BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tran N, Bye N, Moffat BA, Wright DK, Cuddihy A, Hinton TM, Hawley AM, Reynolds NP, Waddington LJ, Mulet X, Turnley AM, Morganti-Kossmann MC, Muir BW. Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution. Mater Sci Eng C Mater Biol Appl 2017;71:584-93. [PMID: 27987748 DOI: 10.1016/j.msec.2016.10.028] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Fornasier M, Murgia S. Non-lamellar lipid liquid crystalline nanoparticles: A smart platform for nanomedicine applications. Front Soft Matter 2023;3. [DOI: 10.3389/frsfm.2023.1109508] [Reference Citation Analysis]
2 Yu H, Dyett BP, Zhai J, Strachan JB, Drummond CJ, Conn CE. Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. J Colloid Interface Sci 2023;634:279-89. [PMID: 36542965 DOI: 10.1016/j.jcis.2022.12.028] [Reference Citation Analysis]
3 Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023;313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Reference Citation Analysis]
4 El Mohamad M, Han Q, Drummond CJ, Greaves TL, Zhai J. Tailoring the self-assembly of lipid-based lyotropic liquid crystalline mesophases with biocompatible ionic liquid aqueous solutions. Materials Today Chemistry 2022;26:101221. [DOI: 10.1016/j.mtchem.2022.101221] [Reference Citation Analysis]
5 Vitoria Pupo Silvestrini A, Wender Debiasi B, Garcia Praça F, Vitoria Lopes Badra Bentley M. Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. International Journal of Pharmaceutics 2022;628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Reference Citation Analysis]
6 Bor G, Lin JH, Lin KY, Chen HC, Prajnamitra RP, Salentinig S, Hsieh PCH, Moghimi SM, Yaghmur A. PEGylation of Phosphatidylglycerol/Docosahexaenoic Acid Hexosomes with d-α-Tocopheryl Succinate Poly(ethylene glycol)2000 Induces Morphological Transformation into Vesicles with Prolonged Circulation Times. ACS Appl Mater Interfaces 2022. [PMID: 36271846 DOI: 10.1021/acsami.2c14375] [Reference Citation Analysis]
7 Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022;348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS Appl Mater Interfaces 2022;14:11078-91. [PMID: 35196008 DOI: 10.1021/acsami.1c21655] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
9 Cai X, Zhai J, Tran N, Mulet X, Drummond CJ. Lipid nanoparticle steric stabilization roadmap. Advances in Biomembranes and Lipid Self-Assembly 2022. [DOI: 10.1016/bs.abl.2022.05.003] [Reference Citation Analysis]
10 Zhai J, Yap SL, Drummond CJ, Tran N. Controlling the pH dependent transition between monoolein Fd3m micellar cubosomes and hexosomes using fatty acetate and fatty acid additive mixtures. J Colloid Interface Sci 2022;607:848-56. [PMID: 34536939 DOI: 10.1016/j.jcis.2021.08.173] [Reference Citation Analysis]
11 Caselli L, Mendozza M, Muzzi B, Toti A, Montis C, Mello T, Di Cesare Mannelli L, Ghelardini C, Sangregorio C, Berti D. Lipid Cubic Mesophases Combined with Superparamagnetic Iron Oxide Nanoparticles: A Hybrid Multifunctional Platform with Tunable Magnetic Properties for Nanomedical Applications. Int J Mol Sci 2021;22:9268. [PMID: 34502176 DOI: 10.3390/ijms22179268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Forys A, Chountoulesi M, Mendrek B, Konieczny T, Sentoukas T, Godzierz M, Kordyka A, Demetzos C, Pispas S, Trzebicka B. The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers (Basel) 2021;13:2607. [PMID: 34451146 DOI: 10.3390/polym13162607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhai J, Fan B, Thang SH, Drummond CJ. Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules 2021;26:3648. [PMID: 34203820 DOI: 10.3390/molecules26123648] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
14 Angelova A, Angelov B, Deng Y. Lipid Membranes: Fusion, Instabilities, and Cubic Structure Formation. Biological Soft Matter 2021. [DOI: 10.1002/9783527811014.ch5] [Reference Citation Analysis]
15 Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021;11:871-85. [PMID: 33996404 DOI: 10.1016/j.apsb.2021.02.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
16 Zhai J, Sarkar S, Tran N, Pandiancherri S, Greaves TL, Drummond CJ. Tuning Nanostructured Lyotropic Liquid Crystalline Mesophases in Lipid Nanoparticles with Protic Ionic Liquids. J Phys Chem Lett 2021;12:399-404. [PMID: 33356288 DOI: 10.1021/acs.jpclett.0c03318] [Reference Citation Analysis]
17 Rajesh S, Zhai J, Drummond CJ, Tran N. Synthetic ionizable aminolipids induce a pH dependent inverse hexagonal to bicontinuous cubic lyotropic liquid crystalline phase transition in monoolein nanoparticles. J Colloid Interface Sci 2021;589:85-95. [PMID: 33450463 DOI: 10.1016/j.jcis.2020.12.060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
18 Cytryniak A, Nazaruk E, Bilewicz R, Górzyńska E, Żelechowska-Matysiak K, Walczak R, Mames A, Bilewicz A, Majkowska-Pilip A. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled with 177Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials (Basel) 2020;10:E2272. [PMID: 33207760 DOI: 10.3390/nano10112272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
19 Schoppe O, Pan C, Coronel J, Mai H, Rong Z, Todorov MI, Müskes A, Navarro F, Li H, Ertürk A, Menze BH. Deep learning-enabled multi-organ segmentation in whole-body mouse scans. Nat Commun 2020;11:5626. [PMID: 33159057 DOI: 10.1038/s41467-020-19449-7] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
20 Jabłonowska E, Matyszewska D, Nazaruk E, Godlewska M, Gaweł D, Bilewicz R. Lipid membranes exposed to dispersions of phytantriol and monoolein cubosomes: Langmuir monolayer and HeLa cell membrane studies. Biochim Biophys Acta Gen Subj 2021;1865:129738. [PMID: 32956751 DOI: 10.1016/j.bbagen.2020.129738] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
21 Strachan JB, Dyett BP, Nasa Z, Valery C, Conn CE. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. Journal of Colloid and Interface Science 2020;576:241-51. [DOI: 10.1016/j.jcis.2020.05.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
22 Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid & Interface Science 2020;48:28-39. [DOI: 10.1016/j.cocis.2020.03.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
23 Helvig SY, Andersen H, Antopolsky M, Airaksinen AJ, Urtti A, Yaghmur A, Moghimi SM. Hexosome engineering for targeting of regional lymph nodes. Materialia 2020;11:100705. [DOI: 10.1016/j.mtla.2020.100705] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
24 Zhai J, Tan FH, Luwor RB, Srinivasa Reddy T, Ahmed N, Drummond CJ, Tran N. In Vitro and In Vivo Toxicity and Biodistribution of Paclitaxel-Loaded Cubosomes as a Drug Delivery Nanocarrier: A Case Study Using an A431 Skin Cancer Xenograft Model. ACS Appl Bio Mater 2020;3:4198-207. [DOI: 10.1021/acsabm.0c00269] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
25 Jenni S, Picci G, Fornasier M, Mamusa M, Schmidt J, Talmon Y, Sour A, Heitz V, Murgia S, Caltagirone C. Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochem Photobiol Sci 2020;19:674-80. [PMID: 32314755 DOI: 10.1039/c9pp00449a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
26 Fong C, Zhai J, Drummond CJ, Tran N. Micellar Fd3m cubosomes from monoolein - long chain unsaturated fatty acid mixtures: Stability on temperature and pH response. J Colloid Interface Sci 2020;566:98-106. [PMID: 31991369 DOI: 10.1016/j.jcis.2020.01.041] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
27 Walduck A, Sangwan P, Vo QA, Ratcliffe J, White J, Muir BW, Tran N. Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles. RSC Adv 2020;10:33608-19. [DOI: 10.1039/d0ra06120d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
28 Zhai J, Sarkar S, Conn CE, Drummond CJ. Molecular engineering of super-swollen inverse bicontinuous cubic and sponge lipid phases for biomedical applications. Mol Syst Des Eng 2020;5:1354-75. [DOI: 10.1039/d0me00076k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
29 Le TC, Zhai J, Chiu WH, Tran PA, Tran N. Janus particles: recent advances in the biomedical applications. Int J Nanomedicine 2019;14:6749-77. [PMID: 31692550 DOI: 10.2147/IJN.S169030] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
30 Mezzenga R, Seddon JM, Drummond CJ, Boyd BJ, Schröder-Turk GE, Sagalowicz L. Nature-Inspired Design and Application of Lipidic Lyotropic Liquid Crystals. Adv Mater 2019;31:e1900818. [PMID: 31222858 DOI: 10.1002/adma.201900818] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 17.8] [Reference Citation Analysis]
31 Zhai J, Fong C, Tran N, Drummond CJ. Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine. ACS Nano 2019;13:6178-206. [PMID: 31082192 DOI: 10.1021/acsnano.8b07961] [Cited by in Crossref: 96] [Cited by in F6Publishing: 104] [Article Influence: 24.0] [Reference Citation Analysis]
32 Yaghmur A, Ghazal A, Ghazal R, Dimaki M, Svendsen WE. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Phys Chem Chem Phys 2019;21:13005-13. [PMID: 31165825 DOI: 10.1039/c9cp02393c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
33 Mierzwa M, Cytryniak A, Krysiński P, Bilewicz R. Lipidic Liquid Crystalline Cubic Phases and Magnetocubosomes as Methotrexate Carriers. Nanomaterials (Basel) 2019;9:E636. [PMID: 31010165 DOI: 10.3390/nano9040636] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
34 Le TC, Tran N. Using Machine Learning To Predict the Self-Assembled Nanostructures of Monoolein and Phytantriol as a Function of Temperature and Fatty Acid Additives for Effective Lipid-Based Delivery Systems. ACS Appl Nano Mater 2019;2:1637-47. [DOI: 10.1021/acsanm.9b00075] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
35 Prajapati R, Larsen SW, Yaghmur A. Citrem–phosphatidylcholine nano-self-assemblies: solubilization of bupivacaine and its role in triggering a colloidal transition from vesicles to cubosomes and hexosomes. Phys Chem Chem Phys 2019;21:15142-50. [DOI: 10.1039/c9cp01878f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
36 Sarkar S, Tran N, Rashid MH, Le TC, Yarovsky I, Conn CE, Drummond CJ. Toward Cell Membrane Biomimetic Lipidic Cubic Phases: A High-Throughput Exploration of Lipid Compositional Space. ACS Appl Bio Mater 2019;2:182-95. [DOI: 10.1021/acsabm.8b00539] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
37 Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019;58:2958-78. [PMID: 29926520 DOI: 10.1002/anie.201804067] [Cited by in Crossref: 211] [Cited by in F6Publishing: 218] [Article Influence: 42.2] [Reference Citation Analysis]
38 Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem 2019;131:2984-3006. [DOI: 10.1002/ange.201804067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
39 Urandur S, Marwaha D, Gautam S, Banala VT, Sharma M, Mishra PR. Nonlamellar liquid crystals: a new paradigm for the delivery of small molecules and bio-macromolecules. Therapeutic Delivery 2018;9:667-89. [DOI: 10.4155/tde-2018-0038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
40 Frey M, Bobbala S, Karabin N, Scott E. Influences of nanocarrier morphology on therapeutic immunomodulation. Nanomedicine (Lond) 2018;13:1795-811. [PMID: 30084296 DOI: 10.2217/nnm-2018-0052] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
41 Zhai J, Luwor RB, Ahmed N, Escalona R, Tan FH, Fong C, Ratcliffe J, Scoble JA, Drummond CJ, Tran N. Paclitaxel-Loaded Self-Assembled Lipid Nanoparticles as Targeted Drug Delivery Systems for the Treatment of Aggressive Ovarian Cancer. ACS Appl Mater Interfaces 2018;10:25174-85. [PMID: 29963859 DOI: 10.1021/acsami.8b08125] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 12.8] [Reference Citation Analysis]
42 Bazylińska U, Kulbacka J, Schmidt J, Talmon Y, Murgia S. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. Journal of Colloid and Interface Science 2018;522:163-73. [DOI: 10.1016/j.jcis.2018.03.063] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
43 Azmi IDM, Østergaard J, Stürup S, Gammelgaard B, Urtti A, Moghimi SM, Yaghmur A. Cisplatin Encapsulation Generates Morphologically Different Multicompartments in the Internal Nanostructures of Nonlamellar Liquid-Crystalline Self-Assemblies. Langmuir 2018;34:6570-81. [DOI: 10.1021/acs.langmuir.8b01149] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
44 Tran N, Hocquet M, Eon B, Sangwan P, Ratcliffe J, Hinton TM, White J, Ozcelik B, Reynolds NP, Muir BW. Non-lamellar lyotropic liquid crystalline nanoparticles enhance the antibacterial effects of rifampicin against Staphylococcus aureus. J Colloid Interface Sci 2018;519:107-18. [PMID: 29486430 DOI: 10.1016/j.jcis.2018.02.048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
45 Tran N, Mulet X, Hawley AM, Fong C, Zhai J, Le TC, Ratcliffe J, Drummond CJ. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids. Langmuir 2018;34:2764-73. [PMID: 29381863 DOI: 10.1021/acs.langmuir.7b03541] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 8.6] [Reference Citation Analysis]
46 Zhao W, Chen L, Wang Z, Huang Y, Jia N. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4145-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
47 Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017;90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 10.2] [Reference Citation Analysis]
48 Yaghmur A, Al-hosayni S, Amenitsch H, Salentinig S. Structural Investigation of Bulk and Dispersed Inverse Lyotropic Hexagonal Liquid Crystalline Phases of Eicosapentaenoic Acid Monoglyceride. Langmuir 2017;33:14045-57. [DOI: 10.1021/acs.langmuir.7b03078] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
49 Zhai J, Tran N, Sarkar S, Fong C, Mulet X, Drummond CJ. Self-assembled Lyotropic Liquid Crystalline Phase Behavior of Monoolein–Capric Acid–Phospholipid Nanoparticulate Systems. Langmuir 2017;33:2571-80. [DOI: 10.1021/acs.langmuir.6b04045] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
50 Meli V, Caltagirone C, Sinico C, Lai F, Falchi AM, Monduzzi M, Obiols-rabasa M, Picci G, Rosa A, Schmidt J, Talmon Y, Murgia S. Theranostic hexosomes for cancer treatments: an in vitro study. New J Chem 2017;41:1558-65. [DOI: 10.1039/c6nj03232j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]