BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Condell O, Sheridan Á, Power KA, Bonilla-Santiago R, Sergeant K, Renaut J, Burgess C, Fanning S, Nally JE. Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. J Proteomics 2012;75:4505-19. [PMID: 22579747 DOI: 10.1016/j.jprot.2012.04.044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Karmakar S, Abraham T, Kumar S, Kumar S, Shukla S, Roy U, Kumar K. Triclosan exposure induces varying extent of reversible antimicrobial resistance in Aeromonas hydrophila and Edwardsiella tarda. Ecotoxicology and Environmental Safety 2019;180:309-16. [DOI: 10.1016/j.ecoenv.2019.05.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
2 Navidinia M, Goudarzi M. Overview Perspective of Bacterial Strategies of Resistance to Biocides and Antibiotics. Arch Clin Infect Dis 2019;In Press. [DOI: 10.5812/archcid.65744] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Paredi G, Sentandreu M, Mozzarelli A, Fadda S, Hollung K, de Almeida AM. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. Journal of Proteomics 2013;88:58-82. [DOI: 10.1016/j.jprot.2013.01.029] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
4 Rensch U, Greiner M, Klein G, Kehrenberg C. Mathematical modeling to predict the fitness cost associated with triclosan tolerance in Salmonella enterica serovars. Food Control 2015;53:9-13. [DOI: 10.1016/j.foodcont.2014.12.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
5 Curiao T, Marchi E, Grandgirard D, León-Sampedro R, Viti C, Leib SL, Baquero F, Oggioni MR, Martinez JL, Coque TM. Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure. BMC Genomics 2016;17:491. [PMID: 27411385 DOI: 10.1186/s12864-016-2778-z] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
6 Martins I, Hartmann DO, Alves PC, Planchon S, Renaut J, Leitão MC, Rebelo LP, Silva Pereira C. Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa. Journal of Proteomics 2013;94:262-78. [DOI: 10.1016/j.jprot.2013.09.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
7 Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. Environ Pollut 2021;286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Reference Citation Analysis]
8 Maciel MJ, Machado G, Avancini CAM. Investigation of resistance of Salmonella spp. isolated from products and raw material of animal origin (swine and poultry)to antibiotics and disinfectants. Rev bras saúde prod anim 2019;20:e0162019. [DOI: 10.1590/s1519-9940200162019] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Long M, Lai H, Deng W, Zhou K, Li B, Liu S, Fan L, Wang H, Zou L. Disinfectant susceptibility of different Salmonella serotypes isolated from chicken and egg production chains. J Appl Microbiol 2016;121:672-81. [DOI: 10.1111/jam.13184] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
10 Long M, Yu H, Chen L, Wu G, Zhao S, Deng W, Chen S, Zhou K, Liu S, He L, Ao X, Yan Y, Ma M, Wang H, Davis MA, Jones L, Li B, Zhang A, Zou L. Recovery of Salmonella isolated from eggs and the commercial layer farms. Gut Pathog 2017;9:74. [PMID: 29255489 DOI: 10.1186/s13099-017-0223-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
11 Martins I, Garcia H, Varela A, Núñez O, Planchon S, Galceran MT, Renaut J, Rebelo LP, Silva Pereira C. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls. J Proteomics 2014;98:175-88. [PMID: 24316358 DOI: 10.1016/j.jprot.2013.11.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
12 Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014;15:14191-219. [PMID: 25196519 DOI: 10.3390/ijms150814191] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
13 Alves Coelho Trevisan D, Aline Zanetti Campanerut-Sa P, da Silva AF, Farias Pereira Batista A, Seixas FAV, Peralta RM, de Sa-Nakanishi AB, de Abreu Filho BA, Machinski Junior M, Graton Mikcha JM. Action of carvacrol in Salmonella Typhimurium biofilm: A proteomic study. J Appl Biomed 2020;18:106-14. [PMID: 34907763 DOI: 10.32725/jab.2020.014] [Reference Citation Analysis]
14 Carey DE, McNamara PJ. The impact of triclosan on the spread of antibiotic resistance in the environment. Front Microbiol 2014;5:780. [PMID: 25642217 DOI: 10.3389/fmicb.2014.00780] [Cited by in Crossref: 85] [Cited by in F6Publishing: 77] [Article Influence: 12.1] [Reference Citation Analysis]
15 Gnanadhas DP, Marathe SA, Chakravortty D. Biocides--resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs 2013;22:191-206. [PMID: 23215733 DOI: 10.1517/13543784.2013.748035] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 5.3] [Reference Citation Analysis]
16 Carvalho M, Martins I, Medeiros J, Tavares S, Planchon S, Renaut J, Núñez O, Gallart-ayala H, Galceran M, Hursthouse A, Silva Pereira C. The response of Mucor plumbeus to pentachlorophenol: A toxicoproteomics study. Journal of Proteomics 2013;78:159-71. [DOI: 10.1016/j.jprot.2012.11.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
17 Sheridan Á, Lenahan M, Condell O, Bonilla-santiago R, Sergeant K, Renaut J, Duffy G, Fanning S, Nally J, Burgess C. Proteomic and phenotypic analysis of triclosan tolerant verocytotoxigenic Escherichia coli O157:H19. Journal of Proteomics 2013;80:78-90. [DOI: 10.1016/j.jprot.2012.12.025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
18 Davachi SM, Kaffashi B. Preparation and Characterization of Poly L-Lactide/Triclosan Nanoparticles for Specific Antibacterial and Medical Applications. International Journal of Polymeric Materials and Polymeric Biomaterials 2015;64:497-508. [DOI: 10.1080/00914037.2014.977897] [Cited by in Crossref: 47] [Cited by in F6Publishing: 27] [Article Influence: 6.7] [Reference Citation Analysis]
19 Yu BJ, Kim JA, Ju HM, Choi SK, Hwang SJ, Park S, Kim E, Pan JG. Genome-wide enrichment screening reveals multiple targets and resistance genes for triclosan in Escherichia coli. J Microbiol 2012;50:785-91. [PMID: 23124746 DOI: 10.1007/s12275-012-2439-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
20 Hassan AY, Lin JT, Ricker N, Anany H. The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Pharmaceuticals (Basel) 2021;14:199. [PMID: 33670836 DOI: 10.3390/ph14030199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Silva AF, dos Santos AR, Coelho Trevisan DA, Ribeiro AB, Zanetti Campanerut-sá PA, Kukolj C, de Souza EM, Cardoso RF, Estivalet Svidzinski TI, de Abreu Filho BA, Junior MM, Graton Mikcha JM. Cinnamaldehyde induces changes in the protein profile of Salmonella Typhimurium biofilm. Research in Microbiology 2018;169:33-43. [DOI: 10.1016/j.resmic.2017.09.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
22 Condell O, Power KA, Händler K, Finn S, Sheridan A, Sergeant K, Renaut J, Burgess CM, Hinton JC, Nally JE, Fanning S. Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network. Front Microbiol 2014;5:373. [PMID: 25136333 DOI: 10.3389/fmicb.2014.00373] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
23 Futoma-Kołoch B, Dudek B, Kapczyńska K, Krzyżewska E, Wańczyk M, Korzekwa K, Rybka J, Klausa E, Bugla-Płoskońska G. Relationship of Triamine-Biocide Tolerance of Salmonella enterica Serovar Senftenberg to Antimicrobial Susceptibility, Serum Resistance and Outer Membrane Proteins. Int J Mol Sci 2017;18:E1459. [PMID: 28696348 DOI: 10.3390/ijms18071459] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
24 Gantzhorn MR, Olsen JE, Thomsen LE. Importance of sigma factor mutations in increased triclosan resistance in Salmonella Typhimurium. BMC Microbiol 2015;15:105. [PMID: 25986727 DOI: 10.1186/s12866-015-0444-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
25 Katsarou EI, Billinis C, Galamatis D, Fthenakis GC, Tsangaris GT, Katsafadou AI. Applied Proteomics in 'One Health'. Proteomes 2021;9:31. [PMID: 34208880 DOI: 10.3390/proteomes9030031] [Reference Citation Analysis]
26 Rozman U, Pušnik M, Kmetec S, Duh D, Šostar Turk S. Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021;9:2550. [PMID: 34946151 DOI: 10.3390/microorganisms9122550] [Reference Citation Analysis]
27 Luque-Sastre L, Fox EM, Jordan K, Fanning S. A Comparative Study of the Susceptibility of Listeria Species to Sanitizer Treatments When Grown under Planktonic and Biofilm Conditions. J Food Prot 2018;81:1481-90. [PMID: 30109972 DOI: 10.4315/0362-028X.JFP-17-466] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
28 Rensch U, Klein G, Kehrenberg C. Analysis of triclosan-selected Salmonella enterica mutants of eight serovars revealed increased aminoglycoside susceptibility and reduced growth rates. PLoS One 2013;8:e78310. [PMID: 24205194 DOI: 10.1371/journal.pone.0078310] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
29 Ricke SC, Calo JR, Kaldhone P. Salmonella Control in Food Production. Food Safety. Elsevier; 2015. pp. 107-33. [DOI: 10.1016/b978-0-12-800245-2.00007-1] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
30 Grandgirard D, Furi L, Ciusa ML, Baldassarri L, Knight DR, Morrissey I, Largiadèr CR, Leib SL, Oggioni MR. Mutations upstream of fabI in triclosan resistant Staphylococcus aureus strains are associated with elevated fabI gene expression. BMC Genomics 2015;16:345. [PMID: 25924916 DOI: 10.1186/s12864-015-1544-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
31 Ritter AC, Santi L, Vannini L, Beys-da-silva WO, Gozzi G, Yates J, Ragni L, Brandelli A. Comparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiology 2018;76:310-8. [DOI: 10.1016/j.fm.2018.06.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]