BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qaim SM. Nuclear data for production and medical application of radionuclides: Present status and future needs. Nucl Med Biol 2017;44:31-49. [PMID: 27821344 DOI: 10.1016/j.nucmedbio.2016.08.016] [Cited by in Crossref: 100] [Cited by in F6Publishing: 107] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Şekerci M, Özdoğan H, Kaplan A. A study on the cross-section data of (43,44m,46,47)Sc isotopes via (d,x) reactions on natural abundance targets under the effects of deuteron optical models. Appl Radiat Isot 2023;194:110714. [PMID: 36774823 DOI: 10.1016/j.apradiso.2023.110714] [Reference Citation Analysis]
2 Al-abyad M, Hassan HE, Solieman AHM, Ditrói F, Saleh ZA. Deuteron and α-particle-induced nuclear reactions on 45Sc: activation cross section measurement and thick target yield evaluation. Indian J Phys 2023. [DOI: 10.1007/s12648-022-02574-y] [Reference Citation Analysis]
3 Sun H, Liu B, Han R, Chen Z, Tian G, Shi F, Zhang Z, Yang B, Luo P. Activation cross-sections of proton induced reactions on natural molybdenum within 75–100 MeV. Eur Phys J A 2022;58:256. [DOI: 10.1140/epja/s10050-022-00904-6] [Reference Citation Analysis]
4 Özdoğan H, Şekerci M, Cinoğlu Karaca M, Okutan M, Demir B, Kaplan A. An Investigation on Production Routes of $${}^{\mathbf{230}}$$U Radioisotope Used in Targeted Alpha Therapy by Different Level Density Models. Moscow Univ Phys 2022;77:878-885. [DOI: 10.3103/s0027134922060170] [Reference Citation Analysis]
5 Abdelshafy MS, Ali BM, Elmageed KEA, Nafie HO, Hassan HE, Al-abyad M. Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions. Radiochimica Acta 2022;110:891-901. [DOI: 10.1515/ract-2022-0048] [Reference Citation Analysis]
6 Amanuel KF. Production of 68Ge, 68Ga, 67Ga, 65Zn, and 64Cu important radionuclides for medical applications: theoretical model predictions for α-particles with 66Zn at ≈10–40 MeV. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2022-0075] [Reference Citation Analysis]
7 Brantov AV, Bochkarev SG, Vais OE, Lobok MG, Bychenkov VY. The Source of Medical Isotopes and Neutrons Based on Laser-Accelerated Ions. Plasma Phys Rep 2022;48:1142-1155. [DOI: 10.1134/s1063780x22601134] [Reference Citation Analysis]
8 Obata H, Kurimasa A, Muraoka T, Tsuji AB, Kondo K, Kuwahara Y, Minegishi K, Nagatsu K, Ogawa M, Zhang M. Dynamic imaging analysis reveals Auger electron-emitting radio-cisplatin induces DNA damage depending on the cell cycle. Biochemical and Biophysical Research Communications 2022. [DOI: 10.1016/j.bbrc.2022.11.016] [Reference Citation Analysis]
9 Kim S. Performance Evaluation According to Polymer Encapsulation Characteristics of Eco-Friendly Plastic Gamma-Ray Shield. Coatings 2022;12:1621. [DOI: 10.3390/coatings12111621] [Reference Citation Analysis]
10 Wan Q. Application Prospect of Radionuclide Tracer Technology in Clinical Imaging Therapy and Drug Development. HSET 2022;14:177-182. [DOI: 10.54097/hset.v14i.1608] [Reference Citation Analysis]
11 Kormazeva ES, Khomenko IA, Unezhev VN, Aliev RA. New data on Ho(α,x) reactions and the aspects of 167Tm and 165Er production for medical use. J Radioanal Nucl Chem. [DOI: 10.1007/s10967-022-08464-1] [Reference Citation Analysis]
12 Ma C, Liu H, Wolterbeek HT, Denkova AG, Serra Crespo P. Effects of High Gamma Doses on the Structural Stability of Metal-Organic Frameworks. Langmuir 2022. [PMID: 35816708 DOI: 10.1021/acs.langmuir.2c01074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Amjed N, Naz A, Wajid A, Aslam M, Ahmad I. Nuclear model analysis and optimization of production data of the medically interesting 66,67,68 Ga via alpha induced reactions on 63,65 Cu targets. Applied Radiation and Isotopes 2022. [DOI: 10.1016/j.apradiso.2022.110379] [Reference Citation Analysis]
14 Grin M, Suvorov N, Ostroverkhov P, Pogorilyy V, Kirin N, Popov A, Sazonova A, Filonenko E. Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys Rev. [DOI: 10.1007/s12551-022-00962-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hirtz J, Letourneau A, Thulliez L, Ibarra A, Krolas W, Maj A. Neutron availability in the Complementary Experiments Hall of the IFMIF-DONES facility. Fusion Engineering and Design 2022;179:113133. [DOI: 10.1016/j.fusengdes.2022.113133] [Reference Citation Analysis]
16 Anwer M, Naz A, Ahmad I, Usman M, Hussain J, Ilyas SZ, Shahid M. Ion beam activation of nat Cu, nat Ti, nat Ni and measurement of product formation cross sections at low energy (<10 MeV). Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2021-1132] [Reference Citation Analysis]
17 Nichols AL. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β + emitters and therapeutic radioisotopes. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2022-0004] [Reference Citation Analysis]
18 Pupillo G, Mou L, Manenti S, Groppi F, Esposito J, Haddad F. Nuclear data for light charged particle induced production of emerging medical radionuclides. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2022-0011] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Naskar N, Lahiri S. Production of neutron deficient rare earth radionuclides by heavy ion activation. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2022-0018] [Reference Citation Analysis]
20 Qaim SM, Spahn I, Scholten B, Spellerberg S, Neumaier B. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2022-0017] [Reference Citation Analysis]
21 Uddin MS, Hossain SM, Shariff MA, Rakib-uz-zaman M. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2021-1092] [Reference Citation Analysis]
22 Al-abyad M, Hassan HE, Mohamed GY, Saleh ZA, Comsan MNH, Azzam A. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2021-1118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Hussain M, Ali W, Amjed N, Wajid AM, Aslam MN. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan. Radiochimica Acta 2022;0. [DOI: 10.1515/ract-2022-0012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Liu Z, Sun Y, Liu T. Recent Advances in Synthetic Methodologies to Form C-18F Bonds. Front Chem 2022;10:883866. [DOI: 10.3389/fchem.2022.883866] [Reference Citation Analysis]
25 Zippel C, Ermert J, Patt M, Gildehaus FJ, Ross TL, Reischl G, Kuwert T, Solbach C, Neumaier B, Kiss O, Mitterhauser M, Wadsak W, Schibli R, Kopka K. Cyclotrons Operated for Nuclear Medicine and Radiopharmacy in the German Speaking D-A-CH Countries: An Update on Current Status and Trends. Front Nucl Med 2022;2. [DOI: 10.3389/fnume.2022.850414] [Reference Citation Analysis]
26 Uddin MS, Basunia MS, Sudár S, Scholten B, Spellerberg S, Voyles AS, Morrell JT, Fox MB, Spahn I, Felden O, Gebel R, Bernstein LA, Neumaier B, Qaim SM. Excitation functions of proton-induced nuclear reactions on $$^{86}$$Sr, with particular emphasis on the formation of isomeric states in $$^{86}$$Y and $$^{85}$$Y. Eur Phys J A 2022;58. [DOI: 10.1140/epja/s10050-022-00714-w] [Reference Citation Analysis]
27 Obata H, Tsuji AB, Kumata K, Sudo H, Minegishi K, Nagatsu K, Takakura H, Ogawa M, Kurimasa A, Zhang MR. Development of Novel 191Pt-Labeled Hoechst33258: 191Pt Is More Suitable than 111In for Targeting DNA. J Med Chem 2022. [PMID: 35358392 DOI: 10.1021/acs.jmedchem.1c02209] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Aoki K, Kin T, Otuka N. Nuclear data uncertainty in iterative neutron spectrum unfolding. Journal of Nuclear Science and Technology. [DOI: 10.1080/00223131.2021.2018370] [Reference Citation Analysis]
29 Uddin MS, Qaim SM, Scholten B, Basunia MS, Bernstein LA, Spahn I, Neumaier B. Positron Emission Intensity in the Decay of 86gY for Use in Dosimetry Studies. Molecules 2022;27:768. [PMID: 35164033 DOI: 10.3390/molecules27030768] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Kumar R, Maiti M, Nag TN, Sodaye S. Exploring various features of the reaction mechanism involved in the collision of Li7 on Cu. Phys Rev C 2021;104. [DOI: 10.1103/physrevc.104.064606] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Kavasara M, Vinutha PR, Kaliprasad CS, Narayana Y. Studies on the dependence of natural radioactivity on clay minerals of soils in Davanagere district of Karnataka, India. J Radioanal Nucl Chem 2021;330:1461-71. [DOI: 10.1007/s10967-021-07920-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Şekerci M. Effects of theoretical models on the production cross-section calculations of some non-standard positron emitters. Eur Phys J Plus 2021;136. [DOI: 10.1140/epjp/s13360-021-01995-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021;11:31098-123. [PMID: 35498914 DOI: 10.1039/d1ra04480j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Neumaier B, Spahn I, Qaim SM. Möglichkeiten und Grenzen der Nutzung kleiner Zyklotrone bei der Produktion medizinisch relevanter Radionuklide. Der Nuklearmediziner 2021;44:120-6. [DOI: 10.1055/a-1380-7815] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Bolzati C, Spolaore B. Enzymatic Methods for the Site-Specific Radiolabeling of Targeting Proteins. Molecules 2021;26:3492. [PMID: 34201280 DOI: 10.3390/molecules26123492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
36 Ermert J. Radiotracer in Kombination mit Magnetresonanz-Kontrastmittel für die simultane MR-PET-Bildgebung. Der Nuklearmediziner 2021;44:177-184. [DOI: 10.1055/a-1403-4895] [Reference Citation Analysis]
37 Amjed N, Aslam MN, Hussain M, Qaim SM. Evaluation of nuclear reaction cross section data of proton and deuteron induced reactions on 75 As, with particular emphasis on the production of 73 Se. Radiochimica Acta 2021;109:525-37. [DOI: 10.1515/ract-2021-1018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Mieszkowska M, Grdeń M. Electrochemical deposition of nickel targets from aqueous electrolytes for medical radioisotope production in accelerators: a review. J Solid State Electrochem 2021;25:1699-725. [DOI: 10.1007/s10008-021-04950-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Obata H, Tsuji AB, Sudo H, Sugyo A, Minegishi K, Nagatsu K, Ogawa M, Zhang MR. In Vitro Evaluation of No-Carrier-Added Radiolabeled Cisplatin ([189, 191Pt]cisplatin) Emitting Auger Electrons. Int J Mol Sci 2021;22:4622. [PMID: 33924843 DOI: 10.3390/ijms22094622] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
40 Qaim SM, Hussain M, Spahn I, Neumaier B. Continuing Nuclear Data Research for Production of Accelerator-Based Novel Radionuclides for Medical Use: A Mini-Review. Front Phys 2021;9:639290. [DOI: 10.3389/fphy.2021.639290] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
41 Kazakov AG, Ekatova TY, Babenya JS. Photonuclear production of medical radiometals: a review of experimental studies. J Radioanal Nucl Chem 2021;328:493-505. [DOI: 10.1007/s10967-021-07683-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
42 Obata H, Minegishi K, Nagatsu K, Ogawa M, Zhang MR. Synthesis of no-carrier-added [188, 189, 191Pt]cisplatin from a cyclotron produced 188, 189, 191PtCl42- complex. Sci Rep 2021;11:8140. [PMID: 33854142 DOI: 10.1038/s41598-021-87576-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Ross TL, Ametamey SM. PET Chemistry: An Introduction. Basic Sciences of Nuclear Medicine 2021. [DOI: 10.1007/978-3-030-65245-6_7] [Reference Citation Analysis]
44 Venkatesh M, Kang KW. Medicine: Radionuclides Used in Nuclear Medicine. Encyclopedia of Nuclear Energy 2021. [DOI: 10.1016/b978-0-12-819725-7.00177-x] [Reference Citation Analysis]
45 Machner H. Validation of nuclear reaction models for incident α-particles. Radiochimica Acta 2021;109:1-25. [DOI: 10.1515/ract-2019-3222] [Reference Citation Analysis]
46 Haseloer A, Lützenburg T, Strache JP, Neudörfl J, Neundorf I, Klein A. Building up PtII -Thiosemicarbazone-Lysine-sC18 Conjugates. Chembiochem 2021;22:694-704. [PMID: 32909347 DOI: 10.1002/cbic.202000564] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
47 Pérez Sánchez R, Jurado B, Méot V, Roig O, Dupuis M, Bouland O, Denis-Petit D, Marini P, Mathieu L, Tsekhanovich I, Aïche M, Audouin L, Cannes C, Czajkowski S, Delpech S, Görgen A, Guttormsen M, Henriques A, Kessedjian G, Nishio K, Ramos D, Siem S, Zeiser F. Simultaneous Determination of Neutron-Induced Fission and Radiative Capture Cross Sections from Decay Probabilities Obtained with a Surrogate Reaction. Phys Rev Lett 2020;125:122502. [PMID: 33016727 DOI: 10.1103/PhysRevLett.125.122502] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
48 Majarshin AJ, Sabri H, Mobarakeh SKM, Pan F, Luo Y, Zhang Y, Draayer JP. Chaos and regularity of radionuclides with maximum likelihood estimation method. Phys Scr 2020;95:105305. [DOI: 10.1088/1402-4896/abb634] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
49 Bianchi F, Marchi C, Fuad G, Groppi F, Haddad F, Magagnin L, Manenti S. On the production of 52gMn by deuteron irradiation on natural chromium and its radionuclidic purity. Appl Radiat Isot 2020;166:109329. [PMID: 32916627 DOI: 10.1016/j.apradiso.2020.109329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
50 Canbula D. Cross section analysis of proton-induced nuclear reactions of thorium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2020;478:229-232. [DOI: 10.1016/j.nimb.2020.06.041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
51 Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021;92:241-69. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
52 Uddin MS, Scholten B, Basunia MS, Sudár S, Spellerberg S, Voyles AS, Morrell JT, Zaneb H, Rios JA, Spahn I, Bernstein LA, Neumaier B, Qaim SM. Accurate determination of production data of the non-standard positron emitter 86 Y via the 86 Sr(p,n)-reaction. Radiochimica Acta 2020;108:747-56. [DOI: 10.1515/ract-2020-0021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
53 Şekerci M, Özdoğan H, Kaplan A. Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x = 1–3. Mod Phys Lett A 2020;35:2050202. [DOI: 10.1142/s0217732320502028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
54 Basunia MS, Morrell JT, Uddin MS, Voyles AS, Nesaraja CD, Bernstein LA, Browne E, Martin MJ, Qaim SM. Resolution of a discrepancy in the γ -ray emission probability from the β decay of Ceg137. Phys Rev C 2020;101. [DOI: 10.1103/physrevc.101.064619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Carter KP, Deblonde GJ, Lohrey TD, Bailey TA, An DD, Shield KM, Lukens WW Jr, Abergel RJ. Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun Chem 2020;3:61. [PMID: 36703424 DOI: 10.1038/s42004-020-0307-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
56 Zhekova HR, Sakuma T, Johnson R, Concilio SC, Lech PJ, Zdravkovic I, Damergi M, Suksanpaisan L, Peng KW, Russell SJ, Noskov S. Mapping of Ion and Substrate Binding Sites in Human Sodium Iodide Symporter (hNIS). J Chem Inf Model 2020;60:1652-65. [PMID: 32134653 DOI: 10.1021/acs.jcim.9b01114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
57 Talip Z, Favaretto C, Geistlich S, Meulen NPV. A Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules 2020;25:E966. [PMID: 32093425 DOI: 10.3390/molecules25040966] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
58 Pupillo G, Mou L, Martini P, Pasquali M, Boschi A, Cicoria G, Duatti A, Haddad F, Esposito J. Production of 67 Cu by enriched 70 Zn targets: first measurements of formation cross sections of 67 Cu, 64 Cu, 67 Ga, 66 Ga, 69m Zn and 65 Zn in interactions of 70 Zn with protons above 45 MeV. Radiochimica Acta 2020;108:593-602. [DOI: 10.1515/ract-2019-3199] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
59 Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch H, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clinical Nuclear Medicine 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
60 Mohammed RS, Mikhlif HM, Mhana WJ. Evaluation cross section of production for indium medical radioisotopes. TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES20 2020. [DOI: 10.1063/5.0033264] [Reference Citation Analysis]
61 Kandil SA, Scherer UW. FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction. Radiochimica Acta 2019;107:1195-1201. [DOI: 10.1515/ract-2018-3081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
62 Şekerci M. An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62 Cu, 67 Ga, 86 Y and 89 Zr via some alpha induced reactions. Radiochimica Acta 2020;108:459-67. [DOI: 10.1515/ract-2019-3169] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
63 Ródenas J, Jabaloyas E. Analysis of radionuclide production in cyclotrons for application in positron emission tomography (PET). J Radioanal Nucl Chem 2019;322:1691-5. [DOI: 10.1007/s10967-019-06903-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
64 Ermolaev SV, Zhuikov BL, Kokhanyuk VM, Matushko VL, Srivastava SC. Cross sections and production yields of 117m Sn and other radionuclides generated in natural and enriched antimony with protons up to 145 MeV. Radiochimica Acta 2020;108:327-51. [DOI: 10.1515/ract-2019-3158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
65 Martínez J, Baciu T, Peñalver A, Aguilar C, Borrull F. Occurrence of and radioanalytical methods used to determine medical radionuclides in environmental and biological samples. A review. Journal of Environmental Radioactivity 2019;207:37-52. [DOI: 10.1016/j.jenvrad.2019.05.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
66 Qaim SM. Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 2019;322:1257-66. [DOI: 10.1007/s10967-019-06797-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
67 Qaim SM, Scholten B, Spahn I, Neumaier B. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochimica Acta 2019;107:1011-26. [DOI: 10.1515/ract-2019-3154] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
68 Sahagia M, Luca A, Antohe A, Ioan M. Standardization of the emerging medical positron emitter 89Zr. J Radioanal Nucl Chem 2019;322:1683-9. [DOI: 10.1007/s10967-019-06661-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
69 Jang W, Zaman M, Kim G, Naik H, Choi J, Yang H, Lee J, Oh J, Choi Y. Measurement of half-lives for 87m,gY and 196m,g,194Au produced from the photon and neutron induced reactions of 89Y and 197Au. J Radioanal Nucl Chem 2019;321:765-773. [DOI: 10.1007/s10967-019-06629-z] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
70 Vermeulen K, Vandamme M, Bormans G, Cleeren F. Design and Challenges of Radiopharmaceuticals. Semin Nucl Med 2019;49:339-56. [PMID: 31470930 DOI: 10.1053/j.semnuclmed.2019.07.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 8.5] [Reference Citation Analysis]
71 Naskar N, Choudhury D, Basu S, Banerjee K. Separation of NCA 88Zr from proton irradiated natY target: a novel approach using low cost bio-sorbent potato peel charcoal. J Radioanal Nucl Chem 2019;322:231-5. [DOI: 10.1007/s10967-019-06637-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Aikawa M, Saito M, Komori Y, Haba H, Takács S, Ditrói F, Szűcs Z. Activation cross sections of alpha-particle induced nuclear reactions on natural palladium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2019;449:99-104. [DOI: 10.1016/j.nimb.2019.04.066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
73 Aliev RA, Belyshev SS, Kuznetsov AA, Dzhilavyan LZ, Khankin VV, Aleshin GY, Kazakov AG, Priselkova AB, Kalmykov SN, Ishkhanov BS. Photonuclear production and radiochemical separation of medically relevant radionuclides: 67Cu. J Radioanal Nucl Chem 2019;321:125-32. [DOI: 10.1007/s10967-019-06576-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
74 Souliotis GA, Rodrigues MRD, Wang K, Iacob VE, Nica N, Roeder B, Tabacaru G, Yu M, Zanotti-Fregonara P, Bonasera A. A novel approach to medical radioisotope production using inverse kinematics: A successful production test of the theranostic radionuclide 67Cu. Appl Radiat Isot 2019;149:89-95. [PMID: 31035108 DOI: 10.1016/j.apradiso.2019.04.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
75 Obata H, Minegishi K, Nagatsu K, Zhang MR, Shinohara A. Production of 191Pt from an iridium target by vertical beam irradiation and simultaneous alkali fusion. Appl Radiat Isot 2019;149:31-7. [PMID: 31005643 DOI: 10.1016/j.apradiso.2019.04.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
76 Van de Voorde M, Van Hecke K, Cardinaels T, Binnemans K. Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coordination Chemistry Reviews 2019;382:103-25. [DOI: 10.1016/j.ccr.2018.11.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
77 Uccelli L, Martini P, Cittanti C, Carnevale A, Missiroli L, Giganti M, Bartolomei M, Boschi A. Therapeutic Radiometals: Worldwide Scientific Literature Trend Analysis (2008⁻2018). Molecules 2019;24:E640. [PMID: 30759753 DOI: 10.3390/molecules24030640] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
78 Artun O. Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Applied Radiation and Isotopes 2019;144:64-79. [DOI: 10.1016/j.apradiso.2018.11.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
79 Boschi A, Martini P, Costa V, Pagnoni A, Uccelli L. Interdisciplinary Tasks in the Cyclotron Production of Radiometals for Medical Applications. The Case of 47Sc as Example. Molecules 2019;24:E444. [PMID: 30691170 DOI: 10.3390/molecules24030444] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
80 Chimanski EV, Carlson BV, Capote R, Koning AJ. Quasiparticle nature of excited states in random-phase approximation. Phys Rev C 2019;99:014305. [DOI: 10.1103/physrevc.99.014305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
81 Tárkányi FT, Ignatyuk AV, Hermanne A, Capote R, Carlson BV, Engle JW, Kellett MA, Kibédi T, Kim GN, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Verpelli M. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J Radioanal Nucl Chem 2019;319:533-666. [DOI: 10.1007/s10967-018-6380-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
82 Engle J, Ignatyuk A, Capote R, Carlson B, Hermanne A, Kellett M, Kibédi T, Kim G, Kondev F, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols A, Nortier F, Suryanarayana S, Takács S, Tárkányi F, Verpelli M. Recommended Nuclear Data for the Production of Selected Therapeutic Radionuclides. Nuclear Data Sheets 2019;155:56-74. [DOI: 10.1016/j.nds.2019.01.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
83 Ali W, Tashfeen M, Hussain M. Evaluation of nuclear reaction cross sections via proton induced reactions on 55Mn for the production of 52Fe: A potential candidate for theranostic applications. Appl Radiat Isot 2019;144:124-9. [PMID: 30579152 DOI: 10.1016/j.apradiso.2018.11.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
84 Martínez J, Peñalver A, Baciu T, Artigues M, Danús M, Aguilar C, Borrull F. Presence of artificial radionuclides in samples from potable water and wastewater treatment plants. Journal of Environmental Radioactivity 2018;192:187-93. [DOI: 10.1016/j.jenvrad.2018.06.024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
85 Kostelnik TI, Orvig C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem Rev 2019;119:902-56. [PMID: 30379537 DOI: 10.1021/acs.chemrev.8b00294] [Cited by in Crossref: 190] [Cited by in F6Publishing: 198] [Article Influence: 38.0] [Reference Citation Analysis]
86 Qaim SM, Scholten B, Neumaier B. New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 2018;318:1493-509. [DOI: 10.1007/s10967-018-6238-x] [Cited by in Crossref: 78] [Cited by in F6Publishing: 53] [Article Influence: 15.6] [Reference Citation Analysis]
87 Voyles AS, Bernstein LA, Birnbaum ER, Engle JW, Graves SA, Kawano T, Lewis AM, Nortier FM. Excitation functions for (p,x) reactions of niobium in the energy range of Ep = 40–90 MeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2018;429:53-74. [DOI: 10.1016/j.nimb.2018.05.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
88 Artun O. Calculation of productions of PET radioisotopes via phenomenological level density models. Radiation Physics and Chemistry 2018;149:73-83. [DOI: 10.1016/j.radphyschem.2018.03.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
89 Colonna N, Gunsing F, Käppeler F. Neutron physics with accelerators. Progress in Particle and Nuclear Physics 2018;101:177-203. [DOI: 10.1016/j.ppnp.2018.02.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
90 Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Zhang M. Small-scale production of 67 Cu for a preclinical study via the 64 Ni(α, p) 67 Cu channel. Nuclear Medicine and Biology 2018;59:56-60. [DOI: 10.1016/j.nucmedbio.2018.01.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
91 Obata H, Khandaker MU, Furuta E, Nagatsu K, Zhang MR. Excitation functions of proton- and deuteron-induced nuclear reactions on natural iridium for the production of 191Pt. Appl Radiat Isot 2018;137:250-60. [PMID: 29679927 DOI: 10.1016/j.apradiso.2018.03.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
92 Nikjou A, Sadeghi M. Overview and evaluation of different nuclear level density models for the 123I radionuclide production. Appl Radiat Isot 2018;136:45-58. [PMID: 29459330 DOI: 10.1016/j.apradiso.2018.02.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
93 Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem 2018;3:3. [PMID: 29503860 DOI: 10.1186/s41181-018-0038-z] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 10.6] [Reference Citation Analysis]
94 Gopalakrishna A, Suryanarayana SV, Naik H, Dixit TS, Nayak BK, Kumar A, Maletha P, Thakur K, Deshpande A, Krishnan R, Kamaldeep, Banerjee S, Saxena A. Production, separation and supply prospects of 67 Cu with the development of fast neutron sources and photonuclear technology. Radiochimica Acta 2018;106:549-57. [DOI: 10.1515/ract-2017-2847] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
95 Königs U, Humpert S, Spahn I, Qaim SM, Neumaier B. Isolation of high purity 73 Se using solid phase extraction after selective 4,5-[ 73 Se]benzopiazselenol formation with aminonaphthalene. Radiochimica Acta 2018;106:497-505. [DOI: 10.1515/ract-2017-2864] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
96 Pupillo G, Sounalet T, Michel N, Mou L, Esposito J, Haddad F. New production cross sections for the theranostic radionuclide 67Cu. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2018;415:41-7. [DOI: 10.1016/j.nimb.2017.10.022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
97 Qaim SM, Spahn I. Development of novel radionuclides for medical applications. J Labelled Comp Radiopharm 2018;61:126-40. [PMID: 29110328 DOI: 10.1002/jlcr.3578] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
98 Ermert J. Labelling with positron emitters of pnicogens and chalcogens. J Label Compd Radiopharm 2018;61:179-95. [DOI: 10.1002/jlcr.3574] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
99 Aslam MN, Zubia K, Qaim SM. Nuclear model analysis of excitation functions of α-particle induced reactions on In and Cd up to 60MeV with relevance to the production of high specific activity 117mSn. Appl Radiat Isot 2018;132:181-8. [PMID: 29248785 DOI: 10.1016/j.apradiso.2017.12.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
100 Uddin MS, Chakraborty AK, Spellerberg S, Spahn I, Shariff MA, Rashid MA, Qaim SM. Excitation functions of proton induced nuclear reactions on nat Fe up to 16 MeV, with emphasis on radiochemical determination of low cross sections. Radiochimica Acta 2017;105:985-92. [DOI: 10.1515/ract-2017-2818] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
101 da Silva WM, Hilário Ferreira T, de Morais CA, Soares Leal A, Barros Sousa EM. Samarium doped boron nitride nanotubes. Appl Radiat Isot 2018;131:30-5. [PMID: 29100156 DOI: 10.1016/j.apradiso.2017.10.045] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
102 Voyles A, Basunia M, Batchelder J, Bauer J, Becker T, Bernstein L, Matthews E, Renne P, Rutte D, Unzueta M, van Bibber K. Measurement of the 64Zn,47Ti(n,p) cross sections using a DD neutron generator for medical isotope studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017;410:230-9. [DOI: 10.1016/j.nimb.2017.08.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
103 Nishinaka I, Yokoyama A, Washiyama K, Makii H, Hashimoto K. Production of iodine radionuclides using 7Li ion beams. J Radioanal Nucl Chem 2017;314:1947-65. [DOI: 10.1007/s10967-017-5525-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
104 Kazakov AG, Aliev RA, Bodrov AY, Priselkova AB, Kalmykov SN. Separation of radioisotopes of terbium from a europium target irradiated by 27 MeV α-particles. Radiochimica Acta 2018;106:135-40. [DOI: 10.1515/ract-2017-2777] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
105 Uddin MS, Kim K, Nadeem M, Sudár S, Kim G. Measurements of excitation functions of α-particle induced reactions on nat Ni: possibility of production of the medical isotopes 61 Cu and 67 Cu. Radiochimica Acta 2018;106:87-93. [DOI: 10.1515/ract-2017-2837] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
106 Dolley SG, Steyn GF, van Rooyen TJ, Szelecsényi F, Kovács Z, Vermeulen C, van der Meulen NP. Concurrent spectrometry of annihilation radiation and characteristic gamma-rays for activity assessment of selected positron emitters. Appl Radiat Isot 2017;129:76-86. [PMID: 28822886 DOI: 10.1016/j.apradiso.2017.07.057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
107 Rösch F, Herzog H, Qaim SM. The Beginning and Development of the Theranostic Approach in Nuclear Medicine, as Exemplified by the Radionuclide Pair 86Y and 90Y. Pharmaceuticals (Basel) 2017;10:E56. [PMID: 28632200 DOI: 10.3390/ph10020056] [Cited by in Crossref: 84] [Cited by in F6Publishing: 90] [Article Influence: 14.0] [Reference Citation Analysis]
108 Artun O. Investigation of the production of promethium-147 via particle accelerator. Indian J Phys 2017;91:909-14. [DOI: 10.1007/s12648-017-0997-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
109 Manenti S, Alí Santoro MDC, Cotogno G, Duchemin C, Haddad F, Holzwarth U, Groppi F. Excitation function and yield for the 103Rh(d,2n)103Pd nuclear reaction: Optimization of the production of palladium-103. Nucl Med Biol 2017;49:30-7. [PMID: 28292697 DOI: 10.1016/j.nucmedbio.2017.02.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
110 Syed M. Nuclear data for medical applications: An overview of present status and future needs. EPJ Web Conf 2017;146:08001. [DOI: 10.1051/epjconf/201714608001] [Reference Citation Analysis]