BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park M, Lee Y, Khan A, Aleta P, Cho Y, Park H, Park YH, Kim S. Metabolite tracking to elucidate the effects of environmental pollutants. Journal of Hazardous Materials 2019;376:112-24. [DOI: 10.1016/j.jhazmat.2019.05.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Rosa LMT, Botero WG, do Carmo JB, Gabriel GV, Waldman WR, Cavagis AD, Goveia D, de Oliveira LC. Application of natural organic residues in the remediation of metals from e-waste. Environmental Technology & Innovation 2022;27:102452. [DOI: 10.1016/j.eti.2022.102452] [Reference Citation Analysis]
2 Yoon H, Kim HC, Kim J, You K, Cho Y, Kim S. Toxicity impact of hydrogen peroxide on the fate of zebrafish and antibiotic resistant bacteria. J Environ Manage 2022;302:114072. [PMID: 34781050 DOI: 10.1016/j.jenvman.2021.114072] [Reference Citation Analysis]
3 da Silva KM, Iturrospe E, Bars C, Knapen D, Van Cruchten S, Covaci A, van Nuijs ALN. Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. Metabolites 2021;11:635. [PMID: 34564451 DOI: 10.3390/metabo11090635] [Reference Citation Analysis]
4 Gil-solsona R, Álvarez-muñoz D, Serra-compte A, Rodríguez-mozaz S. (Xeno)metabolomics for the evaluation of aquatic organism’s exposure to field contaminated water. Trends in Environmental Analytical Chemistry 2021;31:e00132. [DOI: 10.1016/j.teac.2021.e00132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yoon H, Kim HC, Kim S. Long-term seasonal and temporal changes of hydrogen peroxide from cyanobacterial blooms in fresh waters. J Environ Manage 2021;298:113515. [PMID: 34403920 DOI: 10.1016/j.jenvman.2021.113515] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Shahid N, Rolle-Kampczyk U, Siddique A, von Bergen M, Liess M. Pesticide-induced metabolic changes are amplified by food stress. Sci Total Environ 2021;792:148350. [PMID: 34153767 DOI: 10.1016/j.scitotenv.2021.148350] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Labine LM, Simpson MJ. The use of nuclear magnetic resonance (NMR) and mass spectrometry (MS)–based metabolomics in environmental exposure assessment. Current Opinion in Environmental Science & Health 2020;15:7-15. [DOI: 10.1016/j.coesh.2020.01.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
8 Jiang L, Howlett K, Patterson K, Wang B. Introduction of a new method for two-dimensional NMR quantitative analysis in metabolomics studies. Anal Biochem 2020;597:113692. [PMID: 32198012 DOI: 10.1016/j.ab.2020.113692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Rhee J, Han E, Nam KJ, Lim KH, Chan Rah Y, Park S, Koun S, Park HC, Choi J. Assessment of hair cell damage and developmental toxicity after fine particulate matter 2.5 μm (PM 2.5) exposure using zebrafish (Danio rerio) models. Int J Pediatr Otorhinolaryngol 2019;126:109611. [PMID: 31374386 DOI: 10.1016/j.ijporl.2019.109611] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]