BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Debacker AJ, Voutila J, Catley M, Blakey D, Habib N. Delivery of Oligonucleotides to the Liver with GalNAc: From Research to Registered Therapeutic Drug. Mol Ther 2020;28:1759-71. [PMID: 32592692 DOI: 10.1016/j.ymthe.2020.06.015] [Cited by in Crossref: 31] [Cited by in F6Publishing: 70] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorganic & Medicinal Chemistry 2022;72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Reference Citation Analysis]
2 Agarwal K, Lok J, Gane E. Antisense oligonucleotides (ASOs) in chronic hepatitis B infection: Opportunities and challenging the orthodoxy. Journal of Hepatology 2022;77:906-8. [DOI: 10.1016/j.jhep.2022.08.020] [Reference Citation Analysis]
3 Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022. [PMID: 36174107 DOI: 10.1021/acs.chemrev.1c01032] [Reference Citation Analysis]
4 Warner JB, Guenthner SC, Hardesty JE, McClain CJ, Warner DR, Kirpich IA. Liver-specific drug delivery platforms: Applications for the treatment of alcohol-associated liver disease. World J Gastroenterol 2022; 28(36): 5280-5299 [DOI: 10.3748/wjg.v28.i36.5280] [Reference Citation Analysis]
5 Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci 2022. [PMID: 36097955 DOI: 10.1039/d2bm00859a] [Reference Citation Analysis]
6 Hochreuter MY, Dall M, Treebak JT, Barrès R. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol Metab 2022;:101581. [PMID: 36028120 DOI: 10.1016/j.molmet.2022.101581] [Reference Citation Analysis]
7 Becquart C, Stulz R, Thomen A, Dost M, Najafinobar N, Dahlén A, Andersson S, Ewing AG, Kurczy ME. Intracellular Absolute Quantification of Oligonucleotide Therapeutics by NanoSIMS. Anal Chem 2022. [PMID: 35830231 DOI: 10.1021/acs.analchem.2c02111] [Reference Citation Analysis]
8 Dejban P, Lieske JC. New therapeutics for primary hyperoxaluria type 1. Curr Opin Nephrol Hypertens 2022;31:344-50. [PMID: 35266883 DOI: 10.1097/MNH.0000000000000790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zambon A, Averna M, D’erasmo L, Arca M, Catapano A. New and Emerging Therapies for Dyslipidemia. Endocrinology and Metabolism Clinics of North America 2022. [DOI: 10.1016/j.ecl.2022.02.004] [Reference Citation Analysis]
10 D'Ambrosio V, Ferraro PM. Lumasiran in the Management of Patients with Primary Hyperoxaluria Type 1: From Bench to Bedside. Int J Nephrol Renovasc Dis 2022;15:197-206. [PMID: 35747094 DOI: 10.2147/IJNRD.S293682] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Xu Z, Huo W, Ireland T, Huang L, Ocampo T, Vegas AJ. A Quantitative Metal-Encoded Conjugate Platform for Targeting Ligand Discovery. Bioconjug Chem 2022. [PMID: 35758018 DOI: 10.1021/acs.bioconjchem.2c00195] [Reference Citation Analysis]
12 Bai X, Zhao G, Chen Q, Li Z, Gao M, Ho W, Xu X, Zhang XQ. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci Adv 2022;8:eabn7162. [PMID: 35731866 DOI: 10.1126/sciadv.abn7162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Cordeiro R, Carvalho A, Durães L, Faneca H. Triantennary GalNAc-Functionalized Multi-Responsive Mesoporous Silica Nanoparticles for Drug Delivery Targeted at Asialoglycoprotein Receptor. Int J Mol Sci 2022;23:6243. [PMID: 35682920 DOI: 10.3390/ijms23116243] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Kaur S, Alley SC, Szapacs M, Wilson A, Ciccimaro E, Su D, Henderson N, Chen L, Garofolo F, Hengel S, Jian W, Kellie JF, Lee A, Mehl J, Palandra J, Qiu H, Savoie N, Shakleya D, Staelens L, Sugimoto H, Sumner G, Welink J, Wheller R, Xue YJ, Zeng J, Zhang J, Zhou H, Wang J, Summerfield S, Kavetska O, Dillen L, Ramanathan R, Baratta M, Dasgupta A, Edmison A, Ferrari L, Fischer S, Fraier D, Haidar S, Heermeier K, James C, Ji A, Luo L, Lima Santos GM, Post N, Rosenbaum AI, Sporring S, Surapaneni S, Vinter S, Wan K, Woolf E, Kavetska O, Cho SJ, Kossary E, Prior S, Abhari MR, Soo C, Wang YM, Bandukwala A, Cherry E, Cludts I, Ghosh S, Hopper S, Ishii-Watabe A, Kirshner S, Maher K, Maxfield K, Pedras-Vasconcelos J, Saito Y, Smith D, Solstad T, Verthelyi D, Wadhwa M, Wagner L, Waxenecker G, Yan H, Zhang L. 2021 White Paper on Recent Issues in Bioanalysis: Mass Spec of Proteins, Extracellular Vesicles, CRISPR, Chiral Assays, Oligos; Nanomedicines Bioanalysis; ICH M10 Section 7.1; Non-Liquid & Rare Matrices; Regulatory Inputs (Part 1A - Recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC & Part 1B - Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2022;14:505-80. [PMID: 35578993 DOI: 10.4155/bio-2022-0078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2022;2:24. [PMID: 35480987 DOI: 10.1038/s43586-022-00104-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
16 Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022:S0168-3659(22)00207-3. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Gosis BS, Wada S, Thorsheim C, Li K, Jung S, Rhoades JH, Yang Y, Brandimarto J, Li L, Uehara K, Jang C, Lanza M, Sanford NB, Bornstein MR, Jeong S, Titchenell PM, Biddinger SB, Arany Z. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022;376:eabf8271. [PMID: 35420934 DOI: 10.1126/science.abf8271] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
18 Gangopadhyay S, Gore KR. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. RNA Biology 2022;19:452-67. [DOI: 10.1080/15476286.2022.2052641] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
19 Smith ES, Whitty E, Yoo B, Moore A, Sempere LF, Medarova Z. Clinical Applications of Short Non-Coding RNA-Based Therapies in the Era of Precision Medicine. Cancers (Basel) 2022;14:1588. [PMID: 35326738 DOI: 10.3390/cancers14061588] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
20 Kao CC, Nie Y, Ren S, De Costa NTTS, Pandey RK, Hong J, Smith DB, Symons JA, Beigelman L, Blatt LM. Mechanism of action of hepatitis B virus S antigen transport-inhibiting oligonucleotide polymer, STOPS, molecules. Mol Ther Nucleic Acids 2022;27:335-48. [PMID: 35024245 DOI: 10.1016/j.omtn.2021.12.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Goga A, Stoffel M. Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Kay E, Stulz R, Becquart C, Lovric J, Tängemo C, Thomen A, Baždarević D, Najafinobar N, Dahlén A, Pielach A, Fernandez-Rodriguez J, Strömberg R, Ämmälä C, Andersson S, Kurczy M. NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular Distribution. Pharmaceutics 2022;14:463. [PMID: 35214195 DOI: 10.3390/pharmaceutics14020463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biology 2022;19:313-32. [DOI: 10.1080/15476286.2022.2027150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022;27:536. [PMID: 35056851 DOI: 10.3390/molecules27020536] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
25 Hirano Y, Komatsu Y. Promotion of cytoplasmic localization of oligonucleotides by connecting cross-linked duplexes. RSC Adv 2022;12:24471-7. [DOI: 10.1039/d2ra04375k] [Reference Citation Analysis]
26 O'sullivan J, Muñoz-muñoz J, Turnbull G, Sim N, Penny S, Moschos S. Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Adv 2022;12:20432-46. [DOI: 10.1039/d2ra01999j] [Reference Citation Analysis]
27 Bao Q, Ganbold T, Qiburi Q, Bao M, Han S, Baigude H. AMP functionalized curdlan nanoparticles as a siRNA carrier: Synthesis, characterization and targeted delivery via adenosine A2B receptor. Int J Biol Macromol 2021;193:866-73. [PMID: 34743942 DOI: 10.1016/j.ijbiomac.2021.10.138] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Talap J, Zhao J, Shen M, Song Z, Zhou H, Kang Y, Sun L, Yu L, Zeng S, Cai S. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal 2021;206:114368. [PMID: 34571322 DOI: 10.1016/j.jpba.2021.114368] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
29 Mukherjee P, Aksamitiene E, Alex A, Shi J, Bera K, Zhang C, Spillman DR, Marjanovic M, Fazio M, Seth PP, Frazier K, Hood SR, Boppart SA. Differential Uptake of Antisense Oligonucleotides in Mouse Hepatocytes and Macrophages Revealed by Simultaneous Two-Photon Excited Fluorescence and Coherent Raman Imaging. Nucleic Acid Ther 2021. [PMID: 34797690 DOI: 10.1089/nat.2021.0059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Wiggins BS. Human Angiopoietin-like Protein 3/ANGPTL3 Antibodies: Adding to the Armamentarium in the Management of Dyslipidemia. J Cardiovasc Pharmacol 2021;78:e631-40. [PMID: 34738550 DOI: 10.1097/FJC.0000000000001132] [Reference Citation Analysis]
31 Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021;178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
32 Tan CP, Sinigaglia L, Gomez V, Nicholls J, Habib NA. RNA Activation-A Novel Approach to Therapeutically Upregulate Gene Transcription. Molecules 2021;26:6530. [PMID: 34770939 DOI: 10.3390/molecules26216530] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Biessen EAL, Van Berkel TJC. N-Acetyl Galactosamine Targeting: Paving the Way for Clinical Application of Nucleotide Medicines in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2021;41:2855-65. [PMID: 34645280 DOI: 10.1161/ATVBAHA.121.316290] [Reference Citation Analysis]
34 Xiao H, Han S, Baigude H. Regulation of microglia polarization via mannose receptor-mediated delivery of siRNA by ligand-functionalized DoGo LNP. RSC Adv 2021;11:32549-58. [PMID: 35493551 DOI: 10.1039/d1ra04293a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Khosravi HM, Jantsch MF. Site-directed RNA editing: recent advances and open challenges. RNA Biol 2021;:1-10. [PMID: 34569891 DOI: 10.1080/15476286.2021.1983288] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
36 Sreedurgalakshmi K, Srikar R, Harikrishnan K, Srinivasan L, Rajkumari R. Cetuximab-siRNA Conjugate Linked Through Cationized Gelatin Knocks Down KRAS G12C Mutation in NSCLC Sensitizing the Cells Toward Gefitinib. Technol Cancer Res Treat 2021;20:15330338211041453. [PMID: 34542333 DOI: 10.1177/15330338211041453] [Reference Citation Analysis]
37 Thangamani L, Balasubramanian B, Easwaran M, Natarajan J, Pushparaj K, Meyyazhagan A, Piramanayagam S. GalNAc-siRNA conjugates: Prospective tools on the frontier of anti-viral therapeutics. Pharmacol Res 2021;173:105864. [PMID: 34474100 DOI: 10.1016/j.phrs.2021.105864] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
38 Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022;7:292-323. [PMID: 34466734 DOI: 10.1016/j.bioactmat.2021.05.038] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
39 Terada C, Wada F, Uchida M, Yasutomi Y, Oh K, Kawamoto S, Kayaba Y, Yamayoshi A, Harada-Shiba M, Obika S, Yamamoto T. Programmed Instability of Ligand Conjugation Manifold for Efficient Hepatocyte Delivery of Therapeutic Oligonucleotides. Nucleic Acid Ther 2021. [PMID: 34468210 DOI: 10.1089/nat.2021.0036] [Reference Citation Analysis]
40 Ayyar VS, Song D, Zheng S, Carpenter T, Heald DL. Minimal physiologically based pharmacokinetic-pharmacodynamic (mPBPK-PD) model of GalNAc-conjugated siRNA disposition and gene silencing in preclinical species and humans. J Pharmacol Exp Ther 2021:JPET-AR-2021-000805. [PMID: 34413198 DOI: 10.1124/jpet.121.000805] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
41 Abdelaal AM, Kasinski AL. Ligand-mediated delivery of RNAi-based therapeutics for the treatment of oncological diseases. NAR Cancer 2021;3:zcab030. [PMID: 34316717 DOI: 10.1093/narcan/zcab030] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
42 Kolosenko I, Goroshchuk O, Vidarsdottir L, Björklund AC, Dowdy SF, Palm-Apergi C. RNAi prodrugs decrease elevated mRNA levels of Polo-like kinase 1 in ex vivo cultured primary cells from pediatric acute myeloid leukemia patients. FASEB J 2021;35:e21476. [PMID: 33788972 DOI: 10.1096/fj.202002454RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 DeLong RK, Swanson R, Niederwerder MC, Khanal P, Aryal S, Marasini R, Jaberi-Douraki M, Shakeri H, Mazloom R, Schneider S, Ensley S, Clarke LL, Woode RA, Young S, Rayamajhi S, Miesner T, Higginbotham ML, Lin Z, Shrestha T, Ghosh K, Glaspell G, Mathew EN. Zn-based physiometacomposite nanoparticles: distribution, tolerance, imaging, and antiviral and anticancer activity. Nanomedicine (Lond) 2021;16:1857-72. [PMID: 34282923 DOI: 10.2217/nnm-2021-0179] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
44 Liao L, Cen B, Li G, Wei Y, Wang Z, Huang W, He S, Yuan Y, Ji A. A bivalent cyclic RGD-siRNA conjugate enhances the antitumor effect of apatinib via co-inhibiting VEGFR2 in non-small cell lung cancer xenografts. Drug Deliv 2021;28:1432-42. [PMID: 34236267 DOI: 10.1080/10717544.2021.1937381] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
45 Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021;174:140-67. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
46 Shepherd SJ, Warzecha CC, Yadavali S, El-Mayta R, Alameh MG, Wang L, Weissman D, Wilson JM, Issadore D, Mitchell MJ. Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device. Nano Lett 2021;21:5671-80. [PMID: 34189917 DOI: 10.1021/acs.nanolett.1c01353] [Cited by in F6Publishing: 28] [Reference Citation Analysis]
47 Cui H, Zhu X, Li S, Wang P, Fang J. Liver-Targeted Delivery of Oligonucleotides with N-Acetylgalactosamine Conjugation. ACS Omega 2021;6:16259-65. [PMID: 34235295 DOI: 10.1021/acsomega.1c01755] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Willmann S, Marostica E, Snelder N, Solms A, Jensen M, Lobmeyer M, Lensing AWA, Bethune C, Morgan E, Yu RZ, Wang Y, Jung SW, Geary R, Bhanot S. PK/PD modeling of FXI antisense oligonucleotides to bridge the dose-FXI activity relation from healthy volunteers to end-stage renal disease patients. CPT Pharmacometrics Syst Pharmacol 2021;10:890-901. [PMID: 34085768 DOI: 10.1002/psp4.12663] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Li T, Yu P, Chen Y, Sun B, Dong P, Zhu T, Meng X. N-acetylgalactosamine-decorated nanoliposomes for targeted delivery of paclitaxel to hepatocellular carcinoma. Eur J Med Chem 2021;222:113605. [PMID: 34126457 DOI: 10.1016/j.ejmech.2021.113605] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
50 Holland RJ, Lam K, Ye X, Martin AD, Wood MC, Palmer L, Fraser D, McClintock K, Majeski S, Jarosz A, Lee ACH, Thi EP, Judge A, Heyes J. Ligand conjugate SAR and enhanced delivery in NHP. Mol Ther 2021:S1525-0016(21)00308-7. [PMID: 34091052 DOI: 10.1016/j.ymthe.2021.06.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Romero-Palomo F, Festag M, Lenz B, Schadt S, Brink A, Kipar A, Steinhuber B, Husser C, Koller E, Sewing S, Tessier Y, Dzygiel P, Fischer G, Winter M, Hetzel U, Mihatsch MJ, Braendli-Baiocco A. Safety, Tissue Distribution, and Metabolism of LNA-Containing Antisense Oligonucleotides in Rats. Toxicol Pathol 2021;49:1174-92. [PMID: 34060347 DOI: 10.1177/01926233211011615] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
52 Yamamoto T, Mukai Y, Wada F, Terada C, Kayaba Y, Oh K, Yamayoshi A, Obika S, Harada-Shiba M. Highly Potent GalNAc-Conjugated Tiny LNA Anti-miRNA-122 Antisense Oligonucleotides. Pharmaceutics 2021;13:817. [PMID: 34072682 DOI: 10.3390/pharmaceutics13060817] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
53 Aviñó A, Clua A, Bleda MJ, Eritja R, Fàbrega C. Evaluation of Floxuridine Oligonucleotide Conjugates Carrying Potential Enhancers of Cellular Uptake. Int J Mol Sci 2021;22:5678. [PMID: 34073599 DOI: 10.3390/ijms22115678] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Adachi H, Hengesbach M, Yu YT, Morais P. From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021;9:550. [PMID: 34068948 DOI: 10.3390/biomedicines9050550] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
55 Arima H. Twenty Years of Research on Cyclodextrin Conjugates with PAMAM Dendrimers. Pharmaceutics 2021;13:697. [PMID: 34064866 DOI: 10.3390/pharmaceutics13050697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Vadolas J, Ng GZ, Kysenius K, Crouch PJ, Dames S, Eisermann M, Nualkaew T, Vilcassim S, Schaeper U, Grigoriadis G. SLN124, a GalNac-siRNA targeting transmembrane serine protease 6, in combination with deferiprone therapy reduces ineffective erythropoiesis and hepatic iron-overload in a mouse model of β-thalassaemia. Br J Haematol 2021;194:200-10. [PMID: 33942901 DOI: 10.1111/bjh.17428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
57 Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep 2021;3:100300. [PMID: 34159305 DOI: 10.1016/j.jhepr.2021.100300] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
58 Syed YY. Givosiran: A Review in Acute Hepatic Porphyria. Drugs 2021;81:841-8. [PMID: 33871817 DOI: 10.1007/s40265-021-01511-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
59 Hammond SM, Aartsma-Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon-Mom W, Arechavala-Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021;13:e13243. [PMID: 33821570 DOI: 10.15252/emmm.202013243] [Cited by in Crossref: 12] [Cited by in F6Publishing: 58] [Article Influence: 12.0] [Reference Citation Analysis]
60 Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge‐Conversion Strategies for Nucleic Acid Delivery. Adv Funct Mater 2021;31:2011103. [DOI: 10.1002/adfm.202011103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
61 Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021;22:3295. [PMID: 33804856 DOI: 10.3390/ijms22073295] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 34.0] [Reference Citation Analysis]
62 de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021;9:613209. [PMID: 33777893 DOI: 10.3389/fchem.2021.613209] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
63 Ding Z, Ericksen RE, Lee QY, Han W. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis. Amino Acids 2021. [PMID: 33646427 DOI: 10.1007/s00726-021-02961-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
64 Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense technology: A review. J Biol Chem 2021;296:100416. [PMID: 33600796 DOI: 10.1016/j.jbc.2021.100416] [Cited by in Crossref: 7] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
65 Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021;31:245-70. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
66 Dacoba TG, Anthiya S, Berrecoso G, Fernández‐mariño I, Fernández‐varela C, Crecente‐campo J, Teijeiro‐osorio D, Torres Andón F, Alonso MJ. Nano‐Oncologicals: A Tortoise Trail Reaching New Avenues. Adv Funct Mater 2021;31:2009860. [DOI: 10.1002/adfm.202009860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
67 Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. 2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals (Basel) 2021;14:145. [PMID: 33670364 DOI: 10.3390/ph14020145] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
68 Fairman K, Li M, Ning B, Lumen A. Physiologically based pharmacokinetic (PBPK) modeling of RNAi therapeutics: Opportunities and challenges. Biochem Pharmacol 2021;189:114468. [PMID: 33577889 DOI: 10.1016/j.bcp.2021.114468] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
69 Golubeva TS, Cherenko VA, Orishchenko KE. Recent Advances in the Development of Exogenous dsRNA for the Induction of RNA Interference in Cancer Therapy. Molecules 2021;26:701. [PMID: 33572762 DOI: 10.3390/molecules26030701] [Reference Citation Analysis]
70 Rossi JJ, Rossi DJ. siRNA Drugs: Here to Stay. Mol Ther 2021;29:431-2. [PMID: 33472033 DOI: 10.1016/j.ymthe.2021.01.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
71 Scott LJ, Keam SJ. Lumasiran: First Approval. Drugs 2021;81:277-82. [PMID: 33405070 DOI: 10.1007/s40265-020-01463-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 74] [Article Influence: 25.0] [Reference Citation Analysis]
72 Crooke ST, Seth PP, Vickers TA, Liang XH. The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. J Am Chem Soc 2020;142:14754-71. [PMID: 32786803 DOI: 10.1021/jacs.0c04928] [Cited by in Crossref: 20] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]