BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Seminars in Immunology 2017;34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Cited by in Crossref: 120] [Cited by in F6Publishing: 114] [Article Influence: 24.0] [Reference Citation Analysis]
Number Citing Articles
1 Trzciński JW, Morillas-Becerril L, Scarpa S, Tannorella M, Muraca F, Rastrelli F, Castellani C, Fedrigo M, Angelini A, Tavano R, Papini E, Mancin F. Poly(lipoic acid)-Based Nanoparticles as Self-Organized, Biocompatible, and Corona-Free Nanovectors. Biomacromolecules 2021;22:467-80. [PMID: 33347750 DOI: 10.1021/acs.biomac.0c01321] [Reference Citation Analysis]
2 Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020;10:5435-88. [PMID: 32373222 DOI: 10.7150/thno.40068] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
3 Lin ZC, Hwang TL, Huang TH, Tahara K, Trousil J, Fang JY. Monovalent antibody-conjugated lipid-polymer nanohybrids for active targeting to desmoglein 3 of keratinocytes to attenuate psoriasiform inflammation. Theranostics 2021;11:4567-84. [PMID: 33754014 DOI: 10.7150/thno.56995] [Reference Citation Analysis]
4 Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Reference Citation Analysis]
5 Boraschi D, Castellano LRC, Italiani P. Editorial: Interaction of Nanomaterials with the Immune System: Role in Nanosafety and Nanomedicine. Front Immunol 2017;8:1688. [PMID: 29234330 DOI: 10.3389/fimmu.2017.01688] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
6 Hort MA, Alves BDS, Ramires Júnior OV, Falkembach MC, Araújo GMS, Fernandes CLF, Tavella RA, Bidone J, Dora CL, da Silva Júnior FMR. In vivo toxicity evaluation of nanoemulsions for drug delivery. Drug Chem Toxicol 2021;44:585-94. [PMID: 31476915 DOI: 10.1080/01480545.2019.1659806] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol 2021;18:40. [PMID: 34717665 DOI: 10.1186/s12989-021-00432-z] [Reference Citation Analysis]
8 Ameruoso A, Palomba R, Palange AL, Cervadoro A, Lee A, Di Mascolo D, Decuzzi P. Ameliorating Amyloid-β Fibrils Triggered Inflammation via Curcumin-Loaded Polymeric Nanoconstructs. Front Immunol 2017;8:1411. [PMID: 29163489 DOI: 10.3389/fimmu.2017.01411] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
9 Chen Y, Zeng Z, Ying H, Wu C, Chen S. Superparamagnetic iron oxide nanoparticles attenuate lipopolysaccharide-induced inflammatory responses through modulation of toll-like receptor 4 expression. J Appl Toxicol 2020;40:1067-75. [PMID: 32207180 DOI: 10.1002/jat.3967] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Anfray C, Mainini F, Andón FT. Nanoparticles for immunotherapy. Colloids for Nanobiotechnology - Synthesis, Characterization and Potential Applications. Elsevier; 2020. pp. 265-306. [DOI: 10.1016/b978-0-08-102828-5.00011-5] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Yang X, Yang Q, Zheng G, Han S, Zhao F, Hu Q, Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environmental Toxicology 2018. [DOI: 10.1002/tox.22695] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
12 Alsaleh NB. Adverse cardiovascular responses of engineered nanomaterials: Current understanding of molecular mechanisms and future challenges. Nanomedicine 2021;37:102421. [PMID: 34166839 DOI: 10.1016/j.nano.2021.102421] [Reference Citation Analysis]
13 Assenhöj M, Eriksson P, Dönnes P, Ljunggren SA, Marcusson-Ståhl M, Du Rietz A, Uvdal K, Karlsson H, Cederbrant K. Protein interaction, monocyte toxicity and immunogenic properties of cerium oxide crystals with 5% or 14% gadolinium, cobalt oxide and iron oxide nanoparticles - an interdisciplinary approach. Nanotoxicology 2021;15:1035-58. [PMID: 34468264 DOI: 10.1080/17435390.2021.1966115] [Reference Citation Analysis]
14 Walduck A, Sangwan P, Vo QA, Ratcliffe J, White J, Muir BW, Tran N. Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles. RSC Adv 2020;10:33608-19. [DOI: 10.1039/d0ra06120d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
15 Feray A, Szely N, Guillet E, Hullo M, Legrand FX, Brun E, Pallardy M, Biola-Vidamment A. How to Address the Adjuvant Effects of Nanoparticles on the Immune System. Nanomaterials (Basel) 2020;10:E425. [PMID: 32121170 DOI: 10.3390/nano10030425] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hosseinpour S, Walsh LJ, Xu C. Modulating Osteoimmune Responses by Mesoporous Silica Nanoparticles. ACS Biomater Sci Eng 2021. [PMID: 34775744 DOI: 10.1021/acsbiomaterials.1c00899] [Reference Citation Analysis]
17 Bouallegui Y. Immunity in mussels: An overview of molecular components and mechanisms with a focus on the functional defenses. Fish Shellfish Immunol 2019;89:158-69. [PMID: 30930277 DOI: 10.1016/j.fsi.2019.03.057] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
18 Mukherjee SP, Lazzaretto B, Hultenby K, Newman L, Rodrigues AF, Lozano N, Kostarelos K, Malmberg P, Fadeel B. Graphene Oxide Elicits Membrane Lipid Changes and Neutrophil Extracellular Trap Formation. Chem 2018;4:334-58. [DOI: 10.1016/j.chempr.2017.12.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
19 Jin XH, Zheng LL, Song MR, Xu WS, Kou YN, Zhou Y, Zhang LW, Zhu YN, Wan B, Wei ZY, Zhang GP. A nano silicon adjuvant enhances inactivated transmissible gastroenteritis vaccine through activation the Toll-like receptors and promotes humoral and cellular immune responses. Nanomedicine 2018;14:1201-12. [PMID: 29501635 DOI: 10.1016/j.nano.2018.02.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Bhandari C, Guirguis M, Savan NA, Shrivastava N, Oliveira S, Hasan T, Obaid G. What NIR photodynamic activation offers molecular targeted nanomedicines: Perspectives into the conundrum of tumor specificity and selectivity. Nano Today 2021;36:101052. [PMID: 33552231 DOI: 10.1016/j.nantod.2020.101052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Nandi D, Shivrayan M, Gao J, Krishna J, Das R, Liu B, Thayumanavan S, Kulkarni A. Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation. ACS Appl Mater Interfaces 2021;13:45300-14. [PMID: 34543013 DOI: 10.1021/acsami.1c14082] [Reference Citation Analysis]
22 Romo-Quiñonez CR, Álvarez-Sánchez AR, Álvarez-Ruiz P, Chávez-Sánchez MC, Bogdanchikova N, Pestryakov A, Mejia-Ruiz CH. Evaluation of a new Argovit as an antiviral agent included in feed to protect the shrimp Litopenaeus vannamei against White Spot Syndrome Virus infection. PeerJ 2020;8:e8446. [PMID: 32149020 DOI: 10.7717/peerj.8446] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
23 Della Camera G, Lipsa D, Mehn D, Italiani P, Boraschi D, Gioria S. A Step-by-Step Approach to Improve Clinical Translation of Liposome-Based Nanomaterials, a Focus on Innate Immune and Inflammatory Responses. Int J Mol Sci 2021;22:E820. [PMID: 33467541 DOI: 10.3390/ijms22020820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020;157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
25 Cao Y, Gong Y, Liao W, Luo Y, Wu C, Wang M, Yang Q. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals 2018;31:457-76. [DOI: 10.1007/s10534-018-0113-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
26 Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int J Mol Sci 2020;21:E5207. [PMID: 32717819 DOI: 10.3390/ijms21155207] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
27 Huang Q, Zhang J, Zhang Y, Timashev P, Ma X, Liang XJ. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics 2020;10:5649-70. [PMID: 32483410 DOI: 10.7150/thno.42569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020;7:587012. [PMID: 33324678 DOI: 10.3389/fmolb.2020.587012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
29 Chen L, Ma X, Dang M, Dong H, Hu H, Su X, Liu W, Wang Q, Mou Y, Teng Z. Simultaneous T Cell Activation and Macrophage Polarization to Promote Potent Tumor Suppression by Iron Oxide-Embedded Large-Pore Mesoporous Organosilica Core-Shell Nanospheres. Adv Healthc Mater 2019;8:e1900039. [PMID: 30838801 DOI: 10.1002/adhm.201900039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Bruni N, Della Pepa C, Oliaro-Bosso S, Pessione E, Gastaldi D, Dosio F. Cannabinoid Delivery Systems for Pain and Inflammation Treatment. Molecules 2018;23:E2478. [PMID: 30262735 DOI: 10.3390/molecules23102478] [Cited by in Crossref: 79] [Cited by in F6Publishing: 59] [Article Influence: 19.8] [Reference Citation Analysis]
31 Xenaki V, Marthinussen MC, Costea DE, Breivik K, Lie SA, Cimpan MR, Åstrøm AN. Predicting intention of Norwegian dental health-care workers to use nanomaterials: An application of the augmented theory of planned behavior. Eur J Oral Sci 2021. [PMID: 34729822 DOI: 10.1111/eos.12821] [Reference Citation Analysis]
32 Tan A, Hong L, Du JD, Boyd BJ. Self-Assembled Nanostructured Lipid Systems: Is There a Link between Structure and Cytotoxicity? Adv Sci (Weinh) 2019;6:1801223. [PMID: 30775224 DOI: 10.1002/advs.201801223] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 10.8] [Reference Citation Analysis]
33 Feng H, Yang X, Zhang L, Liu Q, Feng Y, Wu D, Liu Y, Yang J. Mannose-Modified Chitosan Poly(lactic-co-glycolic acid) Microspheres Act as a Mannose Receptor-Mediated Delivery System Enhancing the Immune Response. Polymers (Basel) 2021;13:2208. [PMID: 34279352 DOI: 10.3390/polym13132208] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021;18:61-73. [PMID: 33956565 DOI: 10.1080/1547691X.2021.1902432] [Reference Citation Analysis]
35 Dobrovolskaia MA. Nucleic Acid Nanoparticles at a Crossroads of Vaccines and Immunotherapies. Molecules 2019;24:E4620. [PMID: 31861154 DOI: 10.3390/molecules24244620] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
36 Keshavan S, Calligari P, Stella L, Fusco L, Delogu LG, Fadeel B. Nano-bio interactions: a neutrophil-centric view. Cell Death Dis 2019;10:569. [PMID: 31358731 DOI: 10.1038/s41419-019-1806-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
37 Mateu Ferrando R, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. Drug Discov Today Technol 2020;38:57-67. [PMID: 34895641 DOI: 10.1016/j.ddtec.2021.02.001] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Liao CC, Yu HP, Yang SC, Alalaiwe A, Dai YS, Liu FC, Fang JY. Multifunctional lipid-based nanocarriers with antibacterial and anti-inflammatory activities for treating MRSA bacteremia in mice. J Nanobiotechnology 2021;19:48. [PMID: 33588861 DOI: 10.1186/s12951-021-00789-5] [Reference Citation Analysis]
39 Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018;130:90-112. [PMID: 30149885 DOI: 10.1016/j.addr.2018.06.023] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
40 Zheng L, Zhao F, Ru J, Liu L, Wang Z, Wang N, Shu X, Wei Z, Guo H. Evaluation of the Effect of Inactivated Transmissible Gastroenteritis Virus Vaccine with Nano Silicon on the Phenotype and Function of Porcine Dendritic Cells. Viruses 2021;13:2158. [PMID: 34834964 DOI: 10.3390/v13112158] [Reference Citation Analysis]
41 Vu VP, Gifford GB, Chen F, Benasutti H, Wang G, Groman EV, Scheinman R, Saba L, Moghimi SM, Simberg D. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol 2019;14:260-8. [PMID: 30643271 DOI: 10.1038/s41565-018-0344-3] [Cited by in Crossref: 95] [Cited by in F6Publishing: 91] [Article Influence: 31.7] [Reference Citation Analysis]
42 Italiani P, Della Camera G, Boraschi D. Induction of Innate Immune Memory by Engineered Nanoparticles in Monocytes/Macrophages: From Hypothesis to Reality. Front Immunol 2020;11:566309. [PMID: 33123137 DOI: 10.3389/fimmu.2020.566309] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
43 Moore TL, Cook AB, Belotti E, Palomba R, Manghnani P, Spanò R, Brahmachari S, Di Francesco M, Palange AL, Di Mascolo D, Decuzzi P. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv and Transl Res . [DOI: 10.1007/s13346-022-01143-4] [Reference Citation Analysis]
44 Deville S, Honrath B, Tran QTD, Fejer G, Lambrichts I, Nelissen I, Dolga AM, Salvati A. Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages. Arch Toxicol 2020;94:173-86. [PMID: 31677074 DOI: 10.1007/s00204-019-02604-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
45 Kubackova J, Zbytovska J, Holas O. Nanomaterials for direct and indirect immunomodulation: A review of applications. European Journal of Pharmaceutical Sciences 2020;142:105139. [DOI: 10.1016/j.ejps.2019.105139] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
46 Boraschi D, Swartzwelter BJ, Italiani P. Interaction of engineered nanomaterials with the immune system: Health-related safety and possible benefits. Current Opinion in Toxicology 2018;10:74-83. [DOI: 10.1016/j.cotox.2018.02.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
47 Halamoda-Kenzaoui B, Vandebriel RJ, Howarth A, Siccardi M, David CAW, Liptrott NJ, Santin M, Borgos SE, Bremer-Hoffmann S, Caputo F. Methodological needs in the quality and safety characterisation of nanotechnology-based health products: Priorities for method development and standardisation. J Control Release 2021;336:192-206. [PMID: 34126169 DOI: 10.1016/j.jconrel.2021.06.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Azizi-Lalabadi M, Garavand F, Jafari SM. Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv Colloid Interface Sci 2021;293:102440. [PMID: 34022748 DOI: 10.1016/j.cis.2021.102440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Lokerse WJ, Lazarian A, Kleinhempel A, Petrini M, Schwarz P, Hossann M, Holdt LM, Mailänder V, Lindner LH. Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. Journal of Controlled Release 2021;333:1-15. [DOI: 10.1016/j.jconrel.2021.03.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
50 Yu Helvig S, Woythe L, Pham S, Bor G, Andersen H, Moein Moghimi S, Yaghmur A. A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (mPEG)-lipids showing variable complement activation properties. J Colloid Interface Sci 2021;582:906-17. [PMID: 32919118 DOI: 10.1016/j.jcis.2020.08.085] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
51 Makowski M, Silva ÍC, Pais do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics 2019;11:E588. [PMID: 31717337 DOI: 10.3390/pharmaceutics11110588] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
52 Meldrum K, Robertson SB, Römer I, Marczylo T, Dean LSN, Rogers A, Gant TW, Smith R, Tetley TD, Leonard MO. Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation. Part Fibre Toxicol 2018;15:24. [PMID: 29792201 DOI: 10.1186/s12989-018-0261-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
53 Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 2019;145:57-72. [PMID: 29981801 DOI: 10.1016/j.addr.2018.06.025] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 7.5] [Reference Citation Analysis]
54 Montes-Casado M, Sanvicente A, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés P, Portolés MT. An Immunological Approach to the Biocompatibility of Mesoporous SiO2-CaO Nanospheres. Int J Mol Sci 2020;21:E8291. [PMID: 33167415 DOI: 10.3390/ijms21218291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
55 Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J. Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2021;13:1829. [PMID: 34834243 DOI: 10.3390/pharmaceutics13111829] [Reference Citation Analysis]
56 Zhang Y, Guoqiang L, Sun M, Lu X. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med 2020;17:32-43. [PMID: 32296575 DOI: 10.20892/j.issn.2095-3941.2019.0372] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
57 Anwar M, Muhammad F, Akhtar B, Anwar MI, Raza A, Aleem A. Outer Membrane Protein-Coated Nanoparticles as Antibacterial Vaccine Candidates. Int J Pept Res Ther 2021;:1-9. [PMID: 33846682 DOI: 10.1007/s10989-021-10201-3] [Reference Citation Analysis]
58 Boraschi D, Li D, Li Y, Italiani P. In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials. Int J Environ Res Public Health 2021;18:11769. [PMID: 34831525 DOI: 10.3390/ijerph182211769] [Reference Citation Analysis]
59 Rizzuto MA, Salvioni L, Rotem R, Colombo M, Zanoni I, Granucci F, Prosperi D. Are nanotechnological approaches the future of treating inflammatory diseases? Nanomedicine (Lond) 2019;14:2379-90. [PMID: 31414616 DOI: 10.2217/nnm-2019-0159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. Nanoscale Adv 2020;2:563-82. [DOI: 10.1039/c9na00537d] [Cited by in Crossref: 19] [Article Influence: 9.5] [Reference Citation Analysis]
61 Zeuthen CM, Shahrokhtash A, Fromell K, Ekdahl KN, Mohammad-beigi H, Sutherland DS. C1q recognizes antigen-bound IgG in a curvature-dependent manner. Nano Res 2020;13:1651-8. [DOI: 10.1007/s12274-020-2788-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
62 Maiti S, Manna S, Shen J, Esser-Kahn AP, Du W. Mitigation of Hydrophobicity-Induced Immunotoxicity by Sugar Poly(orthoesters). J Am Chem Soc 2019;141:4510-4. [PMID: 30768257 DOI: 10.1021/jacs.8b12205] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
63 Líbalová H, Costa PM, Olsson M, Farcal L, Ortelli S, Blosi M, Topinka J, Costa AL, Fadeel B. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Chemosphere 2018;196:482-93. [PMID: 29324388 DOI: 10.1016/j.chemosphere.2017.12.182] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
64 Chisholm CF, Behnke W, Pokhilchuk Y, Frazer-Abel AA, Randolph TW. Subvisible Particles in IVIg Formulations Activate Complement in Human Serum. J Pharm Sci 2020;109:558-65. [PMID: 31672401 DOI: 10.1016/j.xphs.2019.10.041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
65 Huaux F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front Immunol 2018;9:2364. [PMID: 30510551 DOI: 10.3389/fimmu.2018.02364] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
66 Xu J, Wang J, Qiu J, Liu H, Wang Y, Cui Y, Humphry R, Wang N, DurKan C, Chen Y, Lu Y, Ma Q, Wu W, Luo Y, Xiao L, Wang G. Nanoparticles retard immune cells recruitment in vivo by inhibiting chemokine expression. Biomaterials 2021;265:120392. [PMID: 32992116 DOI: 10.1016/j.biomaterials.2020.120392] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
67 Zhao H, Wang H, Hu Y, Xu D, Yin C, Han Q, Zhang J. Chitosan Nanovaccines as Efficient Carrier Adjuvant System for IL-12 with Enhanced Protection Against HBV. Int J Nanomedicine 2021;16:4913-28. [PMID: 34321879 DOI: 10.2147/IJN.S317113] [Reference Citation Analysis]
68 Della Camera G, Madej M, Ferretti AM, La Spina R, Li Y, Corteggio A, Heinzl T, Swartzwelter BJ, Sipos G, Gioria S, Ponti A, Boraschi D, Italiani P. Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Front Immunol 2021;12:692165. [PMID: 34421901 DOI: 10.3389/fimmu.2021.692165] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
69 Abuarqoub D, Mahmoud NN, Zaza R, Abu-dahab R, Khalil EA, Sabbah DA, Fang W. The In Vitro Immunomodulatory Effects of Gold Nanocomplex on THP-1-Derived Macrophages. Journal of Immunology Research 2022;2022:1-8. [DOI: 10.1155/2022/6031776] [Reference Citation Analysis]
70 Christensen JB. Dendrimers for pharmaceutical applications—potential and challenges. Delivery of Drugs. Elsevier; 2020. pp. 29-52. [DOI: 10.1016/b978-0-12-817776-1.00002-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Amin Yavari S, Castenmiller SM, van Strijp JAG, Croes M. Combating Implant Infections: Shifting Focus from Bacteria to Host. Adv Mater 2020;32:e2002962. [PMID: 32914481 DOI: 10.1002/adma.202002962] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
72 Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal‐Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small 2021;17:2007073. [DOI: 10.1002/smll.202007073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
73 Tang M, Li S, Wei L, Hou Z, Qu J, Li L. Do Engineered Nanomaterials Affect Immune Responses by Interacting With Gut Microbiota? Front Immunol 2021;12:684605. [PMID: 34594323 DOI: 10.3389/fimmu.2021.684605] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Cui W, Wang Y, Luo C, Xu J, Wang K, Han H, Yao K. Nanoceria for ocular diseases: Recent advances and future prospects. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100218] [Reference Citation Analysis]
75 Peigneux A, Oltolina F, Colangelo D, Iglesias GR, Delgado AV, Prat M, Jimenez‐lopez C. Functionalized Biomimetic Magnetic Nanoparticles as Effective Nanocarriers for Targeted Chemotherapy. Part Part Syst Charact 2019;36:1900057. [DOI: 10.1002/ppsc.201900057] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
76 Fadeel B. Hide and Seek: Nanomaterial Interactions With the Immune System. Front Immunol 2019;10:133. [PMID: 30774634 DOI: 10.3389/fimmu.2019.00133] [Cited by in Crossref: 55] [Cited by in F6Publishing: 42] [Article Influence: 18.3] [Reference Citation Analysis]
77 Su Y, Gao J, Kaur P, Wang Z. Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 2020;12:E1222. [PMID: 33348630 DOI: 10.3390/pharmaceutics12121222] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
78 Mitarotonda R, Giorgi E, Desimone MF, De Marzi MC. Nanoparticles and Immune Cells. CPD 2019;25:3960-82. [DOI: 10.2174/1381612825666190926161209] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
79 Yu HP, Liu FC, Lin CY, Umoro A, Trousil J, Hwang TL, Fang JY. Suppression of neutrophilic inflammation can be modulated by the droplet size of anti-inflammatory nanoemulsions. Nanomedicine (Lond) 2020;15:773-91. [PMID: 32193978 DOI: 10.2217/nnm-2019-0407] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Viau C, Haçariz O, Karimian F, Xia J. Comprehensive phenotyping and transcriptome profiling to study nanotoxicity in C. elegans. PeerJ 2020;8:e8684. [PMID: 32149031 DOI: 10.7717/peerj.8684] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
81 Wu LP, Ficker M, Christensen JB, Simberg D, Trohopoulos PN, Moghimi SM. Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking. Nat Commun 2021;12:4858. [PMID: 34381048 DOI: 10.1038/s41467-021-24960-6] [Reference Citation Analysis]
82 Muñoz-Wolf N, Lavelle EC. Promotion of trained innate immunity by nanoparticles. Semin Immunol 2021;:101542. [PMID: 34973890 DOI: 10.1016/j.smim.2021.101542] [Reference Citation Analysis]
83 Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019;16:19. [PMID: 31014371 DOI: 10.1186/s12989-019-0302-8] [Cited by in Crossref: 61] [Cited by in F6Publishing: 42] [Article Influence: 20.3] [Reference Citation Analysis]
84 Zhao H, Chen M, Zhao Z, Zhu L, Yuan S. A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R6H4. Drug Deliv Transl Res 2021;11:1969-82. [PMID: 33006741 DOI: 10.1007/s13346-020-00859-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
85 Bullock CJ, Bussy C. Biocompatibility Considerations in the Design of Graphene Biomedical Materials. Adv Mater Interfaces 2019. [DOI: 10.1002/admi.201900229] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
86 Guan J, Chen W, Yang M, Wu E, Qian J, Zhan C. Regulation of in vivo delivery of nanomedicines by herbal medicines. Adv Drug Deliv Rev 2021;174:210-28. [PMID: 33887404 DOI: 10.1016/j.addr.2021.04.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
87 Ummarino A, Gambaro FM, Kon E, Torres Andón F. Therapeutic Manipulation of Macrophages Using Nanotechnological Approaches for the Treatment of Osteoarthritis. Nanomaterials (Basel) 2020;10:E1562. [PMID: 32784839 DOI: 10.3390/nano10081562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Ramos TI, Villacis-aguirre CA, López-aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022;14:247. [DOI: 10.3390/pharmaceutics14020247] [Reference Citation Analysis]
89 Papini E, Tavano R, Mancin F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front Immunol 2020;11:567365. [PMID: 33154748 DOI: 10.3389/fimmu.2020.567365] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
90 Swartzwelter BJ, Verde A, Rehak L, Madej M, Puntes VF, De Luca AC, Boraschi D, Italiani P. Interaction between Macrophages and Nanoparticles: In Vitro 3D Cultures for the Realistic Assessment of Inflammatory Activation and Modulation of Innate Memory. Nanomaterials (Basel) 2021;11:207. [PMID: 33467414 DOI: 10.3390/nano11010207] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
91 Conte C, Dal Poggetto G, J Swartzwelter B, Esposito D, Ungaro F, Laurienzo P, Boraschi D, Quaglia F. Surface Exposure of PEG and Amines on Biodegradable Nanoparticles as a Strategy to Tune Their Interaction with Protein-Rich Biological Media. Nanomaterials (Basel) 2019;9:E1354. [PMID: 31547212 DOI: 10.3390/nano9101354] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
92 Feng R, Yu F, Xu J, Hu X. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials 2021;266:120469. [PMID: 33120200 DOI: 10.1016/j.biomaterials.2020.120469] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
93 Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021;175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Reference Citation Analysis]
94 Li X, Qin H, Zhou Z, Li Y, Wang J, Lin M, Dong X, Yang M, Li L. Cellular evaluation of the metal-organic framework PCN-224 associated with inflammation and autophagy. Toxicol In Vitro 2021;70:105019. [PMID: 33058999 DOI: 10.1016/j.tiv.2020.105019] [Reference Citation Analysis]
95 Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. Nanomaterials (Basel) 2021;11:1508. [PMID: 34200384 DOI: 10.3390/nano11061508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
96 Bae J, Ha M, Perumalsamy H, Lee Y, Song J, Yoon T. Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022;14:630. [DOI: 10.3390/pharmaceutics14030630] [Reference Citation Analysis]
97 Swartzwelter BJ, Barbero F, Verde A, Mangini M, Pirozzi M, De Luca AC, Puntes VF, Leite LCC, Italiani P, Boraschi D. Gold Nanoparticles Modulate BCG-Induced Innate Immune Memory in Human Monocytes by Shifting the Memory Response towards Tolerance. Cells 2020;9:E284. [PMID: 31979412 DOI: 10.3390/cells9020284] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
98 Foglizzo V, Marchiò S. Bacteriophages as Therapeutic and Diagnostic Vehicles in Cancer. Pharmaceuticals (Basel) 2021;14:161. [PMID: 33671476 DOI: 10.3390/ph14020161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
99 Kustermann M, Rok MJ, Cohn RD, Ivakine EA. In Vivo Genome Engineering for the Treatment of Muscular Dystrophies. Curr Stem Cell Rep 2020;6:52-66. [DOI: 10.1007/s40778-020-00173-3] [Reference Citation Analysis]
100 Zhang T, Gaffrey MJ, Qian W, Thrall BD. Oxidative Stress and Redox Modifications in Nanomaterial–Cellular Interactions. In: Bonner JC, Brown JM, editors. Interaction of Nanomaterials with the Immune System. Cham: Springer International Publishing; 2020. pp. 127-48. [DOI: 10.1007/978-3-030-33962-3_8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
101 Li J, Gao X, Wang Y, Xia T, Zhao Y, Meng H. Precision design of engineered nanomaterials to guide immune systems for disease treatment. Matter 2022;5:1162-91. [DOI: 10.1016/j.matt.2022.03.005] [Reference Citation Analysis]
102 Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021;23:225-48. [PMID: 33788581 DOI: 10.1146/annurev-bioeng-121219-024239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Jiang L, Yu H, Li J, Tang J, Guo Y, Guo F. Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution. Brief Bioinform 2021:bbab216. [PMID: 34131696 DOI: 10.1093/bib/bbab216] [Reference Citation Analysis]
104 Li J, Fernández-millán P, Boix E. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections. CTMC 2020;20:1238-63. [DOI: 10.2174/1568026620666200303122626] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
105 Pinsino A, Bastús NG, Busquets-fité M, Canesi L, Cesaroni P, Drobne D, Duschl A, Ewart M, Gispert I, Horejs-hoeck J, Italiani P, Kemmerling B, Kille P, Procházková P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Boraschi D. Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. Environ Sci : Nano 2020;7:3216-32. [DOI: 10.1039/d0en00732c] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
106 Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01343-7] [Reference Citation Analysis]
107 Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Engineered Regeneration 2020;1:35-50. [DOI: 10.1016/j.engreg.2020.06.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
108 Anwar M, Muhammad F, Aslam B, Saleemi MK. Isolation, characterization and in-vitro antigenicity studies of outer membrane proteins (OMPs) of Salmonella gallinarum coated gold nanoparticles (AuNPs). Immunobiology 2021;226:152131. [PMID: 34461389 DOI: 10.1016/j.imbio.2021.152131] [Reference Citation Analysis]
109 Himly M, Geppert M, Hofer S, Hofstätter N, Horejs-Höck J, Duschl A. When Would Immunologists Consider a Nanomaterial to be Safe? Recommendations for Planning Studies on Nanosafety. Small 2020;16:e1907483. [PMID: 32239645 DOI: 10.1002/smll.201907483] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
110 Ban Z, Yuan P, Yu F, Peng T, Zhou Q, Hu X. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc Natl Acad Sci U S A 2020;117:10492-9. [PMID: 32332167 DOI: 10.1073/pnas.1919755117] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 18.0] [Reference Citation Analysis]
111 Ben Younes R, Bouallegui Y, Fezai O, Mezni A, Touaylia S, Oueslati R. Silver nanoparticles' impact on the gene expression of the cytosolic adaptor MyD-88 and the interferon regulatory factor IRF in the gills and digestive gland of mytilus galloprovincialis. Drug Chem Toxicol 2021;:1-8. [PMID: 34225533 DOI: 10.1080/01480545.2021.1945128] [Reference Citation Analysis]
112 Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, Li L. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 2021;337:236-47. [PMID: 34273419 DOI: 10.1016/j.jconrel.2021.07.017] [Reference Citation Analysis]
113 Lin S, Zhao H, Xu C, Zhou Z, Wang D, Chen S, Mei X. Bioengineered Zinc Oxide Nanoparticle-Loaded Hydrogel for Combinative Treatment of Spinal Cord Transection. Front Bioeng Biotechnol 2022;9:796361. [DOI: 10.3389/fbioe.2021.796361] [Reference Citation Analysis]
114 Poupot R, Bergozza D, Fruchon S. Nanoparticle-Based Strategies to Treat Neuro-Inflammation. Materials (Basel) 2018;11:E270. [PMID: 29425146 DOI: 10.3390/ma11020270] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
115 Novikov DV, Selivanova SG, Krasnogorova NV, Gorshkova EN, Pleskova SN, Novikov VV, Karaulov AV. Serum Protein Corona Abolishes Changes in the Expression of Proinflammatory Genes Induced by Quantum Dots in Human Blood Mononuclear Cell. Bull Exp Biol Med 2020;169:95-9. [PMID: 32495165 DOI: 10.1007/s10517-020-04832-7] [Reference Citation Analysis]
116 Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small 2020;16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
117 Peters LJF, Jans A, Bartneck M, van der Vorst EPC. Immunomodulatory Nanomedicine for the Treatment of Atherosclerosis. J Clin Med 2021;10:3185. [PMID: 34300351 DOI: 10.3390/jcm10143185] [Reference Citation Analysis]
118 Engin AB, Hayes AW. The impact of immunotoxicity in evaluation of the nanomaterials safety. Toxicology Research and Application 2018;2:239784731875557. [DOI: 10.1177/2397847318755579] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
119 Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021;11:693939. [PMID: 34277473 DOI: 10.3389/fcimb.2021.693939] [Reference Citation Analysis]
120 Alijagic A, Barbero F, Gaglio D, Napodano E, Benada O, Kofroňová O, Puntes VF, Bastús NG, Pinsino A. Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation. J Hazard Mater 2021;402:123793. [PMID: 33254802 DOI: 10.1016/j.jhazmat.2020.123793] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
121 Luo XM, Yan C, Feng YM. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv Drug Deliv Rev 2021;172:234-48. [PMID: 33417981 DOI: 10.1016/j.addr.2021.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
122 Swartzwelter BJ, Fux AC, Johnson L, Swart E, Hofer S, Hofstätter N, Geppert M, Italiani P, Boraschi D, Duschl A, Himly M. The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. Int J Mol Sci 2020;21:E9695. [PMID: 33353206 DOI: 10.3390/ijms21249695] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
123 Wang S, Ou X, Wutthinitikornkit Y, Yi M, Li J. Effects of the surface polarity of nanomaterials on their interaction with complement protein gC1q. RSC Adv 2020;10:41993-2000. [DOI: 10.1039/d0ra05493c] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
124 Dutz S, Weidner A, von der Lühe M, Gräfe C, Biehl P, Demut J, Warncke P, Jungmann S, Fischer D, Schacher FH, Clement JH. Hybrid nanomaterials of biomolecule corona coated magnetic nanoparticles and their interaction with biological systems. Physical Sciences Reviews 2020;0:20190110. [DOI: 10.1515/psr-2019-0110] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
125 Okay S, Özge Özcan Ö, Karahan M; 1 Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey, 2 Department of Molecular Neuroscience, Institute of Health Sciences, Üsküdar University, Istanbul, Turkey, 3 Department of Nutrition and Dietetics, Faculty of Health Sciences, Üsküdar University, Istanbul, Turkey. . AIMS Biophysics 2020;7:323-38. [DOI: 10.3934/biophy.2020023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
126 Swart E, Dvorak J, Hernádi S, Goodall T, Kille P, Spurgeon D, Svendsen C, Prochazkova P. The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms. Nanomaterials (Basel) 2020;10:E1337. [PMID: 32659907 DOI: 10.3390/nano10071337] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
127 Gao X, Gong J, Cai Y, Wang J, Wen J, Peng L, Ji H, Jiang S, Guo D. Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine. Int J Biol Macromol 2021;188:855-62. [PMID: 34411614 DOI: 10.1016/j.ijbiomac.2021.08.074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Palomba R, di Francesco M, di Francesco V, Piccardi F, Catelani T, Ferreira M, Palange AL, Decuzzi P. Boosting nanomedicine performance by conditioning macrophages with methyl palmitate nanoparticles. Mater Horiz 2021;8:2726-41. [PMID: 34617542 DOI: 10.1039/d1mh00937k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Wang Z, Dong J, Zhao Q, Ying Y, Zhang L, Zou J, Zhao S, Wang J, Zhao Y, Jiang S. Gold nanoparticle‑mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review). Mol Med Rep 2020;22:4475-84. [PMID: 33173972 DOI: 10.3892/mmr.2020.11580] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
130 Deng J, Wang J, Shi J, Li H, Lu M, Fan Z, Gu Z, Cheng H. Tailoring the physicochemical properties of nanomaterials for immunomodulation. Adv Drug Deliv Rev 2021;180:114039. [PMID: 34742825 DOI: 10.1016/j.addr.2021.114039] [Reference Citation Analysis]
131 Vrieling H, Kooijman S, de Ridder JW, Thies-Weesie DME, Soema PC, Jiskoot W, van Riet E, Heck AJR, Philipse AP, Kersten GFA, Meiring HD, Pennings JL, Metz B. Activation of Human Monocytes by Colloidal Aluminum Salts. J Pharm Sci 2020;109:750-60. [PMID: 31449816 DOI: 10.1016/j.xphs.2019.08.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
132 Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018;9:1484. [PMID: 29997628 DOI: 10.3389/fimmu.2018.01484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
133 Yu HP, Liu FC, Umoro A, Lin ZC, Elzoghby AO, Hwang TL, Fang JY. Oleic acid-based nanosystems for mitigating acute respiratory distress syndrome in mice through neutrophil suppression: how the particulate size affects therapeutic efficiency. J Nanobiotechnology 2020;18:25. [PMID: 32005196 DOI: 10.1186/s12951-020-0583-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
134 Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. Front Toxicol 2021;3:777768. [PMID: 35295146 DOI: 10.3389/ftox.2021.777768] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Wang F, Wang X, Gao L, Meng L, Xie J, Xiong J, Luo Y. Nanoparticle-mediated delivery of siRNA into zebrafish heart: a cell-level investigation on the biodistribution and gene silencing effects. Nanoscale 2019;11:18052-64. [DOI: 10.1039/c9nr05758g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
136 Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Mol Neurodegener 2021;16:76. [PMID: 34742333 DOI: 10.1186/s13024-021-00496-7] [Reference Citation Analysis]
137 Sivaram AJ, Wardiana A, Alcantara S, Sonderegger SE, Fletcher NL, Houston ZH, Howard CB, Mahler SM, Alexander C, Kent SJ, Bell CA, Thurecht KJ. Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS Nano 2020;14:13739-53. [DOI: 10.1021/acsnano.0c06033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
138 Moghimi SM, Simberg D, Skotland T, Yaghmur A, Hunter AC. The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. J Pharmacol Exp Ther 2019;370:581-92. [PMID: 30940695 DOI: 10.1124/jpet.119.258012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
139 Malatesta M. Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int J Mol Sci 2021;22:12789. [PMID: 34884592 DOI: 10.3390/ijms222312789] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Hočevar S, Milošević A, Rodriguez-lorenzo L, Ackermann-hirschi L, Mottas I, Petri-fink A, Rothen-rutishauser B, Bourquin C, Clift MJD. Polymer-Coated Gold Nanospheres Do Not Impair the Innate Immune Function of Human B Lymphocytes in Vitro. ACS Nano 2019;13:6790-800. [DOI: 10.1021/acsnano.9b01492] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]