BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release 2014;189:133-40. [PMID: 24997277 DOI: 10.1016/j.jconrel.2014.06.053] [Cited by in Crossref: 163] [Cited by in F6Publishing: 172] [Article Influence: 20.4] [Reference Citation Analysis]
Number Citing Articles
1 Guo X, Zhang Y, Liu C, Ren L, Gao S, Bi J, Liang J, Wang P. Intranasal administration of β‐1, 3‐galactosyltransferase 2 confers neuroprotection against ischemic stroke by likely inhibiting oxidative stress and NLRP3 inflammasome activation. The FASEB Journal 2022;36. [DOI: 10.1096/fj.202200456rr] [Reference Citation Analysis]
2 Tomar S, Yadav RK, Shah K, Dewangan HK. A comprehensive review on carrier mediated nose to brain targeting: emphasis on molecular targets, current trends, future prospects, and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2124255] [Reference Citation Analysis]
3 Shaghlil L, Alshishani A, Sa'aleek AA, Abdalkader H, Ebini Y. Formulation and evaluation of nasal insert for nose-to-brain drug delivery of rivastigmine tartrate. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103736] [Reference Citation Analysis]
4 Han SW, Ryu KY. Increased clearance of non-biodegradable polystyrene nanoplastics by exocytosis through inhibition of retrograde intracellular transport. J Hazard Mater 2022;439:129576. [PMID: 35850071 DOI: 10.1016/j.jhazmat.2022.129576] [Reference Citation Analysis]
5 Mansur AAP, Paiva MRB, Cotta OAL, Silva LM, Carvalho IC, Capanema NSV, Carvalho SM, Costa ÉA, Martin NR, Ecco R, Santos BS, Fialho SL, Lobato ZIP, Mansur HS. Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. Int J Biol Macromol 2022;210:530-44. [PMID: 35513094 DOI: 10.1016/j.ijbiomac.2022.04.207] [Reference Citation Analysis]
6 Chen D, Li J, Huang Y, Wei P, Miao W, Yang Y, Gao Y. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation 2022;19:112. [PMID: 35578342 DOI: 10.1186/s12974-022-02471-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Agnihotri TG, Jadhav GS, Sahu B, Jain A. Recent trends of bioconjugated nanomedicines through nose-to-brain delivery for neurological disorders. Drug Deliv and Transl Res . [DOI: 10.1007/s13346-022-01173-y] [Reference Citation Analysis]
8 Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: Combining with intranasal delivery. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.04.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kurano T, Kanazawa T, Ooba A, Masuyama Y, Maruhana N, Yamada M, Iioka S, Ibaraki H, Kosuge Y, Kondo H, Suzuki T. Nose-to-brain/spinal cord delivery kinetics of liposomes with different surface properties. J Control Release 2022:S0168-3659(22)00143-2. [PMID: 35296406 DOI: 10.1016/j.jconrel.2022.03.017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yokel RA. Direct nose to the brain nanomedicine delivery presents a formidable challenge. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1767. [PMID: 34957707 DOI: 10.1002/wnan.1767] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Mcguckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, Paredes AJ. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
12 Rajput A, Butani S. Donepezil HCl Liposomes: Development, Characterization, Cytotoxicity, and Pharmacokinetic Study. AAPS PharmSciTech 2022;23:74. [PMID: 35149912 DOI: 10.1208/s12249-022-02209-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Moradi F, Dashti N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022;395:133-48. [PMID: 34982185 DOI: 10.1007/s00210-021-02196-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X. Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain. Nano Lett 2022. [PMID: 35089039 DOI: 10.1021/acs.nanolett.1c04184] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
15 Flamm J, Hartung S, Gänger S, Maigler F, Pitzer C, Schindowski K. Establishment of an Olfactory Region-specific Intranasal Delivery Technique in Mice to Target the Central Nervous System. Front Pharmacol 2021;12:789780. [PMID: 35082672 DOI: 10.3389/fphar.2021.789780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 A P, Agrawal M, Dethe MR, Ahmed H, Yadav A, Gupta U, Alexander A. Nose-to-brain drug delivery for the treatment of Alzheimer's Disease: Current advancements and challenges. Expert Opin Drug Deliv 2022. [PMID: 35040728 DOI: 10.1080/17425247.2022.2029845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kamei N, Hashimoto A, Tanaka E, Murata K, Yamaguchi M, Yokoyama N, Kato M, Oki K, Saito T, Saido TC, Takeda-Morishita M. Therapeutic effects of anti-amyloid β antibody after intravenous injection and efficient nose-to-brain delivery in Alzheimer's disease mouse model. Drug Deliv Transl Res 2022. [PMID: 35015254 DOI: 10.1007/s13346-022-01117-6] [Reference Citation Analysis]
18 Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. Journal of Drug Delivery Science and Technology 2021;66:102791. [DOI: 10.1016/j.jddst.2021.102791] [Reference Citation Analysis]
19 Soleimanizadeh A, Dinter H, Schindowski K. Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies (Basel) 2021;10:47. [PMID: 34939999 DOI: 10.3390/antib10040047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021;13:2049. [PMID: 34959331 DOI: 10.3390/pharmaceutics13122049] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
21 Maigler F, Ladel S, Flamm J, Gänger S, Kurpiers B, Kiderlen S, Völk R, Hamp C, Hartung S, Spiegel S, Soleimanizadeh A, Eberle K, Hermann R, Krainer L, Pitzer C, Schindowski K. Selective CNS Targeting and Distribution with a Refined Region-Specific Intranasal Delivery Technique via the Olfactory Mucosa. Pharmaceutics 2021;13:1904. [PMID: 34834319 DOI: 10.3390/pharmaceutics13111904] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
22 Borrajo ML, Alonso MJ. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res 2021. [PMID: 34731414 DOI: 10.1007/s13346-021-01086-2] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Abd-Algaleel SA, Metwally AA, Abdel-Bar HM, Kassem DH, Hathout RM. Synchronizing In Silico, In Vitro, and In Vivo Studies for the Successful Nose to Brain Delivery of an Anticancer Molecule. Mol Pharm 2021;18:3763-76. [PMID: 34460250 DOI: 10.1021/acs.molpharmaceut.1c00276] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
24 Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int J Pharm 2021;607:121050. [PMID: 34454028 DOI: 10.1016/j.ijpharm.2021.121050] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
25 Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021;22:10118. [PMID: 34576281 DOI: 10.3390/ijms221810118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
26 Rabinowicz AL, Carrazana E, Maggio ET. Improvement of Intranasal Drug Delivery with Intravail® Alkylsaccharide Excipient as a Mucosal Absorption Enhancer Aiding in the Treatment of Conditions of the Central Nervous System. Drugs R D 2021;21:361-9. [PMID: 34435339 DOI: 10.1007/s40268-021-00360-5] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
27 Dhuyvetter D, Tekle F, Nazarov M, Vreeken RJ, Borghys H, Rombouts F, Lenaerts I, Bottelbergs A. Direct nose to brain delivery of small molecules: critical analysis of data from a standardized in vivo screening model in rats. Drug Deliv 2020;27:1597-607. [PMID: 33169635 DOI: 10.1080/10717544.2020.1837291] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Clementino AR, Pellegrini G, Banella S, Colombo G, Cantù L, Sonvico F, Del Favero E. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs. Mol Pharm 2021;18:3132-46. [PMID: 34259534 DOI: 10.1021/acs.molpharmaceut.1c00366] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
29 Pu H, Ma C, Zhao Y, Wang Y, Zhang W, Miao W, Yu F, Hu X, Shi Y, Leak RK, Hitchens TK, Dixon CE, Bennett MV, Chen J. Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. J Cereb Blood Flow Metab 2021;:271678X211028680. [PMID: 34259069 DOI: 10.1177/0271678X211028680] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
30 Wu H, Zhou Y, Wang Y, Tong L, Wang F, Song S, Xu L, Liu B, Yan H, Sun Z. Current State and Future Directions of Intranasal Delivery Route for Central Nervous System Disorders: A Scientometric and Visualization Analysis. Front Pharmacol 2021;12:717192. [PMID: 34322030 DOI: 10.3389/fphar.2021.717192] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
31 Saka R, Chella N, Khan W. Development of Imatinib Mesylate-Loaded Liposomes for Nose to Brain Delivery: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2021;22:192. [PMID: 34184160 DOI: 10.1208/s12249-021-02072-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Porfiryeva NN, Semina II, Salakhov IA, Moustafine RI, Khutoryanskiy VV. Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. Nanomedicine 2021;37:102432. [PMID: 34186258 DOI: 10.1016/j.nano.2021.102432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
33 Cata JP, Uhelski ML, Gorur A, Dougherty PM. Nociception and Pain: New Roles for Exosomes. Neuroscientist 2021;:10738584211027105. [PMID: 34166130 DOI: 10.1177/10738584211027105] [Reference Citation Analysis]
34 Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021;234:113370. [PMID: 33621561 DOI: 10.1016/j.physbeh.2021.113370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
35 Abourehab MAS, Khames A, Genedy S, Mostafa S, Khaleel MA, Omar MM, El Sisi AM. Sesame Oil-Based Nanostructured Lipid Carriers of Nicergoline, Intranasal Delivery System for Brain Targeting of Synergistic Cerebrovascular Protection. Pharmaceutics 2021;13:581. [PMID: 33921796 DOI: 10.3390/pharmaceutics13040581] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
36 Cassano R, Servidio C, Trombino S. Biomaterials for Drugs Nose-Brain Transport: A New Therapeutic Approach for Neurological Diseases. Materials (Basel) 2021;14:1802. [PMID: 33917404 DOI: 10.3390/ma14071802] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 de Souza IFF, Dos Santos TQ, Placido RV, Mangerona BA, Carvalho FC, Boralli VB, Ruela ALM, Pereira GR. The liquid crystalline phase behaviour of a nasal formulation modifies the brain disposition of donepezil in rats in the treatment of Alzheimer's disease. Colloids Surf B Biointerfaces 2021;203:111721. [PMID: 33798905 DOI: 10.1016/j.colsurfb.2021.111721] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
38 El-Safoury DM, Ibrahim AB, El-Setouhy DA, Khowessah OM, Motaleb MA, Sakr TM. Amelioration of Tumor Targeting and In Vivo Biodistribution of 99mTc-Methotrexate-Gold Nanoparticles (99mTc-Mex-AuNPs). J Pharm Sci 2021;110:2955-65. [PMID: 33812886 DOI: 10.1016/j.xphs.2021.03.021] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
39 Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021;11:925-40. [PMID: 33996407 DOI: 10.1016/j.apsb.2021.02.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
40 Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 2021;9:2756-84. [PMID: 33596293 DOI: 10.1039/d0tb02957b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
41 Cheng J, Zhao Y, Hu Y, Zhao J, Xue J, Zhang G. The furin-S2' site in avian coronavirus plays a key role in central nervous system damage progression. J Virol 2021:JVI. [PMID: 33727330 DOI: 10.1128/JVI.02447-20] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
42 Veronesi MC, Graner BD, Cheng SH, Zamora M, Zarrinmayeh H, Chen CT, Das SK, Vannier MW. Aerosolized In Vivo 3D Localization of Nose-to-Brain Nanocarrier Delivery Using Multimodality Neuroimaging in a Rat Model-Protocol Development. Pharmaceutics 2021;13:391. [PMID: 33804222 DOI: 10.3390/pharmaceutics13030391] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res 2021;17:103. [PMID: 33663513 DOI: 10.1186/s12917-021-02805-0] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
44 Dalvi AV, Ravi PR, Uppuluri CT, Mahajan RR, Katke SV, Deshpande VS. Thermosensitive nasal in situ gelling systems of rufinamide formulated using modified tamarind seed xyloglucan for direct nose-to-brain delivery: design, physical characterization, and in vivo evaluation. J Pharm Investig 2021;51:199-211. [DOI: 10.1007/s40005-020-00505-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
45 Anderson T, Merrill AK, Eckard ML, Marvin E, Conrad K, Welle K, Oberdörster G, Sobolewski M, Cory-Slechta DA. Paraquat Inhalation, a Translationally Relevant Route of Exposure: Disposition to the Brain and Male-Specific Olfactory Impairment in Mice. Toxicol Sci 2021;180:175-85. [PMID: 33372994 DOI: 10.1093/toxsci/kfaa183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
46 Fukuda M, Kanazawa T, Iioka S, Oguma T, Iwasa R, Masuoka S, Suzuki N, Kosuge Y, Suzuki T. Quantitative analysis of inulin distribution in the brain focused on nose-to-brain route via olfactory epithelium by reverse esophageal cannulation. J Control Release 2021;332:493-501. [PMID: 33647429 DOI: 10.1016/j.jconrel.2021.02.024] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
47 El-safoury DM, Ibrahim AB, El-setouhy DA, Khowessah OM, Motaleb MA, Sakr TM. Gold nanoparticles for 99mTc-doxorubicin delivery: formulation, in vitro characterization, comparative studies in vivo stability and biodistribution. J Radioanal Nucl Chem 2021;328:325-38. [DOI: 10.1007/s10967-021-07633-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Bonaccorso A, Pellitteri R, Ruozi B, Puglia C, Santonocito D, Pignatello R, Musumeci T. Curcumin Loaded Polymeric vs. Lipid Nanoparticles: Antioxidant Effect on Normal and Hypoxic Olfactory Ensheathing Cells. Nanomaterials (Basel) 2021;11:E159. [PMID: 33435146 DOI: 10.3390/nano11010159] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
49 O'Doherty J, Mangini CD, Hamby DM, Boozer D, Singh N, Hippeläinen E. Estimation of absorbed radiation doses to skin and S-values for organs at risk due to nasal administration of PET agents using Monte Carlo simulations. Med Phys 2021;48:871-80. [PMID: 33330987 DOI: 10.1002/mp.14669] [Reference Citation Analysis]
50 Agarwal M, Alam MR, Haider MK, Malik MZ, Kim DK. Alzheimer's Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. Nanomaterials (Basel) 2020;11:E59. [PMID: 33383712 DOI: 10.3390/nano11010059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
51 Chen Y, Liu Y, Xie J, Zheng Q, Yue P, Chen L, Hu P, Yang M. Nose-to-Brain Delivery by Nanosuspensions-Based in situ Gel for Breviscapine. Int J Nanomedicine 2020;15:10435-51. [PMID: 33380794 DOI: 10.2147/IJN.S265659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
52 Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics 2020;12:E1230. [PMID: 33352959 DOI: 10.3390/pharmaceutics12121230] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
53 Elsenosy FM, Abdelbary GA, Elshafeey AH, Elsayed I, Fares AR. Brain Targeting of Duloxetine HCL via Intranasal Delivery of Loaded Cubosomal Gel: In vitro Characterization, ex vivo Permeation, and in vivo Biodistribution Studies. Int J Nanomedicine 2020;15:9517-37. [PMID: 33324051 DOI: 10.2147/IJN.S277352] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
54 Bachhav SS, Dighe V, Mali N, Gogtay NJ, Thatte UM, Devarajan PV. Nose-to-Brain Delivery of Diazepam from an Intranasal Aqua-Triggered In-Situ (ATIS) Gelling Microemulsion: Monitoring Brain Uptake by Microdialysis. Eur J Drug Metab Pharmacokinet 2020;45:785-99. [PMID: 32813265 DOI: 10.1007/s13318-020-00641-5] [Reference Citation Analysis]
55 González LF, Acuña E, Arellano G, Morales P, Sotomayor P, Oyarzun-Ampuero F, Naves R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J Control Release 2021;331:443-59. [PMID: 33220325 DOI: 10.1016/j.jconrel.2020.11.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
56 Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. Technological evolution of cyclodextrins in the pharmaceutical field. J Drug Deliv Sci Technol 2021;61:102156. [PMID: 33078064 DOI: 10.1016/j.jddst.2020.102156] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
57 Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2021;18:169-85. [PMID: 32921169 DOI: 10.1080/17425247.2021.1823965] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
58 Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS Appl Bio Mater 2020;3:6571-97. [DOI: 10.1021/acsabm.0c00953] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
59 Ma X, Huang M, Zheng M, Dai C, Song Q, Zhang Q, Li Q, Gu X, Chen H, Jiang G, Yu Y, Liu X, Li S, Wang G, Chen H, Lu L, Gao X. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer's disease. J Control Release 2020;327:688-702. [PMID: 32931898 DOI: 10.1016/j.jconrel.2020.09.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
60 Huang YY, Fang N, Luo HR, Gao F, Zou Y, Zhou LL, Zeng QP, Fang SS, Xiao F, Zheng Q. RP1, a RAGE antagonist peptide, can improve memory impairment and reduce Aβ plaque load in the APP/PS1 mouse model of Alzheimer's disease. Neuropharmacology 2020;180:108304. [PMID: 32931813 DOI: 10.1016/j.neuropharm.2020.108304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
61 Ye D, Luan J, Pang H, Yang Y, Nazeri A, Rubin JB, Chen H. Characterization of focused ultrasound-mediated brainstem delivery of intranasally administered agents. J Control Release 2020;328:276-85. [PMID: 32871204 DOI: 10.1016/j.jconrel.2020.08.053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
62 de Oliveira Junior ER, Santos LCR, Salomão MA, Nascimento TL, de Almeida Ribeiro Oliveira G, Lião LM, Lima EM. Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Deliv Transl Res 2020;10:1688-99. [PMID: 32613550 DOI: 10.1007/s13346-020-00816-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
63 See GL, Arce F Jr, Dahlizar S, Okada A, Fadli MFBM, Hijikuro I, Itakura S, Katakura M, Todo H, Sugibayashi K. Enhanced nose-to-brain delivery of tranilast using liquid crystal formulations. J Control Release 2020;325:1-9. [PMID: 32598958 DOI: 10.1016/j.jconrel.2020.06.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
64 Masjedi M, Azadi A, Heidari R, Mohammadi-Samani S. Nose-to-brain delivery of sumatriptan-loaded nanostructured lipid carriers: preparation, optimization, characterization and pharmacokinetic evaluation. J Pharm Pharmacol 2020;72:1341-51. [PMID: 32579251 DOI: 10.1111/jphp.13316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
65 Gieszinger P, Stefania Csaba N, Garcia-Fuentes M, Prasanna M, Gáspár R, Sztojkov-Ivanov A, Ducza E, Márki Á, Janáky T, Kecskeméti G, Katona G, Szabó-Révész P, Ambrus R. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur J Pharm Biopharm 2020;153:177-86. [PMID: 32531424 DOI: 10.1016/j.ejpb.2020.06.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
66 Ahmad E, Lv Y, Zhu Q, Qi J, Dong X, Zhao W, Chen Z, Wu W, Lu Y. TAT modification facilitates nose-to-brain transport of intact mPEG-PDLLA micelles: Evidence from aggregation-caused quenching probes. Applied Materials Today 2020;19:100556. [DOI: 10.1016/j.apmt.2020.100556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
67 Paul M, Lau R. Potentials and challenges of Levodopa particle formulation for treatment of Parkinson’s disease through intranasal and pulmonary delivery. Advanced Powder Technology 2020;31:2357-65. [DOI: 10.1016/j.apt.2020.03.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
68 Bonaccorso A, Gigliobianco MR, Pellitteri R, Santonocito D, Carbone C, Di Martino P, Puglisi G, Musumeci T. Optimization of Curcumin Nanocrystals as Promising Strategy for Nose-to-Brain Delivery Application. Pharmaceutics 2020;12:E476. [PMID: 32456163 DOI: 10.3390/pharmaceutics12050476] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
69 Di Salvo A, Conti MB, Nannarone S, Bufalari A, Giorgi M, Moretti G, Marenzoni ML, Della Rocca G. Pharmacokinetics and analgesic efficacy of intranasal administration of tramadol in dogs after ovariohysterectomy. Vet Anaesth Analg 2020;47:557-66. [PMID: 32513525 DOI: 10.1016/j.vaa.2019.12.011] [Reference Citation Analysis]
70 Gonçalves J, Alves G, Carona A, Bicker J, Vitorino C, Falcão A, Fortuna A. Pre-Clinical Assessment of the Nose-to-Brain Delivery of Zonisamide After Intranasal Administration. Pharm Res 2020;37:74. [PMID: 32215749 DOI: 10.1007/s11095-020-02786-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
71 Carvalho LA, Teng J, Fleming RL, Tabet EI, Zinter M, de Melo Reis RA, Tannous BA. Olfactory Ensheathing Cells: A Trojan Horse for Glioma Gene Therapy. J Natl Cancer Inst 2019;111:283-91. [PMID: 30257000 DOI: 10.1093/jnci/djy138] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
72 Mao D, Li F, Ma Q, Dai M, Zhang H, Bai L, He N. Intraocular administration of tetramethylpyrazine hydrochloride to rats: a direct delivery pathway for brain targeting? Drug Deliv 2019;26:841-8. [PMID: 31401891 DOI: 10.1080/10717544.2019.1650849] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
73 Katona G, Balogh GT, Dargó G, Gáspár R, Márki Á, Ducza E, Sztojkov-Ivanov A, Tömösi F, Kecskeméti G, Janáky T, Kiss T, Ambrus R, Pallagi E, Szabó-Révész P, Csóka I. Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020;12:E97. [PMID: 31991767 DOI: 10.3390/pharmaceutics12020097] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
74 Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer's disease. Eur J Pharm Biopharm 2020;148:38-53. [PMID: 31926222 DOI: 10.1016/j.ejpb.2019.12.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
75 Khunt D, Shrivas M, Polaka S, Gondaliya P, Misra M. Role of Omega-3 Fatty Acids and Butter Oil in Targeting Delivery of Donepezil Hydrochloride Microemulsion to Brain via the Intranasal Route: a Comparative Study. AAPS PharmSciTech 2020;21:45. [PMID: 31900652 DOI: 10.1208/s12249-019-1585-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
76 Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. Mol Biomed 2020;1:15. [PMID: 34765998 DOI: 10.1186/s43556-020-00019-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
77 Sailer S, Sebastiani G, Andreu-Férnández V, García-Algar O. Impact of Nicotine Replacement and Electronic Nicotine Delivery Systems on Fetal Brain Development. Int J Environ Res Public Health 2019;16:E5113. [PMID: 31847348 DOI: 10.3390/ijerph16245113] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
78 Cardia MC, Carta AR, Caboni P, Maccioni AM, Erbì S, Boi L, Meloni MC, Lai F, Sinico C. Trimethyl Chitosan Hydrogel Nanoparticles for Progesterone Delivery in Neurodegenerative Disorders. Pharmaceutics 2019;11:E657. [PMID: 31817711 DOI: 10.3390/pharmaceutics11120657] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
79 Permana AD, Tekko IA, Mccrudden MT, Anjani QK, Ramadon D, Mccarthy HO, Donnelly RF. Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. Journal of Controlled Release 2019;316:34-52. [DOI: 10.1016/j.jconrel.2019.10.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 60] [Article Influence: 14.0] [Reference Citation Analysis]
80 Zhu Y, Liu C, Pang Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019;9:E790. [PMID: 31783573 DOI: 10.3390/biom9120790] [Cited by in Crossref: 37] [Cited by in F6Publishing: 46] [Article Influence: 12.3] [Reference Citation Analysis]
81 Palagati S, Sv S, Kesavan BR. Application of computational tools for the designing of Oleuropein loaded nanostructured lipid carrier for brain targeting through nasal route. Daru 2019;27:695-708. [PMID: 31768896 DOI: 10.1007/s40199-019-00304-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
82 Deng W, Luo F, Li BM, Mei L. NRG1-ErbB4 signaling promotes functional recovery in a murine model of traumatic brain injury via regulation of GABA release. Exp Brain Res 2019;237:3351-62. [PMID: 31720762 DOI: 10.1007/s00221-019-05680-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
83 Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A, Anderson T, Jackson BP, Oberdorster G. The Impact of Inhaled Ambient Ultrafine Particulate Matter on Developing Brain: Potential Importance of Elemental Contaminants. Toxicol Pathol 2019;47:976-92. [PMID: 31610749 DOI: 10.1177/0192623319878400] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
84 Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019;224:119491. [PMID: 31546096 DOI: 10.1016/j.biomaterials.2019.119491] [Cited by in Crossref: 68] [Cited by in F6Publishing: 119] [Article Influence: 22.7] [Reference Citation Analysis]
85 Giacovazzo G, Bisogno T, Piscitelli F, Verde R, Oddi S, Maccarrone M, Coccurello R. Different Routes to Inhibit Fatty Acid Amide Hydrolase: Do All Roads Lead to the Same Place? Int J Mol Sci 2019;20:E4503. [PMID: 31514437 DOI: 10.3390/ijms20184503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
86 Kokare C, Koli D, Gadhave D, Mote C, Khandekar G. Efavirenz-loaded intranasal microemulsion for crossing blood-CNS interfaces in neuronal-AIDS: pharmacokinetic and in vivo safety evaluation. Pharm Dev Technol 2020;25:28-39. [PMID: 31441694 DOI: 10.1080/10837450.2019.1659818] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
87 Du W, Li H, Tian B, Sai S, Gao Y, Lan T, Meng Y, Ding C. Development of nose-to-brain delivery of ketoconazole by nanostructured lipid carriers against cryptococcal meningoencephalitis in mice. Colloids Surf B Biointerfaces 2019;183:110446. [PMID: 31465938 DOI: 10.1016/j.colsurfb.2019.110446] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
88 Kaldybekov DB, Filippov SK, Radulescu A, Khutoryanskiy VV. Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery. Eur J Pharm Biopharm 2019;143:24-34. [PMID: 31419584 DOI: 10.1016/j.ejpb.2019.08.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
89 de Oliveira Junior ER, Nascimento TL, Salomão MA, da Silva ACG, Valadares MC, Lima EM. Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma. Pharm Res 2019;36:131. [PMID: 31263962 DOI: 10.1007/s11095-019-2662-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]
90 Pailla SR, Talluri S, Rangaraj N, Ramavath R, Challa VS, Doijad N, Sampathi S. Intranasal Zotepine Nanosuspension: intended for improved brain distribution in rats. Daru 2019;27:541-56. [PMID: 31256410 DOI: 10.1007/s40199-019-00281-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
91 Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, Mu H, Hitchens TK, Foley LM, Liu X, Yu F, Chen J, Shi Y, Leak RK, Gao Y, Chen J, Hu X. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol 2019;17:e3000330. [PMID: 31226122 DOI: 10.1371/journal.pbio.3000330] [Cited by in Crossref: 29] [Cited by in F6Publishing: 42] [Article Influence: 9.7] [Reference Citation Analysis]
92 Kim YS, Sung DK, Kim H, Kong WH, Kim YE, Hahn SK. Nose-to-brain delivery of hyaluronate - FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy. J Control Release 2019;307:76-89. [PMID: 31229472 DOI: 10.1016/j.jconrel.2019.06.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
93 Gao M, Mei D, Huo Y, Mao S. Effect of polysorbate 80 on the intranasal absorption and brain distribution of tetramethylpyrazine phosphate in rats. Drug Deliv Transl Res 2019;9:311-8. [PMID: 30168052 DOI: 10.1007/s13346-018-0580-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
94 Gadhave D, Gorain B, Tagalpallewar A, Kokare C. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. Journal of Drug Delivery Science and Technology 2019;51:276-89. [DOI: 10.1016/j.jddst.2019.02.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
95 O'Brien F, Clapham D, Krysiak K, Batchelor H, Field P, Caivano G, Pertile M, Nunn A, Tuleu C. Making Medicines Baby Size: The Challenges in Bridging the Formulation Gap in Neonatal Medicine. Int J Mol Sci 2019;20:E2688. [PMID: 31159216 DOI: 10.3390/ijms20112688] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
96 Zahedi A, Phandthong R, Chaili A, Leung S, Omaiye E, Talbot P. Mitochondrial Stress Response in Neural Stem Cells Exposed to Electronic Cigarettes. iScience 2019;16:250-69. [PMID: 31200115 DOI: 10.1016/j.isci.2019.05.034] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
97 Spencer D, Yu D, Morshed RA, Li G, Pituch KC, Gao DX, Bertolino N, Procissi D, Lesniak MS, Balyasnikova IV. Pharmacologic modulation of nasal epithelium augments neural stem cell targeting of glioblastoma. Theranostics 2019;9:2071-83. [PMID: 31037157 DOI: 10.7150/thno.29581] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
98 Kadakia E, Bottino D, Amiji M. Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Pharm Res 2019;36:75. [PMID: 30923914 DOI: 10.1007/s11095-019-2610-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
99 Jung JH, Kim SJ. Anxiolytic Action of Taurine via Intranasal Administration in Mice. Biomol Ther (Seoul) 2019;27:450-6. [PMID: 30917626 DOI: 10.4062/biomolther.2018.218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
100 Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front Physiol 2019;10:282. [PMID: 30941062 DOI: 10.3389/fphys.2019.00282] [Cited by in Crossref: 27] [Cited by in F6Publishing: 36] [Article Influence: 9.0] [Reference Citation Analysis]
101 Santiago JCP, Hallschmid M. Outcomes and clinical implications of intranasal insulin administration to the central nervous system. Exp Neurol 2019;317:180-90. [PMID: 30885653 DOI: 10.1016/j.expneurol.2019.03.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
102 Musumeci T, Bonaccorso A, Puglisi G. Epilepsy Disease and Nose-to-Brain Delivery of Polymeric Nanoparticles: An Overview. Pharmaceutics 2019;11:E118. [PMID: 30871237 DOI: 10.3390/pharmaceutics11030118] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]
103 Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: optimization and in vivo studies. Drug Dev Ind Pharm 2019;45:839-51. [PMID: 30702966 DOI: 10.1080/03639045.2019.1576724] [Cited by in Crossref: 21] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
104 Espinoza LC, Silva-Abreu M, Clares B, Rodríguez-Lagunas MJ, Halbaut L, Cañas MA, Calpena AC. Formulation Strategies to Improve Nose-to-Brain Delivery of Donepezil. Pharmaceutics 2019;11:E64. [PMID: 30717264 DOI: 10.3390/pharmaceutics11020064] [Cited by in Crossref: 18] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
105 Costa C, Moreira JN, Amaral MH, Sousa Lobo JM, Silva AC. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release 2019;295:187-200. [PMID: 30610952 DOI: 10.1016/j.jconrel.2018.12.049] [Cited by in Crossref: 41] [Cited by in F6Publishing: 55] [Article Influence: 13.7] [Reference Citation Analysis]
106 Gadhave DG, Tagalpallewar AA, Kokare CR. Agranulocytosis-Protective Olanzapine-Loaded Nanostructured Lipid Carriers Engineered for CNS Delivery: Optimization and Hematological Toxicity Studies. AAPS PharmSciTech 2019;20:22. [PMID: 30604305 DOI: 10.1208/s12249-018-1213-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
107 Li R, Huang Y, Chen L, Zhou H, Zhang M, Chang L, Shen H, Zhou M, Su P, Zhu D. Targeted delivery of intranasally administered nanoparticles-mediated neuroprotective peptide NR2B9c to brain and neuron for treatment of ischemic stroke. Nanomedicine 2019;18:380-90. [PMID: 30428334 DOI: 10.1016/j.nano.2018.10.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
108 Wang ZY, Sreenivasmurthy SG, Song JX, Liu JY, Li M. Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases. Drug Discov Today 2019;24:595-605. [PMID: 30414950 DOI: 10.1016/j.drudis.2018.11.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
109 Gadhave D, Choudhury H, Kokare C. Neutropenia and leukopenia protective intranasal olanzapine-loaded lipid-based nanocarriers engineered for brain delivery. Appl Nanosci 2019;9:151-68. [DOI: 10.1007/s13204-018-0909-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
110 Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Adv Mater 2018;30:e1801362. [PMID: 30066406 DOI: 10.1002/adma.201801362] [Cited by in Crossref: 208] [Cited by in F6Publishing: 203] [Article Influence: 52.0] [Reference Citation Analysis]
111 Pan L, Zhou J, Ju F, Zhu H. Intranasal delivery of α-asarone to the brain with lactoferrin-modified mPEG-PLA nanoparticles prepared by premix membrane emulsification. Drug Deliv Transl Res 2018;8:83-96. [PMID: 29134552 DOI: 10.1007/s13346-017-0438-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
112 Ullah I, Chung K, Oh J, Beloor J, Bae S, Lee SC, Lee M, Kumar P, Lee SK. Intranasal delivery of a Fas-blocking peptide attenuates Fas-mediated apoptosis in brain ischemia. Sci Rep 2018;8:15041. [PMID: 30301943 DOI: 10.1038/s41598-018-33296-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
113 Xia Y, Pu H, Leak RK, Shi Y, Mu H, Hu X, Lu Z, Foley LM, Hitchens TK, Dixon CE, Bennett MVL, Chen J. Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proc Natl Acad Sci U S A 2018;115:E9230-8. [PMID: 30201709 DOI: 10.1073/pnas.1810693115] [Cited by in Crossref: 25] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
114 Singh N, Veronese M, O'Doherty J, Sementa T, Bongarzone S, Cash D, Simmons C, Arcolin M, Marsden PK, Gee A, Turkheimer FE. Assessing the feasibility of intranasal radiotracer administration for in brain PET imaging. Nucl Med Biol 2018;66:32-9. [PMID: 30208358 DOI: 10.1016/j.nucmedbio.2018.08.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
115 Abdelmonem R, El Nabarawi M, Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv 2018;25:70-7. [PMID: 29228824 DOI: 10.1080/10717544.2017.1413447] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
116 Youssef NAHA, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int J Pharm 2018;548:609-24. [PMID: 30033394 DOI: 10.1016/j.ijpharm.2018.07.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 41] [Article Influence: 8.3] [Reference Citation Analysis]
117 Shobo A, Pamreddy A, Kruger HG, Makatini MM, Naicker T, Govender T, Baijnath S. Enhanced brain penetration of pretomanid by intranasal administration of an oil-in-water nanoemulsion. Nanomedicine (Lond) 2018;13:997-1008. [PMID: 29790418 DOI: 10.2217/nnm-2017-0365] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
118 Sun ZF, Gao X, Pinto JM, He Y, Yang Q, Tian J, Lv QW, Wei YX. Morphological evaluation using MRI of the olfactory filaments (fila) in a post-traumatic olfactory rat model. World J Otorhinolaryngol Head Neck Surg 2018;4:50-6. [PMID: 30035262 DOI: 10.1016/j.wjorl.2018.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
119 Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018;128:337-62. [PMID: 29733950 DOI: 10.1016/j.ejpb.2018.05.009] [Cited by in Crossref: 97] [Cited by in F6Publishing: 122] [Article Influence: 24.3] [Reference Citation Analysis]
120 Bartos C, Ambrus R, Kovács A, Gáspár R, Sztojkov-Ivanov A, Márki Á, Janáky T, Tömösi F, Kecskeméti G, Szabó-Révész P. Investigation of Absorption Routes of Meloxicam and Its Salt Form from Intranasal Delivery Systems. Molecules 2018;23:E784. [PMID: 29597330 DOI: 10.3390/molecules23040784] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
121 Rinaldi F, Hanieh PN, Chan LKN, Angeloni L, Passeri D, Rossi M, Wang JT, Imbriano A, Carafa M, Marianecci C. Chitosan Glutamate-Coated Niosomes: A Proposal for Nose-to-Brain Delivery. Pharmaceutics 2018;10:E38. [PMID: 29565809 DOI: 10.3390/pharmaceutics10020038] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 8.8] [Reference Citation Analysis]
122 Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, Raffin Pohlmann A, Nicoli S. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018;10:E34. [PMID: 29543755 DOI: 10.3390/pharmaceutics10010034] [Cited by in Crossref: 106] [Cited by in F6Publishing: 129] [Article Influence: 26.5] [Reference Citation Analysis]
123 Md S, Bhattmisra SK, Zeeshan F, Shahzad N, Mujtaba MA, Srikanth Meka V, Radhakrishnan A, Kesharwani P, Baboota S, Ali J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. Journal of Drug Delivery Science and Technology 2018;43:295-310. [DOI: 10.1016/j.jddst.2017.09.022] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
124 Khutoryanskiy VV. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev 2018;124:140-9. [PMID: 28736302 DOI: 10.1016/j.addr.2017.07.015] [Cited by in Crossref: 86] [Cited by in F6Publishing: 82] [Article Influence: 21.5] [Reference Citation Analysis]
125 Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 2018;23:1079-88. [PMID: 29330120 DOI: 10.1016/j.drudis.2018.01.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 51] [Article Influence: 10.3] [Reference Citation Analysis]
126 Wang Q, Zhang Y, Wong CH, Edwin Chan HY, Zuo Z. Demonstration of Direct Nose-to-Brain Transport of Unbound HIV-1 Replication Inhibitor DB213 Via Intranasal Administration by Pharmacokinetic Modeling. AAPS J 2017;20:23. [PMID: 29282567 DOI: 10.1208/s12248-017-0179-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
127 Fatouh AM, Elshafeey AH, Abdelbary A. Agomelatine-based in situ gels for brain targeting via the nasal route: statistical optimization, in vitro, and in vivo evaluation. Drug Deliv 2017;24:1077-85. [PMID: 28745530 DOI: 10.1080/10717544.2017.1357148] [Cited by in Crossref: 16] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
128 Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J Control Release 2018;270:89-100. [PMID: 29199063 DOI: 10.1016/j.jconrel.2017.11.047] [Cited by in Crossref: 65] [Cited by in F6Publishing: 78] [Article Influence: 13.0] [Reference Citation Analysis]
129 Hefnawy A, Khalil IA, El-sherbiny IM. Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of doxorubicin to brain. Nanomedicine 2017;12:2737-61. [DOI: 10.2217/nnm-2017-0243] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
130 Shahpasand K, Sepehri Shamloo A, Nabavi SM, Ping Lu K, Zhen Zhou X. "Tau immunotherapy: Hopes and hindrances". Hum Vaccin Immunother 2018;14:277-84. [PMID: 29049003 DOI: 10.1080/21645515.2017.1393594] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
131 Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2018;26:2888-905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 12.0] [Reference Citation Analysis]
132 Tsou Y, Zhang X, Zhu H, Syed S, Xu X. Drug Delivery to the Brain across the Blood–Brain Barrier Using Nanomaterials. Small 2017;13:1701921. [DOI: 10.1002/smll.201701921] [Cited by in Crossref: 69] [Cited by in F6Publishing: 80] [Article Influence: 13.8] [Reference Citation Analysis]
133 Hamidovic A. Targeting Mediators of Smoking Persistence with Intranasal Insulin. Front Pharmacol 2017;8:706. [PMID: 29085297 DOI: 10.3389/fphar.2017.00706] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
134 Ashhar MU, Ahmad MZ, Jain V, Agarwal NB, Ahmad FJ, Jain GK. Intranasal pitavastatin attenuates seizures in different experimental models of epilepsy in mice. Epilepsy & Behavior 2017;75:56-9. [DOI: 10.1016/j.yebeh.2017.07.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
135 Colombo M, Melchiades GL, Figueiró F, Battastini AMO, Teixeira HF, Koester LS. Validation of an HPLC-UV method for analysis of Kaempferol-loaded nanoemulsion and its application to in vitro and in vivo tests. J Pharm Biomed Anal 2017;145:831-7. [PMID: 28826141 DOI: 10.1016/j.jpba.2017.07.046] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
136 Khunt D, Shah B, Misra M. Role of butter oil in brain targeted delivery of Quetiapine fumarate microemulsion via intranasal route. Journal of Drug Delivery Science and Technology 2017;40:11-20. [DOI: 10.1016/j.jddst.2017.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
137 Kanazawa T, Kaneko M, Niide T, Akiyama F, Kakizaki S, Ibaraki H, Shiraishi S, Takashima Y, Suzuki T, Seta Y. Enhancement of nose-to-brain delivery of hydrophilic macromolecules with stearate- or polyethylene glycol-modified arginine-rich peptide. Int J Pharm 2017;530:195-200. [PMID: 28757255 DOI: 10.1016/j.ijpharm.2017.07.077] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
138 Xia H, Xu Y, Cheng Z, Cheng Y. Tetramethylpyrazine-Loaded Hydrogels: Preparation, Penetration Through a Subcutaneous-Mucous-Membrane Model, and a Molecular Dynamics Simulation. AAPS PharmSciTech 2017;18:1720-7. [PMID: 27743208 DOI: 10.1208/s12249-016-0645-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
139 Yu X, Yang J, Jin B, Xu H, Zhang H, Xiao J, Lu C, Zhao Y, Yang W. A strategy for bypassing the blood-brain barrier: Facial intradermal brain-targeted delivery via the trigeminal nerve. Journal of Controlled Release 2017;258:22-33. [DOI: 10.1016/j.jconrel.2017.05.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
140 Micieli F, Santangelo B, Reynaud F, Mirra A, Napoleone G, Della Valle G, Portier KG, Vesce G. Sedative and cardiovascular effects of intranasal or intramuscular dexmedetomidine in healthy dogs. Veterinary Anaesthesia and Analgesia 2017;44:703-9. [DOI: 10.1016/j.vaa.2016.08.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
141 Fatouh AM, Elshafeey AH, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des Devel Ther 2017;11:1815-25. [PMID: 28684900 DOI: 10.2147/DDDT.S102500] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 8.2] [Reference Citation Analysis]
142 Bonaccorso A, Musumeci T, Serapide MF, Pellitteri R, Uchegbu IF, Puglisi G. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf B Biointerfaces 2017;154:297-306. [PMID: 28363190 DOI: 10.1016/j.colsurfb.2017.03.035] [Cited by in Crossref: 32] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
143 Lee MR, Scheidweiler KB, Diao XX, Akhlaghi F, Cummins A, Huestis MA, Leggio L, Averbeck BB. Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. Mol Psychiatry 2018;23:115-22. [PMID: 28289281 DOI: 10.1038/mp.2017.27] [Cited by in Crossref: 162] [Cited by in F6Publishing: 142] [Article Influence: 32.4] [Reference Citation Analysis]
144 Shinde RL, Devarajan PV. Docosahexaenoic acid-mediated, targeted and sustained brain delivery of curcumin microemulsion. Drug Deliv 2017;24:152-61. [PMID: 28156175 DOI: 10.1080/10717544.2016.1233593] [Cited by in Crossref: 43] [Cited by in F6Publishing: 49] [Article Influence: 8.6] [Reference Citation Analysis]
145 Bredlau AL, Dixit S, Chen C, Broome AM. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma. Curr Neuropharmacol 2017;15:104-15. [PMID: 26903150 DOI: 10.2174/1570159x14666160223121002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
146 Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci 2016;4:219-29. [PMID: 26646694 DOI: 10.1039/c5bm00383k] [Cited by in Crossref: 137] [Cited by in F6Publishing: 144] [Article Influence: 27.4] [Reference Citation Analysis]
147 Yarragudi SB, Richter R, Lee H, Walker GF, Clarkson AN, Kumar H, Rizwan SB. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs. Carbohydr Polym 2017;163:216-26. [PMID: 28267500 DOI: 10.1016/j.carbpol.2017.01.044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
148 Clementino A, Batger M, Garrastazu G, Pozzoli M, Del Favero E, Rondelli V, Gutfilen B, Barboza T, Sukkar MB, Souza SA, Cantù L, Sonvico F. The nasal delivery of nanoencapsulated statins - an approach for brain delivery. Int J Nanomedicine 2016;11:6575-90. [PMID: 27994459 DOI: 10.2147/IJN.S119033] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 6.3] [Reference Citation Analysis]
149 Li P, Bai J, Dong B, Lu Y, Zhang S, Guo S, Tan N, Zhao M, Du S, Cao P. In Vivo Pharmacokinetics of Puerarin via Different Drug Administration Routes Based on Middle Cerebral Artery Occlusion Model. Eur J Drug Metab Pharmacokinet 2017;42:719-27. [DOI: 10.1007/s13318-016-0388-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
150 Katare YK, Piazza JE, Bhandari J, Daya RP, Akilan K, Simpson MJ, Hoare T, Mishra RK. Intranasal delivery of antipsychotic drugs. Schizophr Res 2017;184:2-13. [PMID: 27913162 DOI: 10.1016/j.schres.2016.11.027] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
151 Quinn HL, Hughes CM, Donnelly RF. Novel methods of drug administration for the treatment and care of older patients. International Journal of Pharmaceutics 2016;512:366-73. [DOI: 10.1016/j.ijpharm.2016.01.050] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
152 Narayan R, Singh M, Ranjan O, Nayak Y, Garg S, Shavi GV, Nayak UY. Development of risperidone liposomes for brain targeting through intranasal route. Life Sciences 2016;163:38-45. [DOI: 10.1016/j.lfs.2016.08.033] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 8.2] [Reference Citation Analysis]
153 Chen TC, Da Fonseca CO, Schönthal AH. Perillyl Alcohol and Its Drug-Conjugated Derivatives as Potential Novel Methods of Treating Brain Metastases. Int J Mol Sci 2016;17:E1463. [PMID: 27598140 DOI: 10.3390/ijms17091463] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
154 Vaz GC, Sharma NM, Zheng H, Zimmerman MC, Santos RS, Frezard F, Fontes MAP, Patel KP. Liposome-entrapped GABA modulates the expression of nNOS in NG108-15 cells. J Neurosci Methods 2016;273:55-63. [PMID: 27523033 DOI: 10.1016/j.jneumeth.2016.08.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
155 Kapoor M, Cloyd JC, Siegel RA. A review of intranasal formulations for the treatment of seizure emergencies. J Control Release 2016;237:147-59. [PMID: 27397490 DOI: 10.1016/j.jconrel.2016.07.001] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 11.7] [Reference Citation Analysis]
156 Wen J, Gu X, Wang M, Jian G, Wang S, Zheng G. The effects of injection modes on instantaneous particle deposition in a realistic human nasal cavity. Int J Numer Method Biomed Eng 2017;33. [PMID: 27196715 DOI: 10.1002/cnm.2802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
157 El-Setouhy DA, Ibrahim AB, Amin MM, Khowessah OM, Elzanfaly ES. Intranasal haloperidol-loaded miniemulsions for brain targeting: Evaluation of locomotor suppression and in-vivo biodistribution. Eur J Pharm Sci 2016;92:244-54. [PMID: 27154259 DOI: 10.1016/j.ejps.2016.05.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
158 Kim ID, Sawicki E, Lee HK, Lee EH, Park HJ, Han PL, Kim KK, Choi H, Lee JK. Robust neuroprotective effects of intranasally delivered iNOS siRNA encapsulated in gelatin nanoparticles in the postischemic brain. Nanomedicine 2016;12:1219-29. [PMID: 26945975 DOI: 10.1016/j.nano.2016.01.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
159 Singh SK, Dadhania P, Vuddanda PR, Jain A, Velaga S, Singh S. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment. RSC Adv 2016;6:2032-45. [DOI: 10.1039/c5ra19793g] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 9.3] [Reference Citation Analysis]
160 Beloqui A, Solinís MÁ, Rodríguez-gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12:143-61. [DOI: 10.1016/j.nano.2015.09.004] [Cited by in Crossref: 290] [Cited by in F6Publishing: 303] [Article Influence: 48.3] [Reference Citation Analysis]
161 Stützle M, Carle S, Engelhardt L, Simon U, Schafmeister A, Mavoungou C, Schindowski K. Protein aerosol for intranasal nose to brain (N2B) delivery. BMC Proc 2015;9. [DOI: 10.1186/1753-6561-9-s9-o11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
162 Maity AR, Stepensky D. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies. International Journal of Pharmaceutics 2015;496:268-74. [DOI: 10.1016/j.ijpharm.2015.10.053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
163 Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, Cao P, Rong Y, Yan J, Miller D, Zhang HG. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther 2016;24:96-105. [PMID: 26444082 DOI: 10.1038/mt.2015.188] [Cited by in Crossref: 53] [Cited by in F6Publishing: 67] [Article Influence: 7.6] [Reference Citation Analysis]
164 Shinde RL, Bharkad GP, Devarajan PV. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid. Eur J Pharm Biopharm 2015;96:363-79. [PMID: 26318978 DOI: 10.1016/j.ejpb.2015.08.008] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 6.4] [Reference Citation Analysis]
165 Velasco-Aguirre C, Morales F, Gallardo-Toledo E, Guerrero S, Giralt E, Araya E, Kogan MJ. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomedicine 2015;10:4919-36. [PMID: 26300639 DOI: 10.2147/IJN.S82310] [Cited by in Crossref: 10] [Cited by in F6Publishing: 29] [Article Influence: 1.4] [Reference Citation Analysis]
166 Fonseca-Santos B, Gremião MP, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 2015;10:4981-5003. [PMID: 26345528 DOI: 10.2147/IJN.S87148] [Cited by in Crossref: 115] [Cited by in F6Publishing: 108] [Article Influence: 16.4] [Reference Citation Analysis]
167 Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 2015;10:4321-40. [PMID: 26170667 DOI: 10.2147/IJN.S78308] [Cited by in Crossref: 16] [Cited by in F6Publishing: 40] [Article Influence: 2.3] [Reference Citation Analysis]
168 Serralheiro A, Alves G, Fortuna A, Falcão A. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm 2015;490:39-46. [PMID: 25979854 DOI: 10.1016/j.ijpharm.2015.05.021] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
169 Lauzon M, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. Journal of Controlled Release 2015;206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 5.6] [Reference Citation Analysis]
170 Meredith ME, Salameh TS, Banks WA. Intranasal Delivery of Proteins and Peptides in the Treatment of Neurodegenerative Diseases. AAPS J 2015;17:780-7. [PMID: 25801717 DOI: 10.1208/s12248-015-9719-7] [Cited by in Crossref: 84] [Cited by in F6Publishing: 98] [Article Influence: 12.0] [Reference Citation Analysis]
171 Ruigrok MJ, de Lange EC. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans. AAPS J 2015;17:493-505. [PMID: 25693488 DOI: 10.1208/s12248-015-9724-x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 6.3] [Reference Citation Analysis]
172 Kawikova I, Askenase PW. Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res 2015;1617:63-71. [PMID: 25304360 DOI: 10.1016/j.brainres.2014.09.070] [Cited by in Crossref: 71] [Cited by in F6Publishing: 82] [Article Influence: 8.9] [Reference Citation Analysis]