Chem Commun (Camb) 2022;58:1881-97. [PMID: 35043130 DOI: 10.1039/d1cc06635h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Morroni G, Bressan R, Fioriti S, D'Achille G, Mingoia M, Cirioni O, Di Bella S, Piazza A, Comandatore F, Mauri C, Migliavacca R, Luzzaro F, Principe L, Lagatolla C. Antimicrobial Activity of Aztreonam in Combination with Old and New β-Lactamase Inhibitors against MBL and ESBL Co-Producing Gram-Negative Clinical Isolates: Possible Options for the Treatment of Complicated Infections. Antibiotics (Basel) 2021;10:1341. [PMID: 34827279 DOI: 10.3390/antibiotics10111341] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhai L, Jiang Y, Shi Y, Lv M, Pu YL, Cheng HL, Zhu JY, Yang KW. Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022;126:105910. [PMID: 35653899 DOI: 10.1016/j.bioorg.2022.105910] [Reference Citation Analysis]
8 Luo J, Liang Y, Montag M, Diskin-Posner Y, Avram L, Milstein D. Controlled Selectivity through Reversible Inhibition of the Catalyst: Stereodivergent Semihydrogenation of Alkynes. J Am Chem Soc 2022. [PMID: 35839274 DOI: 10.1021/jacs.2c04233] [Reference Citation Analysis]
9 Yun Y, Han S, Park YS, Park H, Kim D, Kim Y, Kwon Y, Kim S, Lee JH, Jeon JH, Lee SH, Kang L. Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases. Front Microbiol 2022;12:752535. [DOI: 10.3389/fmicb.2021.752535] [Reference Citation Analysis]
10 Ayoub Moubareck C, Hammoudi Halat D. The Collateral Effects of COVID-19 Pandemic on the Status of Carbapenemase-Producing Pathogens. Front Cell Infect Microbiol 2022;12:823626. [DOI: 10.3389/fcimb.2022.823626] [Reference Citation Analysis]
11 Ho TD, Nauta KM, Luhmann EK, Radoshevich L, Ellermeier CD. Identification of the Extracytoplasmic Function σ Factor σP Regulon in Bacillus thuringiensis. mSphere 2022;:e0096721. [PMID: 35080471 DOI: 10.1128/msphere.00967-21] [Reference Citation Analysis]
12 Scaccaglia M, Rega M, Bacci C, Giovanardi D, Pinelli S, Pelosi G, Bisceglie F. Bismuth complex of quinoline thiosemicarbazone restores carbapenem sensitivity in NDM-1-positive Klebsiella pneumoniae. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111887] [Reference Citation Analysis]
13 Jung S, Yang M, Song WJ. Symmetry-Adapted Synthesis of Dicopper Oxidases with Divergent Dioxygen Reactivity. Inorg Chem . [DOI: 10.1021/acs.inorgchem.2c01898] [Reference Citation Analysis]
14 Legru A, Verdirosa F, Hernandez JF, Tassone G, Sannio F, Benvenuti M, Conde PA, Bossis G, Thomas CA, Crowder MW, Dillenberger M, Becker K, Pozzi C, Mangani S, Docquier JD, Gavara L. 1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity. Eur J Med Chem 2021;226:113873. [PMID: 34626878 DOI: 10.1016/j.ejmech.2021.113873] [Reference Citation Analysis]
15 Krivitskaya AV, Khrenova MG. Interplay between the Enamine and Imine Forms of the Hydrolyzed Imipenem in the Active Sites of Metallo-β-lactamases and in Water Solution. J Chem Inf Model 2022. [PMID: 35758922 DOI: 10.1021/acs.jcim.2c00539] [Reference Citation Analysis]
16 Au SX, Dzulkifly NS, Muhd Noor ND, Matsumura H, Raja Abdul Rahman RNZ, Normi YM. Dual Activity BLEG-1 from Bacillus lehensis G1 Revealed Structural Resemblance to B3 Metallo-β-Lactamase and Glyoxalase II: An Insight into Its Enzyme Promiscuity and Evolutionary Divergence. Int J Mol Sci 2021;22:9377. [PMID: 34502284 DOI: 10.3390/ijms22179377] [Reference Citation Analysis]
17 Medina FE, Jaña GA. QM/MM Study of a VIM-1 Metallo-β-Lactamase Enzyme: The Catalytic Reaction Mechanism. ACS Catal 2022;12:36-47. [DOI: 10.1021/acscatal.1c04786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Cafiero JH, Martini MC, Lozano MJ, Vacca C, Lagares A, Tomatis PE, Del Papa MF. BioF is a novel B2 metallo-β-lactamase from Pseudomonas sp. isolated from an on-farm biopurification system. Environ Microbiol 2021. [PMID: 34725905 DOI: 10.1111/1462-2920.15822] [Reference Citation Analysis]
19 Li H, Sun H. A hydroxide lock for metallo-β-lactamases. Nat Chem 2022;14:6-8. [PMID: 34987173 DOI: 10.1038/s41557-021-00871-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun (Camb) 2022. [PMID: 35730442 DOI: 10.1039/d2cc01772e] [Reference Citation Analysis]
21 Au SX, Noor NDM, Matsumura H, Rahman RNZRA, Normi YM. Procedure of the overexpression, purification and crystallization of BLEG-1, a bifunctional and evolutionary divergent B3 metallo-β-lactamase, for structure-function studies. MethodsX 2022. [DOI: 10.1016/j.mex.2022.101740] [Reference Citation Analysis]
22 Wang S, Cheng J, Niu Y, Li P, Zhang X, Lin J. Strategies for Zinc Uptake in Pseudomonas aeruginosa at the Host-Pathogen Interface. Front Microbiol 2021;12:741873. [PMID: 34566943 DOI: 10.3389/fmicb.2021.741873] [Reference Citation Analysis]
23 Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021;12:1623-39. [PMID: 34778765 DOI: 10.1039/d1md00200g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Thomas PW, Cho EJ, Bethel CR, Smisek T, Ahn YC, Schroeder JM, Thomas CA, Dalby KN, Beckham JT, Crowder MW, Bonomo RA, Fast W. Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infect Dis 2022;8:811-24. [PMID: 35353502 DOI: 10.1021/acsinfecdis.1c00577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Aziz SN, Abid SA, Al-alak SK, Al Kadmy IMS, Rheima AM. Spread of ESβL-producing Escherichia coli and the anti-virulence effect of graphene nano-sheets. Arch Microbiol 2022;204. [DOI: 10.1007/s00203-021-02687-8] [Reference Citation Analysis]