BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bazylińska U, Kulbacka J, Schmidt J, Talmon Y, Murgia S. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. Journal of Colloid and Interface Science 2018;522:163-73. [DOI: 10.1016/j.jcis.2018.03.063] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
Number Citing Articles
1 Nogueira KAB, Martins JRP, Lima TS, Junior JWBA, do Carmo Aquino AL, de Lima LMF, Eloy JO, Petrilli R. Topical Drug Delivery Using Liposomes and Liquid Crystalline Phases for Skin Cancer Therapy. Advances in Novel Formulations for Drug Delivery 2023. [DOI: 10.1002/9781394167708.ch8] [Reference Citation Analysis]
2 Fornasier M, Murgia S. Non-lamellar lipid liquid crystalline nanoparticles: A smart platform for nanomedicine applications. Front Soft Matter 2023;3. [DOI: 10.3389/frsfm.2023.1109508] [Reference Citation Analysis]
3 Deshmukh Shradha Suresh, Dr. Anil P. Dewani, Prof (Dr.) A. V. Chandewar. Cubosomes and its Pharmaceutical Application in Treatment of Cancer. IJARSCT 2023. [DOI: 10.48175/ijarsct-8628] [Reference Citation Analysis]
4 Awad M, Kopecki Z, Barnes TJ, Wignall A, Joyce P, Thomas N, Prestidge CA. Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023;15. [PMID: 36839628 DOI: 10.3390/pharmaceutics15020305] [Reference Citation Analysis]
5 Pramanik A, Xu Z, Ingram N, Coletta PL, Millner PA, Tyler AII, Hughes TA. Hyaluronic-Acid-Tagged Cubosomes Deliver Cytotoxics Specifically to CD44-Positive Cancer Cells. Mol Pharm 2022;19:4601-11. [PMID: 35938983 DOI: 10.1021/acs.molpharmaceut.2c00439] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Vitoria Pupo Silvestrini A, Wender Debiasi B, Garcia Praça F, Vitoria Lopes Badra Bentley M. Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. International Journal of Pharmaceutics 2022;628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Reference Citation Analysis]
7 Malindi Z, Barth S, Abrahamse H. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma. Biomedicines 2022;10:2158. [DOI: 10.3390/biomedicines10092158] [Reference Citation Analysis]
8 Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. Journal of Biomaterials Science, Polymer Edition 2022;33:1435-1468. [DOI: 10.1080/09205063.2022.2054399] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Awad M, Barnes TJ, Joyce P, Thomas N, Prestidge CA. Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms. Journal of Photochemistry and Photobiology B: Biology 2022;232:112474. [DOI: 10.1016/j.jphotobiol.2022.112474] [Reference Citation Analysis]
10 Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-santos P, Botelho CM. A Versatile Nanocarrier—Cubosomes, Characterization, and Applications. Nanomaterials 2022;12:2224. [DOI: 10.3390/nano12132224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Sapna Kumari, Anju Goyal, Eda Sönmez Gürer, Evren Algın Yapar, Madhukar Garg, Meenakshi Sood, Rakesh K. Sindhu. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics 2022;14:1091. [PMID: 35631677 DOI: 10.3390/pharmaceutics14051091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
12 Fornasier M, Dessì F, Pireddu R, Sinico C, Carretti E, Murgia S. Lipid vesicular gels for topical administration of antioxidants. Colloids Surf B Biointerfaces 2022;213:112388. [PMID: 35183999 DOI: 10.1016/j.colsurfb.2022.112388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022:S0168-3659(22)00231-0. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Reference Citation Analysis]
14 Chen D, Zhang N. Lipid liquid-crystalline nanoparticles sustained teicoplanin delivery for treatment of chronic osteomyelitis: In vitro and in vivo studies. J Microencapsul 2022;:1-24. [PMID: 35475397 DOI: 10.1080/02652048.2022.2071492] [Reference Citation Analysis]
15 Chountoulesi M, Pispas S, Tseti IK, Demetzos C. Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals 2022;15:429. [DOI: 10.3390/ph15040429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Bazylińska U, Wawrzyńczyk D, Kulbacka J, Picci G, Manni LS, Handschin S, Fornasier M, Caltagirone C, Mezzenga R, Murgia S. Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS Nano 2022. [PMID: 35333516 DOI: 10.1021/acsnano.1c09367] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
17 Miceli V, Fornasier M, Bulati M, Amico G, Conaldi PG, Casu A, Murgia S. In Vitro Evaluation of Nanoerythrosome Cytotoxicity and Uptake in Pancreatic Endothelial Cells: Implications for β-Cell Imaging Applications. Langmuir 2022;38:3403-11. [PMID: 35262354 DOI: 10.1021/acs.langmuir.1c03153] [Reference Citation Analysis]
18 Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS Appl Mater Interfaces 2022;14:11078-91. [PMID: 35196008 DOI: 10.1021/acsami.1c21655] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
19 Surmeier G, Paulus M, Schneider E, Dogan S, Tolan M, Nase J. A pressure-jump study on the interaction of osmolytes and crowders with cubic monoolein structures. Soft Matter 2022;18:990-8. [PMID: 35015016 DOI: 10.1039/d1sm01425k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: A review. Colloid and Interface Science Communications 2022;46:100561. [DOI: 10.1016/j.colcom.2021.100561] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Qiang X, Wang L, Niu J, Gong X, Wang G. Phycobiliprotein as fluorescent probe and photosensitizer: A systematic review. Int J Biol Macromol 2021;193:1910-7. [PMID: 34762915 DOI: 10.1016/j.ijbiomac.2021.11.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
22 Demartis S, Rassu G, Murgia S, Casula L, Giunchedi P, Gavini E. Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Mol Pharm 2021;18:4046-57. [PMID: 34554752 DOI: 10.1021/acs.molpharmaceut.1c00468] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
23 Waheed A, Aqil M. Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. Journal of Molecular Liquids 2021;338:116919. [DOI: 10.1016/j.molliq.2021.116919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
24 Naidjonoka P, Fornasier M, Pålsson D, Rudolph G, Al-Rudainy B, Murgia S, Nylander T. Bicontinuous cubic liquid crystalline phase nanoparticles stabilized by softwood hemicellulose. Colloids Surf B Biointerfaces 2021;203:111753. [PMID: 33845421 DOI: 10.1016/j.colsurfb.2021.111753] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
25 Fornasier M, Pireddu R, Del Giudice A, Sinico C, Nylander T, Schillén K, Galantini L, Murgia S. Tuning lipid structure by bile salts: Hexosomes for topical administration of catechin. Colloids and Surfaces B: Biointerfaces 2021;199:111564. [DOI: 10.1016/j.colsurfb.2021.111564] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
26 Patel B, Thakkar HP. Cubosomes: Novel Nanocarriers for Drug Delivery. Nanocarriers: Drug Delivery System 2021. [DOI: 10.1007/978-981-33-4497-6_9] [Reference Citation Analysis]
27 Kulbacka J, Chodaczek G, Rossowska J, Szewczyk A, Saczko J, Bazylińska U. Investigating the photodynamic efficacy of chlorin e6 by millisecond pulses in metastatic melanoma cells. Bioelectrochemistry 2021;138:107728. [PMID: 33434787 DOI: 10.1016/j.bioelechem.2020.107728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Rapalli VK, Waghule T, Hans N, Mahmood A, Gorantla S, Dubey SK, Singhvi G. Insights of lyotropic liquid crystals in topical drug delivery for targeting various skin disorders. Journal of Molecular Liquids 2020;315:113771. [DOI: 10.1016/j.molliq.2020.113771] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
29 Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opinion on Drug Delivery 2020;17:1781-805. [DOI: 10.1080/17425247.2020.1819979] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
30 Fornasier M, Porcheddu A, Casu A, Raghavan SR, Jönsson P, Schillén K, Murgia S. Surface-modified nanoerythrosomes for potential optical imaging diagnostics. J Colloid Interface Sci 2021;582:246-53. [PMID: 32823126 DOI: 10.1016/j.jcis.2020.08.032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
31 Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid & Interface Science 2020;48:28-39. [DOI: 10.1016/j.cocis.2020.03.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
32 Mendozza M, Balestri A, Montis C, Berti D. Controlling the Kinetics of an Enzymatic Reaction through Enzyme or Substrate Confinement into Lipid Mesophases with Tunable Structural Parameters. Int J Mol Sci 2020;21:E5116. [PMID: 32698376 DOI: 10.3390/ijms21145116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Agata Pucek, Beata Tokarek, Ewelina Waglewska, Urszula Bazylińska. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using “Soft” Colloidal Nanocarriers. Pharmaceutics 2020;12:587. [PMID: 32599791 DOI: 10.3390/pharmaceutics12060587] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
34 Bazylińska U, Wawrzyńczyk D, Szewczyk A, Kulbacka J. Engineering and biological assessment of double core nanoplatform for co-delivery of hybrid fluorophores to human melanoma. J Inorg Biochem 2020;208:111088. [PMID: 32446020 DOI: 10.1016/j.jinorgbio.2020.111088] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
35 Jenni S, Picci G, Fornasier M, Mamusa M, Schmidt J, Talmon Y, Sour A, Heitz V, Murgia S, Caltagirone C. Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochem Photobiol Sci 2020;19:674-80. [PMID: 32314755 DOI: 10.1039/c9pp00449a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
36 Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine 2020;15:2439-83. [PMID: 32346289 DOI: 10.2147/IJN.S227805] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 16.0] [Reference Citation Analysis]
37 Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020;153:109-36. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
38 Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, Iqbal MW, Rashed MMA, Mushtaq BS, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci 2020;275:102048. [PMID: 31757387 DOI: 10.1016/j.cis.2019.102048] [Cited by in Crossref: 103] [Cited by in F6Publishing: 80] [Article Influence: 34.3] [Reference Citation Analysis]
39 Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. Materials Science and Engineering: C 2019;105:110110. [DOI: 10.1016/j.msec.2019.110110] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 9.5] [Reference Citation Analysis]
40 Magana JR, Homs M, Esquena J, Freilich I, Kesselman E, Danino D, Rodríguez-abreu C, Solans C. Formulating stable hexosome dispersions with a technical grade diglycerol-based surfactant. Journal of Colloid and Interface Science 2019;550:73-80. [DOI: 10.1016/j.jcis.2019.04.084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
41 Zabara M, Senturk B, Gontsarik M, Ren Q, Rottmar M, Maniura‐weber K, Mezzenga R, Bolisetty S, Salentinig S. Multifunctional Nano‐Biointerfaces: Cytocompatible Antimicrobial Nanocarriers from Stabilizer‐Free Cubosomes. Adv Funct Mater 2019;29:1904007. [DOI: 10.1002/adfm.201904007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
42 Mendozza M, Caselli L, Montis C, Orazzini S, Carretti E, Baglioni P, Berti D. Inorganic nanoparticles modify the phase behavior and viscoelastic properties of non-lamellar lipid mesophases. Journal of Colloid and Interface Science 2019;541:329-38. [DOI: 10.1016/j.jcis.2019.01.091] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
43 Leung SSW, Leal C. The stabilization of primitive bicontinuous cubic phases with tunable swelling over a wide composition range. Soft Matter 2019;15:1269-77. [PMID: 30462135 DOI: 10.1039/c8sm02059k] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
44 Sivasubramanian M, Chuang YC, Lo LW. Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019;24:E520. [PMID: 30709030 DOI: 10.3390/molecules24030520] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 13.0] [Reference Citation Analysis]
45 Boge L, Hallstensson K, Ringstad L, Johansson J, Andersson T, Davoudi M, Larsson PT, Mahlapuu M, Håkansson J, Andersson M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm 2019;134:60-7. [PMID: 30445164 DOI: 10.1016/j.ejpb.2018.11.009] [Cited by in Crossref: 90] [Cited by in F6Publishing: 78] [Article Influence: 18.0] [Reference Citation Analysis]
46 Schlich M, Fornasier M, Nieddu M, Sinico C, Murgia S, Rescigno A. 3-hydroxycoumarin loaded vesicles for recombinant human tyrosinase inhibition in topical applications. Colloids and Surfaces B: Biointerfaces 2018;171:675-81. [DOI: 10.1016/j.colsurfb.2018.08.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
47 Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition 2019;59:3468-97. [DOI: 10.1080/10408398.2018.1495174] [Cited by in Crossref: 104] [Cited by in F6Publishing: 81] [Article Influence: 20.8] [Reference Citation Analysis]
48 Urandur S, Marwaha D, Gautam S, Banala VT, Sharma M, Mishra PR. Nonlamellar liquid crystals: a new paradigm for the delivery of small molecules and bio-macromolecules. Therapeutic Delivery 2018;9:667-89. [DOI: 10.4155/tde-2018-0038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]