1 |
García-cabezón C, Godinho V, Pérez-gonzález C, Torres Y, Martín-pedrosa F. Electropolymerized polypyrrole silver nanocomposite coatings on porous Ti substrates with enhanced corrosion and antibacterial behavior for biomedical applications. Materials Today Chemistry 2023;29:101433. [DOI: 10.1016/j.mtchem.2023.101433] [Reference Citation Analysis]
|
2 |
Delgado-pujol EJ, Alcudia A, Elhadad AA, Rodríguez-albelo LM, Navarro P, Begines B, Torres Y. Porous beta titanium alloy coated with a therapeutic biopolymeric composite to improve tribomechanical and biofunctional balance. Materials Chemistry and Physics 2023. [DOI: 10.1016/j.matchemphys.2023.127559] [Reference Citation Analysis]
|
3 |
Sun T, Huang J, Zhang W, Zheng X, Wang H, Liu J, Leng H, Yuan W, Song C. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioactive Materials 2023;21:44-56. [DOI: 10.1016/j.bioactmat.2022.07.028] [Reference Citation Analysis]
|
4 |
Yang T, Xie L, Hu X, He K, Zhu Z, Fan L, Tian W. Residual extracellular polymeric substances (EPS) detected by fluorescence microscopy on dental implants after different decontamination. Materials Chemistry and Physics 2023;296:127242. [DOI: 10.1016/j.matchemphys.2022.127242] [Reference Citation Analysis]
|
5 |
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022;16:249-70. [PMID: 35415290 DOI: 10.1016/j.bioactmat.2022.02.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
6 |
Yao Q, Zhang J, Pan G, Chen B. Mussel-Inspired Clickable Antibacterial Peptide Coating on Ureteral Stents for Encrustation Prevention. ACS Appl Mater Interfaces 2022;14:36473-86. [PMID: 35917447 DOI: 10.1021/acsami.2c09448] [Reference Citation Analysis]
|
7 |
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022;:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Reference Citation Analysis]
|
8 |
Toirac B, Garcia-casas A, Monclús MA, Aguilera-correa JJ, Esteban J, Jiménez-morales A. Influence of Addition of Antibiotics on Chemical and Surface Properties of Sol-Gel Coatings. Materials 2022;15:4752. [DOI: 10.3390/ma15144752] [Reference Citation Analysis]
|
9 |
Billings C, Bow AJ, Newby SD, Donnell RL, Dhar M, Anderson DE. Effects on Tissue Integration of Collagen Scaffolds Used for Local Delivery of Gentamicin in a Rat Mandible Defect Model. Bioengineering 2022;9:275. [DOI: 10.3390/bioengineering9070275] [Reference Citation Analysis]
|
10 |
Rahimi M, Mir SM, Baghban R, Charmi G, Plummer CM, Shafiei-Irannejad V, Soleymani J, Pietrasik J. Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022;215:346-67. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Wang Y, Zhang S, Nie B, Qu X, Yue B. Approaches to Biofunctionalize Polyetheretherketone for Antibacterial: A Review. Front Bioeng Biotechnol 2022;10:895288. [DOI: 10.3389/fbioe.2022.895288] [Reference Citation Analysis]
|
12 |
Xin W, Gao Y, Yue B. Recent Advances in Multifunctional Hydrogels for the Treatment of Osteomyelitis. Front Bioeng Biotechnol 2022;10:865250. [DOI: 10.3389/fbioe.2022.865250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant. Tissue Engineering Part A. [DOI: 10.1089/ten.tea.2021.0230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Sung K, Li D, Chon J, Kweon O, Kim M, Xu J, Park M, Khan SA. Transcriptomic Response of Human Nosocomial Pathogen Pseudomonas aeruginosa Biofilms Following Continuous Exposure to Antibiotic-Impregnated Catheters. Data 2022;7:35. [DOI: 10.3390/data7030035] [Reference Citation Analysis]
|
15 |
Yu B, Xue X, Yin Z, Cao L, Li M, Huang J. Engineered Cell Membrane-Derived Nanocarriers: The Enhanced Delivery System for Therapeutic Applications. Front Cell Dev Biol 2022;10:844050. [DOI: 10.3389/fcell.2022.844050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Tiji S, Lakrat M, Rokni Y, Mejdoubi EM, Hano C, Addi M, Asehraou A, Mimouni M. Characterization and Antimicrobial Activity of Nigella sativa Extracts Encapsulated in Hydroxyapatite Sodium Silicate Glass Composite. Antibiotics 2022;11:170. [DOI: 10.3390/antibiotics11020170] [Reference Citation Analysis]
|
17 |
Vranceanu DM, Ungureanu E, Ionescu IC, Parau AC, Kiss AE, Vladescu A, Cotrut CM. Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite. Coatings 2022;12:69. [DOI: 10.3390/coatings12010069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
18 |
Yao Q, Chen B, Bai J, He W, Chen X, Geng D, Pan G. Bio-inspired antibacterial coatings on urinary stents for encrustation prevention. J Mater Chem B 2022. [PMID: 34984428 DOI: 10.1039/d1tb02318g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Riccio P, Zare M, Gomes D, Green D, Stamboulis A. Antimicrobial Bioceramics for Biomedical Applications. Innovative Bioceramics in Translational Medicine I 2022. [DOI: 10.1007/978-981-16-7435-8_5] [Reference Citation Analysis]
|
20 |
Jiang R, Yi Y, Hao L, Chen Y, Tian L, Dou H, Zhao J, Ming W, Ren L. Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. ACS Appl Mater Interfaces 2021;13:60865-77. [PMID: 34905683 DOI: 10.1021/acsami.1c16487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
21 |
Jothipandiyan S, Suresh D, Sankaran SV, Thamotharan S, Shanmugasundaram K, Vincent P, Sekaran S, Gowrishankar S, Pandian SK, Paramasivam N. Heteroleptic pincer palladium(II) complex coated orthopedic implants impede the AbaI/AbaR quorum sensing system and biofilm development by Acinetobacter baumannii. Biofouling 2021;:1-16. [PMID: 34961388 DOI: 10.1080/08927014.2021.2015336] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Lin EMJ, Lay CL, Subramanian GS, Tan WS, Leong SSJ, Moh LCH, Lim K. Control Release Coating for Urinary Catheters with Enhanced Released Profile for Sustained Antimicrobial Protection. ACS Appl Mater Interfaces 2021;13:59263-74. [PMID: 34846837 DOI: 10.1021/acsami.1c17697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Liu J, Mohd Rafiq NB, Wong LM, Wang S. Surface Treatment and Bioinspired Coating for 3D-Printed Implants. Front Chem 2021;9:768007. [PMID: 34869211 DOI: 10.3389/fchem.2021.768007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
24 |
Ciobanu CS, Predoi D, Chapon P, Predoi MV, Iconaru SL. Fabrication and Physico-Chemical Properties of Antifungal Samarium Doped Hydroxyapatite Thin Films. Coatings 2021;11:1466. [DOI: 10.3390/coatings11121466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
25 |
Mutter MM, Jabbar RH, Khudiar AI. Synthesis and characterization of TiO2: Al thin films for bacteria resistance in the implanted dental. J Aust Ceram Soc 2022;58:145-9. [DOI: 10.1007/s41779-021-00637-7] [Reference Citation Analysis]
|
26 |
Harawaza K, Cousins B, Roach P, Fernandez A. Modification of the surface nanotopography of implant devices: A translational perspective. Mater Today Bio 2021;12:100152. [PMID: 34746736 DOI: 10.1016/j.mtbio.2021.100152] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
27 |
Li Y, Wang S, Li S, Fei J. Clindamycin-loaded titanium prevents implant-related infection through blocking biofilm formation. J Biomater Appl 2021;:8853282211051183. [PMID: 34723682 DOI: 10.1177/08853282211051183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
28 |
Mahmoodi M, Hydari MH, Mahmoodi L, Gazanfari L, Mirhaj M. Electrophoretic deposition of graphene oxide reinforced hydroxyapatite on the tantalum substrate for bone implant applications: In vitro corrosion and bio-tribological behavior. Surface and Coatings Technology 2021;424:127642. [DOI: 10.1016/j.surfcoat.2021.127642] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
29 |
Liu H, Tang Y, Zhang S, Liu H, Wang Z, Li Y, Wang X, Ren L, Yang K, Qin L. Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioact Mater 2022;8:381-95. [PMID: 34541408 DOI: 10.1016/j.bioactmat.2021.05.053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
|
30 |
Wang M, Yang Y, Chi G, Yuan K, Zhou F, Dong L, Liu H, Zhou Q, Gong W, Yang S, Tang T. A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. J Mater Chem B 2021;9:4735-45. [PMID: 34095948 DOI: 10.1039/d1tb00387a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
31 |
Bright R, Hayles A, Fernandes D, Visalakshan RM, Ninan N, Palms D, Burzava A, Barker D, Brown T, Vasilev K. In Vitro Bactericidal Efficacy of Nanostructured Ti6Al4V Surfaces is Bacterial Load Dependent. ACS Appl Mater Interfaces 2021;13:38007-17. [PMID: 34374279 DOI: 10.1021/acsami.1c06919] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
|
32 |
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021;11:693939. [PMID: 34277473 DOI: 10.3389/fcimb.2021.693939] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
33 |
AbouAitah K, Bil M, Pietrzykowska E, Szałaj U, Fudala D, Woźniak B, Nasiłowska J, Swiderska-Sroda A, Lojkowski M, Sokołowska B, Swieszkowski W, Lojkowski W. Drug-Releasing Antibacterial Coating Made from Nano-Hydroxyapatite Using the Sonocoating Method. Nanomaterials (Basel) 2021;11:1690. [PMID: 34203218 DOI: 10.3390/nano11071690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
34 |
Alipal J, Lee TC, Koshy P, Abdullah HZ, Idris MI. Evolution of anodised titanium for implant applications. Heliyon 2021;7:e07408. [PMID: 34296002 DOI: 10.1016/j.heliyon.2021.e07408] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
|
35 |
Gülses A, Lopar A, Es-Souni M, Emmert M, Es-Souni M, Behrens E, Naujokat H, Liedtke KR, Acil Y, Wiltfang J, Flörke C. A Novel Surface Modification Strategy via Photopolymerized Poly-Sulfobetaine Methacrylate Coating to Prevent Bacterial Adhesion on Titanium Surfaces. Materials (Basel) 2021;14:3303. [PMID: 34203760 DOI: 10.3390/ma14123303] [Reference Citation Analysis]
|
36 |
Borcherding K, Schmidmaier G, Hofmann GO, Wildemann B. The rationale behind implant coatings to promote osteointegration, bone healing or regeneration. Injury 2021;52 Suppl 2:S106-11. [PMID: 33257018 DOI: 10.1016/j.injury.2020.11.050] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
37 |
Babutan I, Lucaci AD, Botiz I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers (Basel) 2021;13:1552. [PMID: 34066135 DOI: 10.3390/polym13101552] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
38 |
Eidmann A, Ewald A, Boelch SP, Rudert M, Holzapfel BM, Stratos I. In vitro evaluation of antibacterial efficacy of vancomycin-loaded suture tapes and cerclage wires. J Mater Sci Mater Med 2021;32:42. [PMID: 33825078 DOI: 10.1007/s10856-021-06513-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
39 |
Pezzanite LM, Chow L, Johnson V, Griffenhagen GM, Goodrich L, Dow S. Toll-like receptor activation of equine mesenchymal stromal cells to enhance antibacterial activity and immunomodulatory cytokine secretion. Vet Surg 2021;50:858-71. [PMID: 33797775 DOI: 10.1111/vsu.13628] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
40 |
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021;32:627-38. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
41 |
Diez-Orejas R, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés MT. Effects of mesoporous SiO2-CaO nanospheres on the murine peritoneal macrophages/Candidaalbicans interface. Int Immunopharmacol 2021;94:107457. [PMID: 33752172 DOI: 10.1016/j.intimp.2021.107457] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
42 |
Maver T, Mastnak T, Mihelič M, Maver U, Finšgar M. Clindamycin-Based 3D-Printed and Electrospun Coatings for Treatment of Implant-Related Infections. Materials (Basel) 2021;14:1464. [PMID: 33802712 DOI: 10.3390/ma14061464] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
43 |
Sousa MGC, Rezende TMB, Franco OL. Nanofibers as drug-delivery systems for antimicrobial peptides. Drug Discov Today 2021;26:2064-74. [PMID: 33741497 DOI: 10.1016/j.drudis.2021.03.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
44 |
Dzogbewu TC, du Preez WB. Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents. Metals 2021;11:453. [DOI: 10.3390/met11030453] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
45 |
Trueba P, Navarro C, Rodríguez-ortiz JA, Beltrán AM, García-garcía FJ, Torres Y. Fabrication and characterization of superficially modified porous dental implants. Surface and Coatings Technology 2021;408:126796. [DOI: 10.1016/j.surfcoat.2020.126796] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
|
46 |
Sun CK, Ke CJ, Lin YW, Lin FH, Tsai TH, Sun JS. Transglutaminase Cross-Linked Gelatin-Alginate-Antibacterial Hydrogel as the Drug Delivery-Coatings for Implant-Related Infections. Polymers (Basel) 2021;13:414. [PMID: 33525449 DOI: 10.3390/polym13030414] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
47 |
Slepička P, Rimpelová S, Slepičková Kasálková N, Fajstavr D, Sajdl P, Kolská Z, Švorčík V. Antibacterial Properties of Plasma-Activated Perfluorinated Substrates with Silver Nanoclusters Deposition. Nanomaterials (Basel) 2021;11:182. [PMID: 33450953 DOI: 10.3390/nano11010182] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
48 |
Ceresa C, Rinaldi M, Tessarolo F, Maniglio D, Fedeli E, Tambone E, Caciagli P, Banat IM, Diaz De Rienzo MA, Fracchia L. Inhibitory Effects of Lipopeptides and Glycolipids on C. albicans-Staphylococcus spp. Dual-Species Biofilms. Front Microbiol 2020;11:545654. [PMID: 33519721 DOI: 10.3389/fmicb.2020.545654] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
49 |
Dourado LFN, Pierucci A, Roa JPB, Carvalho Júnior ÁDD. Assessment of implantable drug delivery technology: poly (3-hydroxybutyrate) / polypropylene glycol films containing simvastatin. Matéria (Rio J ) 2021;26. [DOI: 10.1590/s1517-707620210004.1389] [Reference Citation Analysis]
|
50 |
Tallet L, Gribova V, Ploux L, Vrana NE, Lavalle P. New Smart Antimicrobial Hydrogels, Nanomaterials, and Coatings: Earlier Action, More Specific, Better Dosing? Adv Healthc Mater 2021;10:e2001199. [PMID: 33043612 DOI: 10.1002/adhm.202001199] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
51 |
Escobar A, Muzzio N, Moya SE. Antibacterial Layer-by-Layer Coatings for Medical Implants. Pharmaceutics 2020;13:E16. [PMID: 33374184 DOI: 10.3390/pharmaceutics13010016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
52 |
Shepherd J. Best served small: nano battles in the war against wound biofilm infections. Emerg Top Life Sci 2020;4:567-80. [PMID: 33269803 DOI: 10.1042/ETLS20200155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
53 |
Muro-Fraguas I, Sainz-García A, López M, Rojo-Bezares B, Múgica-Vidal R, Sainz-García E, Toledano P, Sáenz Y, González-Marcos A, Alba-Elías F. Antibiofilm coatings through atmospheric pressure plasma for 3D printed surgical instruments. Surf Coat Technol 2020;399:126163. [PMID: 32834311 DOI: 10.1016/j.surfcoat.2020.126163] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
|
54 |
Mihai AD, Chircov C, Grumezescu AM, Holban AM. Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies. Int J Mol Sci 2020;21:E7355. [PMID: 33027980 DOI: 10.3390/ijms21197355] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
|
55 |
Andryukov BG, Romashko RV, Efimov TA, Lyapun IN, Bynina MP, Matosova EV. Mechanisms of Adhesive–Cohesive Interaction of Bacteria in the Formation of Biofilm. Mol Genet Microbiol Virol 2020;35:195-201. [DOI: 10.3103/s0891416820040023] [Reference Citation Analysis]
|
56 |
Nosé BD, Grimberg DCD, Lentz AC. Update on Intraoperative Cultures, Biofilms, and Modifiable Factors During Revision of Clinically Non-Infected Penile Implants. Sex Med Rev 2021;9:160-8. [PMID: 32943351 DOI: 10.1016/j.sxmr.2020.07.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
57 |
Chauhan N, Singh Y. Self-Assembled Fmoc-Arg-Phe-Phe Peptide Gels with Highly Potent Bactericidal Activities. ACS Biomater Sci Eng 2020;6:5507-18. [DOI: 10.1021/acsbiomaterials.0c00660] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
58 |
Gallo J, Nieslanikova E. Prevention of Prosthetic Joint Infection: From Traditional Approaches towards Quality Improvement and Data Mining. J Clin Med 2020;9:E2190. [PMID: 32664491 DOI: 10.3390/jcm9072190] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
59 |
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020;9:e2000310. [PMID: 32449317 DOI: 10.1002/adhm.202000310] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 11.7] [Reference Citation Analysis]
|
60 |
Piras CC, Mahon CS, Smith DK. Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. Chemistry 2020;26:8452-7. [PMID: 32294272 DOI: 10.1002/chem.202001349] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|
61 |
Civantos A, Giner M, Trueba P, Lascano S, Montoya-garcía M, Arévalo C, Vázquez MÁ, Allain JP, Torres Y. In Vitro Bone Cell Behavior on Porous Titanium Samples: Influence of Porosity by Loose Sintering and Space Holder Techniques. Metals 2020;10:696. [DOI: 10.3390/met10050696] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
|
62 |
Iqbal MH, Schroder A, Kerdjoudj H, Njel C, Senger B, Ball V, Meyer F, Boulmedais F. Effect of the Buffer on the Buildup and Stability of Tannic Acid/Collagen Multilayer Films Applied as Antibacterial Coatings. ACS Appl Mater Interfaces 2020;12:22601-12. [PMID: 32374145 DOI: 10.1021/acsami.0c04475] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|
63 |
Qiu J, Peng P, Xin M, Wen Z, Chen Z, Lin S, Kuang M, Fu Y, Fang G, Li S, Li C, Mao J, Qin L, Ding Y. ZBTB20-mediated titanium particle-induced peri-implant osteolysis by promoting macrophage inflammatory responses. Biomater Sci 2020;8:3147-63. [PMID: 32363359 DOI: 10.1039/d0bm00147c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
64 |
Monzillo V, Lallitto F, Russo A, Poggio C, Scribante A, Arciola CR, Bertuccio FR, Colombo M. Ozonized Gel Against Four Candida Species: A Pilot Study and Clinical Perspectives. Materials (Basel) 2020;13:E1731. [PMID: 32276304 DOI: 10.3390/ma13071731] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
|
65 |
Hasegawa M, Saruta J, Hirota M, Taniyama T, Sugita Y, Kubo K, Ishijima M, Ikeda T, Maeda H, Ogawa T. A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration. Int J Mol Sci 2020;21:E783. [PMID: 31991761 DOI: 10.3390/ijms21030783] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
|
66 |
Andryukov B, Romashko R, Efimov T, Lyapun I, Bynina M, Matosova E. Mechanisms of adhesive-coadhesive interaction of bacteria in the formation of a biofilm. Mol genet mikrobiol virusol 2020;38:155. [DOI: 10.17116/molgen202038041155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
67 |
Piras AM, Esin S, Benedetti A, Maisetta G, Fabiano A, Zambito Y, Batoni G. Antibacterial, Antibiofilm, and Antiadhesive Properties of Different Quaternized Chitosan Derivatives. Int J Mol Sci 2019;20:E6297. [PMID: 31847119 DOI: 10.3390/ijms20246297] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
|
68 |
Ceresa C, Tessarolo F, Maniglio D, Tambone E, Carmagnola I, Fedeli E, Caola I, Nollo G, Chiono V, Allegrone G, Rinaldi M, Fracchia L. Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms. Molecules 2019;24:E3843. [PMID: 31731408 DOI: 10.3390/molecules24213843] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
|
69 |
Nakonechny F, Barel M, David A, Koretz S, Litvak B, Ragozin E, Etinger A, Livne O, Pinhasi Y, Gellerman G, Nisnevitch M. Dark Antibacterial Activity of Rose Bengal. Int J Mol Sci 2019;20:E3196. [PMID: 31261890 DOI: 10.3390/ijms20133196] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
|