BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rojas M, Restrepo-jiménez P, Monsalve DM, Pacheco Y, Acosta-ampudia Y, Ramírez-santana C, Leung PS, Ansari AA, Gershwin ME, Anaya J. Molecular mimicry and autoimmunity. Journal of Autoimmunity 2018;95:100-23. [DOI: 10.1016/j.jaut.2018.10.012] [Cited by in Crossref: 202] [Cited by in F6Publishing: 214] [Article Influence: 50.5] [Reference Citation Analysis]
Number Citing Articles
1 Apiraksattayakul N, Songwisit S, Owattanapanich W, Tisavipat N, Siritho S, Prayoonwiwat N, Rattanathamsakul N, Jitprapaikulsan J. AQP4-IgG-positive neuromyelitis optica spectrum disorder and temporally detected neoplasms: case report and systematic review. Multiple Sclerosis and Related Disorders 2022;68:104212. [DOI: 10.1016/j.msard.2022.104212] [Reference Citation Analysis]
2 Zhang L, Shi Y, Han X. Immunogenomic correlates of immune-related adverse events for anti–programmed cell death 1 therapy. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1032221] [Reference Citation Analysis]
3 Gala D, Scharf S, Kudlak M, Green C, Khowaja F, Shah M, Kumar V, Ullal G. A Comprehensive Review of the Neurological Manifestations of Celiac Disease and Its Treatment. Diseases 2022;10:111. [DOI: 10.3390/diseases10040111] [Reference Citation Analysis]
4 Villano U, Mataj E, Dorrucci M, Farchi F, Pirone C, Valdarchi C, Equestre M, Madonna E, Bruni R, Pisani G, Martina A, Simeoni M, Iaiani G, Ciccozzi M, Ciccaglione AR, Conti F, Ceccarelli F, Lo Presti A. Molecular Characterization of Hepatitis B Virus Infection in a Patient with Cutaneous Lupus Erythematosus. Diagnostics 2022;12:2866. [DOI: 10.3390/diagnostics12112866] [Reference Citation Analysis]
5 Begum S, Aiman S, Ahmad S, Samad A, Almehmadi M, Allahyani M, Aljuaid A, Afridi SG, Khan A. Molecular Mimicry Analyses Unveiled the Human Herpes Simplex and Poxvirus Epitopes as Possible Candidates to Incite Autoimmunity. Pathogens 2022;11:1362. [DOI: 10.3390/pathogens11111362] [Reference Citation Analysis]
6 Ha MK, Bartholomeus E, Van Os L, Dandelooy J, Leysen J, Aerts O, Siozopoulou V, De Smet E, Gielen J, Guerti K, De Maeseneer M, Herregods N, Lechkar B, Wittoek R, Geens E, Claes L, Zaqout M, Dewals W, Lemay A, Tuerlinckx D, Weynants D, Vanlede K, van Berlaer G, Raes M, Verhelst H, Boiy T, Van Damme P, Jansen AC, Meuwissen M, Sabato V, Van Camp G, Suls A, Werff Ten Bosch JV, Dehoorne J, Joos R, Laukens K, Meysman P, Ogunjimi B. Blood transcriptomics to facilitate diagnosis and stratification in pediatric rheumatic diseases - a proof of concept study. Pediatr Rheumatol Online J 2022;20:91. [PMID: 36253751 DOI: 10.1186/s12969-022-00747-x] [Reference Citation Analysis]
7 Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022;15:1019799. [DOI: 10.3389/fnmol.2022.1019799] [Reference Citation Analysis]
8 Serrano M, Espinosa G, Serrano A, Cervera R. COVID-19 and the antiphospholipid syndrome. Autoimmun Rev 2022;21:103206. [PMID: 36195247 DOI: 10.1016/j.autrev.2022.103206] [Reference Citation Analysis]
9 Rai A, Aashish, Priya, Karmani S, Abbas W, Khatri G. Prevalence of rheumatoid arthritis following COVID-19 vaccine: An autoimmune disorder. Annals of Medicine and Surgery 2022;82:104628. [DOI: 10.1016/j.amsu.2022.104628] [Reference Citation Analysis]
10 M. Elshafei A, A. Mahmoud N, A. Almofti Y. Development of Multi-Epitopes Vaccine against Human Papilloma Virus16 Using the L1 and L2 Proteins as Immunogens. Biosci , Biotech Res Asia 2022;19:797-813. [DOI: 10.13005/bbra/3032] [Reference Citation Analysis]
11 Stein RA. Campylobacter jejuni and Postinfectious Autoimmune Diseases: A Proof of Concept in Glycobiology. ACS Infect Dis 2022. [PMID: 36137262 DOI: 10.1021/acsinfecdis.2c00397] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Emiliani Y, Muzi G, Sánchez A, Sánchez J, Munera M. Prediction of molecular mimicry between proteins from Trypanosoma sp. and human antigens associated with systemic lupus erythematosus. Microb Pathog 2022;172:105760. [PMID: 36126789 DOI: 10.1016/j.micpath.2022.105760] [Reference Citation Analysis]
13 Maslinska M, Kostyra-grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022;13:823659. [DOI: 10.3389/fimmu.2022.823659] [Reference Citation Analysis]
14 Rizzi L, Sabbà C, Suppressa P. Sarcoidosis and autoimmunity: In the depth of a complex relationship. Front Med 2022;9. [DOI: 10.3389/fmed.2022.991394] [Reference Citation Analysis]
15 Eaton J, Rahmlow M. Myelin oligodendrocyte glycoprotein associated transverse myelitis following brain abscess: Case report and literature review. J Neuroimmunol 2022;372:577967. [PMID: 36126373 DOI: 10.1016/j.jneuroim.2022.577967] [Reference Citation Analysis]
16 Zysset-Burri DC, Morandi S, Herzog EL, Berger LE, Zinkernagel MS. The role of the gut microbiome in eye diseases. Prog Retin Eye Res 2022;:101117. [PMID: 36075807 DOI: 10.1016/j.preteyeres.2022.101117] [Reference Citation Analysis]
17 Griffin ME, Hang HC. Microbial mechanisms to improve immune checkpoint blockade responsiveness. Neoplasia 2022;31:100818. [PMID: 35816968 DOI: 10.1016/j.neo.2022.100818] [Reference Citation Analysis]
18 Waseem S, Ahmed SH, Fatima S, Shaikh TG, Ahmed J. SARS-CoV-2 vaccination and uveitis: Are they linked? Annals of Medicine and Surgery 2022;81:104472. [DOI: 10.1016/j.amsu.2022.104472] [Reference Citation Analysis]
19 Topi S, Bottalico L, Charitos IA, Colella M, Di Domenico M, Palmirotta R, Santacroce L. Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? Pathophysiology 2022;29:507-36. [DOI: 10.3390/pathophysiology29030041] [Reference Citation Analysis]
20 Hejazian SS, Hejazian SM, Farnood F, Abedi Azar S. Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology 2022. [PMID: 36028612 DOI: 10.1007/s10787-022-01047-2] [Reference Citation Analysis]
21 Patel A, Meng Y, Najjar A, Lado F, Najjar S. Autoimmune Encephalitis: A Physician’s Guide to the Clinical Spectrum Diagnosis and Management. Brain Sciences 2022;12:1130. [DOI: 10.3390/brainsci12091130] [Reference Citation Analysis]
22 Maytin L, Morrison J. Reactive Arthritis Resulting From Postoperative Complications of Third Molar Extraction: A Case Report. Cureus 2022. [DOI: 10.7759/cureus.28325] [Reference Citation Analysis]
23 Moten D, Teneva I, Apostolova D, Batsalova T, Dzhambazov B. Molecular Mimicry of the Rheumatoid Arthritis-Related Immunodominant T-Cell Epitope within Type II Collagen (CII260-270) by the Bacterial L-Asparaginase. IJMS 2022;23:9149. [DOI: 10.3390/ijms23169149] [Reference Citation Analysis]
24 Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022. [PMID: 35830711 DOI: 10.1002/cbin.11841] [Reference Citation Analysis]
25 Sanchez-Alamo B, Cases-Corona C, Fernandez-Juarez G. Facing the Challenge of Drug-Induced Acute Interstitial Nephritis. Nephron 2022;:1-13. [PMID: 35830831 DOI: 10.1159/000525561] [Reference Citation Analysis]
26 Lane LC, Wood CL, Cheetham T. Graves' disease: moving forwards. Arch Dis Child 2022:archdischild-2022-323905. [PMID: 35831126 DOI: 10.1136/archdischild-2022-323905] [Reference Citation Analysis]
27 Dawoud R, Haddad D, Shah V, Patel V, Abbas G, Guduru S, Dakka A, Kaushik V, Cheriyath P. COVID-19 Vaccine-Related Arthritis: A Descriptive Study of Case Reports on a Rare Complication. Cureus 2022. [DOI: 10.7759/cureus.26702] [Reference Citation Analysis]
28 Caoili SEC. Comprehending B-Cell Epitope Prediction to Develop Vaccines and Immunodiagnostics. Front Immunol 2022;13:908459. [DOI: 10.3389/fimmu.2022.908459] [Reference Citation Analysis]
29 Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Front Immunol 2022;13:941009. [DOI: 10.3389/fimmu.2022.941009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
30 Mcgill JR, Lagassé HAD, Hernandez N, Hopkins L, Jankowski W, Mccormick Q, Simhadri V, Golding B, Sauna ZE. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-15225-3] [Reference Citation Analysis]
31 Otsuka K, Sato M, Tsunematsu T, Ishimaru N. Virus Infections Play Crucial Roles in the Pathogenesis of Sjögren’s Syndrome. Viruses 2022;14:1474. [DOI: 10.3390/v14071474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Castillo-Cano B, Martín-Pérez M, Llorente-García A, Montero-Corominas D, Comas-Cufí M, Martín-Merino E. Assessment of thyroiditis risk associated with HPV vaccination among girls aged 9-18 years: A time-varying cohort study. Vaccine 2022:S0264-410X(22)00829-5. [PMID: 35792023 DOI: 10.1016/j.vaccine.2022.06.060] [Reference Citation Analysis]
33 Hong YM, Yoon KT, Cho M. Primary Biliary Cholangitis with Ankylosing Spondylitis. Korean J Gastroenterol 2022;79:270-273. [DOI: 10.4166/kjg.2022.048] [Reference Citation Analysis]
34 Dodueva IE, Lebedeva MA, Lutova LA. Phytopathogens and Molecular Mimicry. Russ J Genet 2022;58:638-54. [DOI: 10.1134/s1022795422060035] [Reference Citation Analysis]
35 Sepúlveda N, Malato J, Sotzny F, Grabowska AD, Fonseca A, Cordeiro C, Graça L, Biecek P, Behrends U, Mautner J, Westermeier F, Lacerda EM, Scheibenbogen C. Revisiting IgG Antibody Reactivity to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Its Potential Application to Disease Diagnosis. Front Med 2022;9:921101. [DOI: 10.3389/fmed.2022.921101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Rodríguez-fernández CA, Iglesias MB, de Domingo B, Conde-pérez K, Vallejo JA, Rodríguez-martínez L, González-barcia M, Llorenç V, Mondelo-garcia C, Poza M, Fernández-ferreiro A. Microbiome in Immune-Mediated Uveitis. IJMS 2022;23:7020. [DOI: 10.3390/ijms23137020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Jacob S, Kapadia R, Soule T, Luo H, Schellenberg KL, Douville RN, Pfeffer G. Neuromuscular Complications of SARS-CoV-2 and Other Viral Infections. Front Neurol 2022;13:914411. [DOI: 10.3389/fneur.2022.914411] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Kano N, Ong GH, Ori D, Kawai T. Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases. Front Cell Infect Microbiol 2022;12:910654. [DOI: 10.3389/fcimb.2022.910654] [Reference Citation Analysis]
39 Anaya JM, Herrán M, Beltrán S, Rojas M. Is post-COVID syndrome an autoimmune disease? Expert Rev Clin Immunol 2022. [PMID: 35658801 DOI: 10.1080/1744666X.2022.2085561] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022;:1-24. [PMID: 35668839 DOI: 10.1007/s13167-022-00285-2] [Reference Citation Analysis]
41 Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med 2022;28:911-23. [PMID: 35585196 DOI: 10.1038/s41591-022-01810-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
42 Akama-garren EH, Carroll MC. Lupus Susceptibility Loci Predispose Mice to Clonal Lymphocytic Responses and Myeloid Expansion. J I 2022;208:2403-2424. [DOI: 10.4049/jimmunol.2200098] [Reference Citation Analysis]
43 Gonciarz W, Tomaszewska A, Krupa A, Rechciński T, Chałubiński M, Broncel M, Chmiela M. Antibodies towards TVLLPVIFF Amino Acid Sequence of TNF Receptor Induced by Helicobacter pylori in Patients with Coronary Heart Disease. JCM 2022;11:2545. [DOI: 10.3390/jcm11092545] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Matsunaga A, Tsuzuki S, Morioka S, Ohmagari N, Ishizaka Y. Long COVID: current status in Japan and knowledge about its molecular background. GHM 2022;4:83-93. [DOI: 10.35772/ghm.2022.01013] [Reference Citation Analysis]
45 Serrano M, Espinosa G, Serrano A, Cervera R. Antigens and Antibodies of the Antiphospholipid Syndrome as New Allies in the Pathogenesis of COVID-19 Coagulopathy. Int J Mol Sci 2022;23:4946. [PMID: 35563337 DOI: 10.3390/ijms23094946] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Ghanekar Y, Sadasivam S. RNA Editing-Associated Post-Transcriptional Gene Regulation in Rheumatoid Arthritis. Bioinform Biol Insights 2022;16:11779322221088725. [PMID: 35462874 DOI: 10.1177/11779322221088725] [Reference Citation Analysis]
47 Sepúlveda N, Malato J, Sotzny F, Grabowska AD, Fonseca A, Cordeiro C, Graça L, Biecek P, Behrends U, Mautner J, Westermeier F, Lacerda EM, Scheibenbogen C. Revisiting IgG antibody reactivity to Epstein-Barr virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and its potential application to disease diagnosis.. [DOI: 10.1101/2022.04.20.22273990] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Trier NH, Valdarnini N, Fanelli I, Rovero P, Hansen PR, Schafer-Nielsen C, Ciplys E, Slibinskas R, Pociot F, Friis T, Houen G. Peptide Antibody Reactivity to Homologous Regions in Glutamate Decarboxylase Isoforms and Coxsackievirus B4 P2C. Int J Mol Sci 2022;23:4424. [PMID: 35457242 DOI: 10.3390/ijms23084424] [Reference Citation Analysis]
49 Domerecka W, Homa-Mlak I, Mlak R, Michalak A, Wilińska A, Kowalska-Kępczyńska A, Dreher P, Cichoż-Lach H, Małecka-Massalska T. Indicator of Inflammation and NETosis-Low-Density Granulocytes as a Biomarker of Autoimmune Hepatitis. J Clin Med 2022;11:2174. [PMID: 35456267 DOI: 10.3390/jcm11082174] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Kuchroo VK, Weiner HL. How does Epstein-Barr virus trigger MS? Immunity 2022;55:390-2. [PMID: 35263566 DOI: 10.1016/j.immuni.2022.02.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
51 Chitnis T, Weiner HL. Targeting Epstein-Barr virus to treat MS. Med 2022;3:159-61. [DOI: 10.1016/j.medj.2022.02.005] [Reference Citation Analysis]
52 An H, Eun M, Yi J, Park J. CRESSP: a comprehensive pipeline for prediction of immunopathogenic SARS-CoV-2 epitopes using structural properties of proteins. Brief Bioinform 2022:bbac056. [PMID: 35226074 DOI: 10.1093/bib/bbac056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Mendis S, Longley N, Morley S, Korres G, Kaski D. Autoimmune Vestibulopathy—A Case Series. Brain Sciences 2022;12:306. [DOI: 10.3390/brainsci12030306] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, Zyskind I, Filgueiras IS, Schimke LF, Marques AHC, Giil LM, Lavi YB, Silverberg JI, Zimmerman J, Hill DA, Thornton A, Kim M, De Vito R, Fonseca DLM, Plaça DR, Freire PP, Camara NOS, Calich VLG, Heidecke H, Lattin MT, Ochs HD, Riemekasten G, Amital H, Cabral-marques O, Shoenfeld Y. Autoantibodies linked to autoimmune diseases associate with COVID-19 outcomes.. [DOI: 10.1101/2022.02.17.22271057] [Reference Citation Analysis]
55 Krovi SH, Kuchroo VK. Activation pathways that drive CD4+ T cells to break tolerance in autoimmune diseases. Immunol Rev 2022. [PMID: 35142369 DOI: 10.1111/imr.13071] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
56 Buendía E, Marlon M, Parra O, Sánchez M, Sánchez A, Sánchez J, Viasus D. Human Proteinase 3, an important autoantigen of c-ANCA associated vasculitis, shares cross-reactive epitopes with serine protease allergens from mites: an in silico analysis. F1000Res 2021;10:47. [DOI: 10.12688/f1000research.28225.2] [Reference Citation Analysis]
57 Yang Y, Choi J, Chen Y, Invernizzi P, Yang G, Zhang W, Shao TH, Jordan F, Nemeria NS, Coppel RL, Ridgway WM, Kurth M, Ansari AA, Leung PSC, Gershwin ME. E. coli and the etiology of human PBC: Antimitochondrial antibodies and spreading determinants. Hepatology 2022;75:266-79. [PMID: 34608663 DOI: 10.1002/hep.32172] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
58 Bertinat R, Villalobos-Labra R, Hofmann L, Blauensteiner J, Sepúlveda N, Westermeier F. Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients. Vascul Pharmacol 2022;:106953. [PMID: 35074481 DOI: 10.1016/j.vph.2022.106953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
59 Lisyany N, Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine. COVID-19 INFECTION AND AUTOIMMUNE REACTIONS. Fiziol Zh 2022;68:87-92. [DOI: 10.15407/fz68.01.087] [Reference Citation Analysis]
60 Camacho-Domínguez L, Rodríguez Y, Polo F, Restrepo Gutierrez JC, Zapata E, Rojas M, Anaya JM. COVID-19 vaccine and autoimmunity. A new case of autoimmune hepatitis and review of the literature. J Transl Autoimmun 2022;5:100140. [PMID: 35013724 DOI: 10.1016/j.jtauto.2022.100140] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
61 Hou J, Tang Y, Chen Y, Chen D. The Role of the Microbiota in Graves' Disease and Graves' Orbitopathy. Front Cell Infect Microbiol 2021;11:739707. [PMID: 35004341 DOI: 10.3389/fcimb.2021.739707] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
62 Hajra A, Gupta M, Ghosh B, Ashish K, Patel N, Manek G, Rai D, Sreenivasan J, Goel A, Lavie CJ, Bandyopadhyay D. Proposed Pathogenesis, Characteristics, and Management of COVID-19 mRNA Vaccine-Related Myopericarditis. Am J Cardiovasc Drugs 2022;22:9-26. [PMID: 34817850 DOI: 10.1007/s40256-021-00511-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
63 Kumar V. Innate lymphoid cells in autoimmune diseases. Translational Autoimmunity 2022. [DOI: 10.1016/b978-0-12-822564-6.00007-0] [Reference Citation Analysis]
64 Álvaro-benito M. Peptide editing and its modulation in CD4+ T cell tolerance to self. Translational Autoimmunity 2022. [DOI: 10.1016/b978-0-12-822564-6.00003-3] [Reference Citation Analysis]
65 Balakrishnan B, Taneja V. Microorganisms in Pathogenesis and Management of Rheumatoid Arthritis. Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases 2022. [DOI: 10.1007/978-981-19-1946-6_16] [Reference Citation Analysis]
66 Kawakami T, Yahagi K, Sekiguchi M, Ishizawa T, Nonaka H, Setoguchi N, Watanabe Y, Nakase M, Horiuchi Y, Asami M, Yuzawa H, Komiyama K, Tanaka J, Aoki J, Tanabe K. Acute Myocarditis in a Patient Following mRNA-1273 SARS-CoV-2 Vaccination. Intern Med . [DOI: 10.2169/internalmedicine.9000-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
67 Costantini C. The immune system and the microbiota: The two sides of mucosal tolerance. Translational Autoimmunity 2022. [DOI: 10.1016/b978-0-12-822564-6.00008-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Prasad P, Roth L, Ionescu R, Willis C, Nicaise A, Krzak G, Peruzzotti-jametti L, Pluchino S. Neuroinflammation in Multiple Sclerosis. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00267-4] [Reference Citation Analysis]
69 Guarneri F. The Concept of Infection-Triggered Autoimmunity. Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases 2022. [DOI: 10.1007/978-981-19-1946-6_1] [Reference Citation Analysis]
70 Alekseeva TM, Isabekova PS, Topuzova MP, Skripchenko NV. New onset of generalized myasthenia gravis developed after a new coronavirus infection (COVID-19). jour 2021;13:127-32. [DOI: 10.22625/2072-6732-2021-13-4-127-132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Laghmouchi A, Graça NAG, Voorberg J. Emerging Concepts in Immune Thrombotic Thrombocytopenic Purpura. Front Immunol 2021;12:757192. [PMID: 34858410 DOI: 10.3389/fimmu.2021.757192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Mclean P, Trefts L. Transverse myelitis 48 hours after the administration of an mRNA COVID 19 vaccine. Neuroimmunology Reports 2021;1:100019. [DOI: 10.1016/j.nerep.2021.100019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
73 Sami SA, Marma KKS, Mahmud S, Khan MAN, Albogami S, El-Shehawi AM, Rakib A, Chakraborty A, Mohiuddin M, Dhama K, Uddin MMN, Hossain MK, Tallei TE, Emran TB. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS Omega 2021;6:32043-71. [PMID: 34870027 DOI: 10.1021/acsomega.1c04817] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
74 Bardoscia L, Pasinetti N, Triggiani L, Cozzi S, Sardaro A. Biological Bases of Immune-Related Adverse Events and Potential Crosslinks With Immunogenic Effects of Radiation. Front Pharmacol 2021;12:746853. [PMID: 34790123 DOI: 10.3389/fphar.2021.746853] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
75 Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021;11:759333. [PMID: 34746029 DOI: 10.3389/fcimb.2021.759333] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
76 Ciano-Petersen NL, Hamad-Cueto O, Drissi-Reyes H, Doña-Díaz Á, García-Martín G. Case Report: Autoimmune Psychosis in Chromosome 22q11.2 Deletion Syndrome. Front Immunol 2021;12:708625. [PMID: 34721378 DOI: 10.3389/fimmu.2021.708625] [Reference Citation Analysis]
77 Hellesen A, Aslaksen S, Breivik L, Røyrvik EC, Bruserud Ø, Edvardsen K, Brokstad KA, Wolff ASB, Husebye ES, Bratland E. 21-Hydroxylase-Specific CD8+ T Cells in Autoimmune Addison's Disease Are Restricted by HLA-A2 and HLA-C7 Molecules. Front Immunol 2021;12:742848. [PMID: 34721410 DOI: 10.3389/fimmu.2021.742848] [Reference Citation Analysis]
78 Londoño MC, Gratacós-Ginès J, Sáez-Peñataro J. Another case of autoimmune hepatitis after SARS-CoV-2 vaccination - still casualty? J Hepatol 2021;75:1248-9. [PMID: 34129886 DOI: 10.1016/j.jhep.2021.06.004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 40.0] [Reference Citation Analysis]
79 Liu W, Huang G, Rui H, Geng J, Hu H, Huang Y, Huo G, Liu B, Xu A. Course monitoring of membranous nephropathy: Both autoantibodies and podocytes require multidimensional attention. Autoimmun Rev 2021;:102976. [PMID: 34757091 DOI: 10.1016/j.autrev.2021.102976] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
80 Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021;12:747143. [PMID: 34691057 DOI: 10.3389/fimmu.2021.747143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Nesterova IV, Khalturina EO. EARLY DIAGNOSTICS OF AUTOINFLAMMATORY DISORDERS ASSOCIATED WITH POST-VIRAL CHRONIC FATIGUE SYNDROME AND COGNITIVE IMPAIRMENTS IN CHRONIC MIXED HERPES VIRAL INFECTIONS. Med immunol 2021;23:975-980. [DOI: 10.15789/1563-0625-edo-2315] [Reference Citation Analysis]
82 Ramezankhani R, Minaei N, Haddadi M, Solhi R, Taleahmad S. The impact of sex on susceptibility to systemic lupus erythematosus and rheumatoid arthritis; a bioinformatics point of view. Cell Signal 2021;88:110171. [PMID: 34662716 DOI: 10.1016/j.cellsig.2021.110171] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021;184:5309-37. [PMID: 34624224 DOI: 10.1016/j.cell.2021.09.020] [Cited by in Crossref: 104] [Cited by in F6Publishing: 143] [Article Influence: 104.0] [Reference Citation Analysis]
84 Rapoport SK, Alnouri G, Sataloff RT, Woo P. Acute Vocal Fold Paresis and Paralysis After COVID-19 Infection: A Case Series. Ann Otol Rhinol Laryngol 2021;:34894211047829. [PMID: 34643462 DOI: 10.1177/00034894211047829] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
85 Parodi B, Kerlero de Rosbo N. The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease? Front Immunol 2021;12:718220. [PMID: 34621267 DOI: 10.3389/fimmu.2021.718220] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
86 Zhou P, Chen J, He J, Zheng T, Yunis J, Makota V, Alexandre YO, Gong F, Zhang X, Xie W, Li Y, Shao M, Zhu Y, Sinclair JE, Miao M, Chen Y, Short KR, Mueller SN, Sun X, Yu D, Li Z. Low-dose IL-2 therapy invigorates CD8+ T cells for viral control in systemic lupus erythematosus. PLoS Pathog 2021;17:e1009858. [PMID: 34618873 DOI: 10.1371/journal.ppat.1009858] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
87 Gershteyn IM, Burov AA, Miao BY, Morais VH, Ferreira LMR. Immunodietica: interrogating the role of diet in autoimmune disease. Int Immunol 2020;32:771-83. [PMID: 32808986 DOI: 10.1093/intimm/dxaa054] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
88 Samoilova EM, Yusubalieva GM, Belopasov VV, Ekusheva EV, Baklaushev VP. [Infections and inflammation in the development of stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2021;121:11-21. [PMID: 34553576 DOI: 10.17116/jnevro202112108211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
89 Mirna M, Schmutzler L, Topf A, Hoppe UC, Lichtenauer M. Neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio predict length of hospital stay in myocarditis. Sci Rep 2021;11:18101. [PMID: 34518607 DOI: 10.1038/s41598-021-97678-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
90 Senthamizhselvan K, Ramalingam R, Mohan P, Kavadichanda C, Badhe B, Hamide A. De Novo Crohn's Disease Triggered After COVID-19: Is COVID-19 More Than an Infectious Disease? ACG Case Rep J 2021;8:e00652. [PMID: 34476279 DOI: 10.14309/crj.0000000000000652] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
91 Adiguzel Y. Peptides of H. sapiens and P. falciparum that are predicted to bind strongly to HLA-A*24:02 and homologous to a SARS-CoV-2 peptide. Acta Trop 2021;221:106013. [PMID: 34146538 DOI: 10.1016/j.actatropica.2021.106013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Karami Fath M, Jahangiri A, Ganji M, Sefid F, Payandeh Z, Hashemi ZS, Pourzardosht N, Hessami A, Mard-Soltani M, Zakeri A, Rahbar MR, Khalili S. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Front Immunol 2021;12:705772. [PMID: 34447375 DOI: 10.3389/fimmu.2021.705772] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
93 Vazquez DS, Schilbert HM, Dodero VI. Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis. Int J Mol Sci 2021;22:9278. [PMID: 34502187 DOI: 10.3390/ijms22179278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Dotan A, Kanduc D, Muller S, Makatsariya A, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 and the female reproductive system. Am J Reprod Immunol 2021. [PMID: 34407240 DOI: 10.1111/aji.13494] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
95 Domerecka W, Kowalska-Kępczyńska A, Michalak A, Homa-Mlak I, Mlak R, Cichoż-Lach H, Małecka-Massalska T. Etiopathogenesis and Diagnostic Strategies in Autoimmune Hepatitis. Diagnostics (Basel) 2021;11:1418. [PMID: 34441353 DOI: 10.3390/diagnostics11081418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
96 Sepúlveda N. Impact of genetic variation on the molecular mimicry between Anoctamin-2 and Epstein-Barr virus nuclear antigen 1 in Multiple Sclerosis. Immunol Lett 2021;238:29-31. [PMID: 34310987 DOI: 10.1016/j.imlet.2021.07.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
97 Norin AJ, Mendoza R, Augenbraun M, Das B. HLA B53 is associated with a poor outcome in black COVID-19 patients. Hum Immunol 2021:S0198-8859(21)00177-4. [PMID: 34303556 DOI: 10.1016/j.humimm.2021.07.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 Infantino M, Benucci M, Manfredi M. COVID-19 e autoimmunità. Riv Ital Med Lab 2021;17. [DOI: 10.23736/s1825-859x.21.00104-3] [Reference Citation Analysis]
99 Judson MA. A Primer on the Clinical Aspects of Sarcoidosis for the Basic and Translational Scientist. J Clin Med 2021;10:2857. [PMID: 34203188 DOI: 10.3390/jcm10132857] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Martín-Merino E, Castillo-Cano B, Martín-Perez M, Llorente-García A, Montero-Corominas D. Papillomavirus vaccination and Guillain-Barre Syndrome among girls: A cohort study in Spain. Vaccine 2021;39:4306-13. [PMID: 34175126 DOI: 10.1016/j.vaccine.2021.06.029] [Reference Citation Analysis]
101 Kragsnaes MS, Kjeldsen J, Horn HC, Munk HL, Pedersen JK, Just SA, Ahlquist P, Davidsen JR, Nilsson AC, Röttger R, Kruhøffer M, Marchesi JR, Kristiansen K, Christensen R, Ellingsen T. Response to: 'Correspondence on 'Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial'' by McGonagle et al. Ann Rheum Dis 2021:annrheumdis-2021-220910. [PMID: 34158373 DOI: 10.1136/annrheumdis-2021-220910] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
102 Manca E. Autoantibodies in Neuropsychiatric Systemic Lupus Erythematosus (NPSLE): Can They Be Used as Biomarkers for the Differential Diagnosis of This Disease? Clin Rev Allergy Immunol 2021. [PMID: 34115263 DOI: 10.1007/s12016-021-08865-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
103 Katz-Agranov N, Zandman-Goddard G. Autoimmunity and COVID-19 - The microbiotal connection. Autoimmun Rev 2021;20:102865. [PMID: 34118455 DOI: 10.1016/j.autrev.2021.102865] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
104 Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021;12:642166. [PMID: 34163468 DOI: 10.3389/fimmu.2021.642166] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
105 Mantej J, Bednarek M, Sitko K, Świętoń M, Tukaj S. Autoantibodies to heat shock protein 60, 70, and 90 are not altered in the anti-SARS-CoV-2 IgG-seropositive humans without or with mild symptoms. Cell Stress Chaperones 2021;26:735-40. [PMID: 34080135 DOI: 10.1007/s12192-021-01215-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
106 Tu SM. Stem Cell Theory of Cancer: Implications of a Viral Etiology in Certain Malignancies. Cancers (Basel) 2021;13:2738. [PMID: 34205851 DOI: 10.3390/cancers13112738] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
107 Tomas NM, Huber TB, Hoxha E. Perspectives in membranous nephropathy. Cell Tissue Res 2021. [PMID: 33825066 DOI: 10.1007/s00441-021-03429-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
108 Venturutti L, Melnick AM. The dangers of déjà vu: memory B cells as the cells of origin of ABC-DLBCLs. Blood 2020;136:2263-74. [PMID: 32932517 DOI: 10.1182/blood.2020005857] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
109 Engel B, Laschtowitz A, Janik MK, Junge N, Baumann U, Milkiewicz P, Taubert R, Sebode M. Genetic aspects of adult and pediatric autoimmune hepatitis: A concise review. Eur J Med Genet 2021;64:104214. [PMID: 33812046 DOI: 10.1016/j.ejmg.2021.104214] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
110 Terracina KA, Tan FK. Flare of rheumatoid arthritis after COVID-19 vaccination. Lancet Rheumatol 2021;3:e469-70. [PMID: 33817664 DOI: 10.1016/S2665-9913(21)00108-9] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 46.0] [Reference Citation Analysis]
111 Megremis S, Walker TDJ, He X, O'Sullivan J, Ollier WER, Chinoy H, Pendleton N, Payton A, Hampson L, Hampson I, Lamb JA. Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis. Commun Biol 2021;4:419. [PMID: 33772100 DOI: 10.1038/s42003-021-01932-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
112 Almofti YA, Abd-Elrahman KA, Eltilib EEM. Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunol 2021;22:22. [PMID: 33765919 DOI: 10.1186/s12865-021-00412-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
113 Williams SG, Wolin SL. The Autoantigen Repertoire and the Microbial RNP World. Trends Mol Med 2021;27:422-35. [PMID: 33722441 DOI: 10.1016/j.molmed.2021.02.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
114 Al-Ramadan A, Rabab'h O, Shah J, Gharaibeh A. Acute and Post-Acute Neurological Complications of COVID-19. Neurol Int 2021;13:102-19. [PMID: 33803475 DOI: 10.3390/neurolint13010010] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 35.0] [Reference Citation Analysis]
115 Sánchez D, Hoffmanová I, Szczepanková A, Hábová V, Tlaskalová-Hogenová H. Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021;9:547. [PMID: 33800833 DOI: 10.3390/microorganisms9030547] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
116 Gudjonsson JE, Kabashima K, Eyerich K. Mechanisms of skin autoimmunity: Cellular and soluble immune components of the skin. J Allergy Clin Immunol 2020;146:8-16. [PMID: 32631499 DOI: 10.1016/j.jaci.2020.05.009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 26.0] [Reference Citation Analysis]
117 Martínez YA, Guo X, Portales-Pérez DP, Rivera G, Castañeda-Delgado JE, García-Pérez CA, Enciso-Moreno JA, Lara-Ramírez EE. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus. PLoS One 2021;16:e0246901. [PMID: 33596252 DOI: 10.1371/journal.pone.0246901] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
118 Gebresilase T, Finan C, Suveges D, Tessema TS, Aseffa A, Davey G, Hatzikotoulas K, Zeggini E, Newport MJ, Tekola-Ayele F. Replication of HLA class II locus association with susceptibility to podoconiosis in three Ethiopian ethnic groups. Sci Rep 2021;11:3285. [PMID: 33558538 DOI: 10.1038/s41598-021-81836-x] [Reference Citation Analysis]
119 Singh D, Oudit O, Hajtovic S, Sarbaugh D, Salis R, Adebowale T, James J, Spatz LA. Antibodies to an Epstein Barr Virus protein that cross-react with dsDNA have pathogenic potential. Mol Immunol 2021;132:41-52. [PMID: 33545624 DOI: 10.1016/j.molimm.2021.01.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
120 Boziki M, Grigoriadis N, Papaefthymiou A, Doulberis M, Polyzos SA, Gavalas E, Deretzi G, Karafoulidou E, Kesidou E, Taloumtzis C, Theotokis P, Sofou E, Katsinelos P, Vardaka E, Fludaras I, Touloumtzi M, Koukoufiki A, Simeonidou C, Liatsos C, Kountouras J. The trimebutine effect on Helicobacter pylori-related gastrointestinal tract and brain disorders: A hypothesis. Neurochem Int 2021;144:104938. [PMID: 33535070 DOI: 10.1016/j.neuint.2020.104938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
121 Adiguzel Y. Coronavirus-associated molecular mimicry through homology to a SARS-CoV-2 peptide could be leading to susceptibility in patients with HLA-A*02:01 and HLA-A*24:02 serotypes.. [DOI: 10.1101/2021.01.28.428642] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Buendía E, Marlon M, Parra O, Sánchez M, Sánchez A, Sánchez J, Viasus D. Human Proteinase 3, an important autoantigen of c-ANCA associated vasculitis, shares cross-reactive epitopes with serine protease allergens from mites: an in silico analysis. F1000Res 2021;10:47. [DOI: 10.12688/f1000research.28225.1] [Reference Citation Analysis]
123 Niborski LL, Potenza M, Chirivi RGS, Simonetti L, Ossowski MS, Grippo V, May M, Staquicini DI, Parodi-Talice A, Robello C, Comini MA, Alonso GD, Raats JMH, Gómez KA. Recombinant antibody against Trypanosoma cruzi from patients with chronic Chagas heart disease recognizes mammalian nervous system. EBioMedicine 2021;63:103206. [PMID: 33429173 DOI: 10.1016/j.ebiom.2020.103206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
124 Sousa MDAC, Andrade LJDO. Mimetismo molecular entre autoproteínas da tireoide e poliproteínas do vírus da hepatite C. Hepatite C e tireoide 2021. [DOI: 10.7476/9786586213737.0009] [Reference Citation Analysis]
125 Esau D. Brief Introduction of Epstein-Barr Virus and Lymphoma. Human Viruses: Diseases, Treatments and Vaccines 2021. [DOI: 10.1007/978-3-030-71165-8_10] [Reference Citation Analysis]
126 Williams R, Allred J, Blazar B. In vitro T lymphopoiesis. Current Progress in iPSC-derived Cell Types 2021. [DOI: 10.1016/b978-0-12-823884-4.00006-7] [Reference Citation Analysis]
127 Lychko V, Burtyka M. CEREBROVASCULAR COMPLICATIONS OF COVID-19. EUMJ 2021;9. [DOI: 10.21272/eumj.2021;9(3):219-227] [Reference Citation Analysis]
128 Calabrese LH. Immunopathogenesis of Immune-Related Adverse Events from Cancer Immunotherapy. Rheumatic Diseases and Syndromes Induced by Cancer Immunotherapy 2021. [DOI: 10.1007/978-3-030-56824-5_3] [Reference Citation Analysis]
129 Szeto C, Lobos CA, Nguyen AT, Gras S. TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. Int J Mol Sci 2020;22:E68. [PMID: 33374673 DOI: 10.3390/ijms22010068] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
130 Ruprecht K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev Clin Immunol 2020;16:1143-57. [PMID: 33152255 DOI: 10.1080/1744666X.2021.1847642] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
131 Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2021;20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
132 Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020;11:591255. [PMID: 33363538 DOI: 10.3389/fimmu.2020.591255] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
133 Beijer E, Bakker A, Kraaijvanger R, Meek B, Post M, Grutters J, Veltkamp M. Latent tuberculosis infection associates with cardiac involvement in patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2020;37:e2020005. [PMID: 33264382 DOI: 10.36141/svdld.v37i3.9926] [Reference Citation Analysis]
134 Parkhouse RME, Sciutto E, Hernández M, Cortez MM, Carpio A, Fleury A. Extraparenchymal human neurocysticercosis induces autoantibodies against brain tubulin and MOG35–55 in cerebral spinal fluid. Journal of Neuroimmunology 2020;349:577389. [DOI: 10.1016/j.jneuroim.2020.577389] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
135 das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2021;69:1341-68. [PMID: 33247866 DOI: 10.1002/glia.23940] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
136 Zhao XC, Sun XY, Ju B, Meng FJ, Zhao HG. Acquired aplastic anemia: Is bystander insult to autologous hematopoiesis driven by immune surveillance against malignant cells? World J Stem Cells 2020;12:1429-38. [PMID: 33312408 DOI: 10.4252/wjsc.v12.i11.1429] [Reference Citation Analysis]
137 Azariadis K, Giannoulis G, Gabeta S, Michail A, Zachou K, Dalekos GN. Severe Pharyngodynia Followed by Migratory Polyarthritis and High Fever in Young Immigrants: Remember That Rheumatic Fever Is Still Relevant in 2020! Case Rep Infect Dis 2020;2020:8854868. [PMID: 33204550 DOI: 10.1155/2020/8854868] [Reference Citation Analysis]
138 Salaman MR, Gould KG. Breakdown of T-cell ignorance: The tolerance failure responsible for mainstream autoimmune diseases? J Transl Autoimmun 2020;3:100070. [PMID: 33294833 DOI: 10.1016/j.jtauto.2020.100070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
139 An H, Park J. Molecular Mimicry Map (3M) of SARS-CoV-2: Prediction of potentially immunopathogenic SARS-CoV-2 epitopes via a novel immunoinformatic approach.. [DOI: 10.1101/2020.11.12.344424] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
140 Han J, Lotze MT. The Adaptome as Biomarker for Assessing Cancer Immunity and Immunotherapy. Methods Mol Biol 2020;2055:369-97. [PMID: 31502161 DOI: 10.1007/978-1-4939-9773-2_17] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
141 Paladino L, Vitale AM, Caruso Bavisotto C, Conway de Macario E, Cappello F, Macario AJL, Gammazza AM. The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19. J Clin Med 2020;9:E3518. [PMID: 33143379 DOI: 10.3390/jcm9113518] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
142 Alberti P, Handel AE. The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2021;43:135-57. [PMID: 33108502 DOI: 10.1007/s00281-020-00822-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
143 Schiaffino MT, Di Natale M, García-Martínez E, Navarro J, Muñoz-Blanco JL, Demelo-Rodríguez P, Sánchez-Mateos P. Immunoserologic Detection and Diagnostic Relevance of Cross-Reactive Autoantibodies in Coronavirus Disease 2019 Patients. J Infect Dis 2020;222:1439-43. [PMID: 32738141 DOI: 10.1093/infdis/jiaa485] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
144 Song J, Li Y, Bowlus CL, Yang G, Leung PSC, Gershwin ME. Cholangiocarcinoma in Patients with Primary Sclerosing Cholangitis (PSC): a Comprehensive Review. Clin Rev Allergy Immunol. 2020;58:134-149. [PMID: 31463807 DOI: 10.1007/s12016-019-08764-7] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
145 Chen W, Wei Y, Xiong A, Li Y, Guan H, Wang Q, Miao Q, Bian Z, Xiao X, Lian M, Zhang J, Li B, Cao Q, Fan Z, Zhang W, Qiu D, Fang J, Gershwin ME, Yang L, Tang R, Ma X. Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis.Clin Rev Allergy Immunol. 2020;58:25-38. [PMID: 30900136 DOI: 10.1007/s12016-019-08731-2] [Cited by in Crossref: 51] [Cited by in F6Publishing: 59] [Article Influence: 25.5] [Reference Citation Analysis]
146 Bo M, Jasemi S, Uras G, Erre GL, Passiu G, Sechi LA. Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020;8:E1459. [PMID: 32977590 DOI: 10.3390/microorganisms8101459] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
147 Chiaro J, Kasanen HHE, Whalley T, Capasso C, Grönholm M, Feola S, Peltonen KD, Hamdan FS, Hernberg MM, Mäkelä S, Karhapää H, Brown PE, Martins B, Fusciello M, Ylösmäki E, Kreutzman AS, Mustjoki SM, Szomolay B, Cerullo V. Viral Molecular Mimicry Influences the Antitumor Immune Response in Murine and Human Melanoma.. [DOI: 10.1101/2020.09.09.20191171] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
148 Múnera M, Farak J, Pérez M, Rojas J, Villero J, Sánchez A, Sánchez J, Emiliani Y. Prediction of molecular mimicry between antigens from Leishmania sp. and human: Implications for autoimmune response in systemic lupus erythematosus. Microb Pathog 2020;148:104444. [PMID: 32827635 DOI: 10.1016/j.micpath.2020.104444] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
149 Vilariño N, Bruna J, Kalofonou F, Anastopoulou GG, Argyriou AA. Immune-Driven Pathogenesis of Neurotoxicity after Exposure of Cancer Patients to Immune Checkpoint Inhibitors. Int J Mol Sci 2020;21:E5774. [PMID: 32796758 DOI: 10.3390/ijms21165774] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
150 Zhao XC, Sun XY, Zhao L, Meng FJ. Gut inflammation in the pathogenesis of acquired aplastic anemia. Chin Med J (Engl) 2020;133:1878-81. [PMID: 32568881 DOI: 10.1097/CM9.0000000000000772] [Reference Citation Analysis]
151 Brown J, Robusto B, Morel L. Intestinal Dysbiosis and Tryptophan Metabolism in Autoimmunity. Front Immunol 2020;11:1741. [PMID: 32849620 DOI: 10.3389/fimmu.2020.01741] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
152 Badloe FMS, De Vriese S, Coolens K, Schmidt-Weber CB, Ring J, Gutermuth J, Kortekaas Krohn I. IgE autoantibodies and autoreactive T cells and their role in children and adults with atopic dermatitis. Clin Transl Allergy 2020;10:34. [PMID: 32774842 DOI: 10.1186/s13601-020-00338-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
153 Henze L, Schwinge D, Schramm C. The Effects of Androgens on T Cells: Clues to Female Predominance in Autoimmune Liver Diseases? Front Immunol 2020;11:1567. [PMID: 32849531 DOI: 10.3389/fimmu.2020.01567] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
154 Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3+ regulatory T cells. Cell Immunol 2020;355:104173. [PMID: 32712270 DOI: 10.1016/j.cellimm.2020.104173] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
155 Parkhouse RME, Carpio A, Cortez MM, von Kriegsheim A, Fesel C. Anti-brain protein autoantibodies are detectable in extraparenchymal but not parenchymal neurocysticercosis. Journal of Neuroimmunology 2020;344:577234. [DOI: 10.1016/j.jneuroim.2020.577234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
156 Judson MA. Environmental Risk Factors for Sarcoidosis. Front Immunol 2020;11:1340. [PMID: 32676081 DOI: 10.3389/fimmu.2020.01340] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
157 Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget. J Leukoc Biol 2020;108:397-417. [PMID: 32557732 DOI: 10.1002/JLB.4MIR0420-500RRR] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
158 Rodríguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, Ramírez-Santana C, Costanzo A, Ridgway WM, Ansari AA, Gershwin ME, Selmi C, Anaya JM. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun 2020;114:102506. [PMID: 32563547 DOI: 10.1016/j.jaut.2020.102506] [Cited by in Crossref: 158] [Cited by in F6Publishing: 178] [Article Influence: 79.0] [Reference Citation Analysis]
159 Vergouwen DPC, Rothova A, Berge JCT, Verdijk RM, van Laar JAM, Vingerling JR, Schreurs MWJ. Current insights in the pathogenesis of scleritis. Exp Eye Res 2020;197:108078. [PMID: 32504648 DOI: 10.1016/j.exer.2020.108078] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
160 Katz I, Gilburd B, Shovman O. Zika autoimmunity and Guillain-Barré syndrome. Curr Opin Rheumatol 2019;31:484-7. [PMID: 31246623 DOI: 10.1097/BOR.0000000000000629] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
161 Wölfel A, Sättele M, Zechmeister C, Nikolaev VO, Lohse MJ, Boege F, Jahns R, Boivin-Jahns V. Unmasking features of the auto-epitope essential for β1 -adrenoceptor activation by autoantibodies in chronic heart failure. ESC Heart Fail 2020;7:1830-41. [PMID: 32436653 DOI: 10.1002/ehf2.12747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
162 Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, Greenshields-Watson A, Attaf M, Egorov ES, Zvyagin IV, Babel N, Cole DK, Godkin AJ, Sewell AK, Kesmir C, Chudakov DM, Luciani F, Shugay M. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res 2020;48:D1057-62. [PMID: 31588507 DOI: 10.1093/nar/gkz874] [Cited by in Crossref: 146] [Cited by in F6Publishing: 154] [Article Influence: 73.0] [Reference Citation Analysis]
163 Smiljanovic B, Grützkau A, Sörensen T, Grün JR, Vogl T, Bonin M, Schendel P, Stuhlmüller B, Claussnitzer A, Hermann S, Ohrndorf S, Aupperle K, Backhaus M, Radbruch A, Burmester GR, Häupl T. Synovial tissue transcriptomes of long-standing rheumatoid arthritis are dominated by activated macrophages that reflect microbial stimulation. Sci Rep 2020;10:7907. [PMID: 32404914 DOI: 10.1038/s41598-020-64431-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
164 Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, Rojas-Villarraga A, Ramírez-Santana C, Díaz-Coronado JC, Manrique R, Mantilla RD, Shoenfeld Y, Anaya JM. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020;19:102554. [PMID: 32380316 DOI: 10.1016/j.autrev.2020.102554] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
165 Gershteyn IM, Burov AA, Miao BY, Morais VH, Ferreira LMR. Immunodietica: interrogating the role of diet in autoimmune disease.. [DOI: 10.1101/2020.05.05.079418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
166 Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, Rojas-Villarraga A, Ramírez-Santana C, Díaz-Coronado JC, Manrique R, Mantilla RD, Shoenfeld Y, Anaya JM. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020;19:102554. [PMID: 32380316 DOI: 10.1016/j.autrev.2020.102554] [Cited by in Crossref: 310] [Cited by in F6Publishing: 314] [Article Influence: 155.0] [Reference Citation Analysis]
167 Pérez Álvarez Á, Suárez Cuervo C, Fernández Menéndez S. SARS-CoV-2 infection associated with diplopia and anti-acetylcholine receptor antibodies. Neurología (English Edition) 2020;35:264-5. [DOI: 10.1016/j.nrleng.2020.04.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
168 Kageyama T, Matsuo T, Kurakake R, Sano T. Relationship between T cells and microbiota in health and disease. Prog Mol Biol Transl Sci 2020;171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
169 Pérez Álvarez ÁI, Suárez Cuervo C, Fernández Menéndez S. SARS-CoV-2 infection associated with diplopia and anti-acetylcholine receptor antibodies. Neurologia (Engl Ed) 2020;35:264-5. [PMID: 32364121 DOI: 10.1016/j.nrl.2020.04.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
170 Kodati S, Sen HN. Uveitis and the gut microbiota. Best Pract Res Clin Rheumatol 2019;33:101500. [PMID: 32278666 DOI: 10.1016/j.berh.2020.101500] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
171 Negrini R, Villanacci V, Poiesi C, Savio A. Anti-Glycan Autoantibodies Induced by Helicobacter pylori as a Potential Risk Factor for Myocardial Infarction. Front Immunol 2020;11:597. [PMID: 32322255 DOI: 10.3389/fimmu.2020.00597] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
172 Esfahani K, Elkrief A, Calabrese C, Lapointe R, Hudson M, Routy B, Miller WH, Calabrese L. Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol 2020;17:504-15. [DOI: 10.1038/s41571-020-0352-8] [Cited by in Crossref: 108] [Cited by in F6Publishing: 116] [Article Influence: 54.0] [Reference Citation Analysis]
173 Dvornikova KA, Bystrova EY, Platonova ON, Churilov LP. Polymorphism of toll-like receptor genes and autoimmune endocrine diseases. Autoimmunity Reviews 2020;19:102496. [DOI: 10.1016/j.autrev.2020.102496] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
174 Gkoutzourelas A, Barmakoudi M, Bogdanos DP. A Bioinformatics Analysis Reveals Novel Pathogens as Molecular Mimicry Triggers of Systemic Sclerosis. Mediterr J Rheumatol 2020;31:50-70. [PMID: 32411933 DOI: 10.31138/mjr.31.1.50] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
175 Megremis S, Walker TDJ, He X, O’sullivan J, Ollier WE, Chinoy H, Pendleton N, Payton A, Hampson L, Hampson I, Lamb JA. Microbial and autoantibody immunogenic repertoires in TIF1γ autoantibody positive dermatomyositis.. [DOI: 10.1101/2020.03.25.007534] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
176 Young C, Brink R. Germinal centers and autoantibodies. Immunol Cell Biol 2020;98:480-9. [PMID: 32080878 DOI: 10.1111/imcb.12321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
177 Roepe IG, Vierling JM. Concepts of Autoimmunity Relevant to Autoimmune Liver Diseases. Autoimmune Liver Disease 2020. [DOI: 10.1002/9781119532637.ch2] [Reference Citation Analysis]
178 Shin YW, Lee ST, Kim YS, Han D, Nogi Y, Chu K, Lee SK. Distinct immunoreactivity pattern to Bacillus mannanilyticus in a subgroup of anti-NMDA receptor encephalitis. J Neuroimmunol 2020;342:577215. [PMID: 32182453 DOI: 10.1016/j.jneuroim.2020.577215] [Reference Citation Analysis]
179 Chang C, Tanaka A, Bowlus C, Gershwin ME. The use of biologics in the treatment of autoimmune liver disease. Expert Opin Investig Drugs 2020;29:385-98. [PMID: 32102572 DOI: 10.1080/13543784.2020.1733527] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
180 Rakebrandt N, Joller N. Infection History Determines Susceptibility to Unrelated Diseases. Bioessays 2019;41:e1800191. [PMID: 31132173 DOI: 10.1002/bies.201800191] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
181 Smith M. Microorganisms and microbiome. Gene Environment Interactions 2020. [DOI: 10.1016/b978-0-12-819613-7.00007-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
182 Magrone T, Magrone M, Russo MA, Jirillo E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants (Basel) 2019;9:E35. [PMID: 31906123 DOI: 10.3390/antiox9010035] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
183 Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25(45): 6579-6606 [PMID: 31832000 DOI: 10.3748/wjg.v25.i45.6579] [Cited by in CrossRef: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
184 Catalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE. The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun 2020;110:102359. [PMID: 31806421 DOI: 10.1016/j.jaut.2019.102359] [Cited by in Crossref: 60] [Cited by in F6Publishing: 67] [Article Influence: 20.0] [Reference Citation Analysis]
185 Pashov A, Kieber-emmons T. Mimetic Vaccines in Immuno-Oncology. Cancer Immunotherapy and Biological Cancer Treatments 2019. [DOI: 10.5772/intechopen.85593] [Reference Citation Analysis]
186 Shilov ES. Body’s Own Epitopes among Foreign Ones: T Cells and Autoantigens. Mol Biol 2019;53:748-57. [DOI: 10.1134/s0026893319050133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
187 Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K. The Roles of Peyer's Patches and Microfold Cells in the Gut Immune System: Relevance to Autoimmune Diseases. Front Immunol 2019;10:2345. [PMID: 31649668 DOI: 10.3389/fimmu.2019.02345] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 22.0] [Reference Citation Analysis]
188 Finney J, Watanabe A, Kelsoe G, Kuraoka M. Minding the gap: The impact of B-cell tolerance on the microbial antibody repertoire. Immunol Rev 2019;292:24-36. [PMID: 31559648 DOI: 10.1111/imr.12805] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
189 Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019;105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 18.3] [Reference Citation Analysis]
190 Hodžić A, Mateos-Hernández L, Leschnik M, Alberdi P, Rego ROM, Contreras M, Villar M, de la Fuente J, Cabezas-Cruz A, Duscher GG. Tick Bites Induce Anti-α-Gal Antibodies in Dogs. Vaccines (Basel) 2019;7:E114. [PMID: 31540167 DOI: 10.3390/vaccines7030114] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
191 Maślińska M. The role of Epstein–Barr virus infection in primary Sjögren's syndrome. Current Opinion in Rheumatology 2019;31:475-83. [DOI: 10.1097/bor.0000000000000622] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
192 Karimi A, Esmaili N, Ranjkesh M, Zolfaghari MA. Expression of human endogenous retroviruses in pemphigus vulgaris patients. Mol Biol Rep 2019;46:6181-6. [PMID: 31473891 DOI: 10.1007/s11033-019-05053-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
193 Ojha R, Pareek A, Pandey RK, Prusty D, Prajapati VK. Strategic Development of a Next-Generation Multi-Epitope Vaccine To Prevent Nipah Virus Zoonotic Infection. ACS Omega 2019;4:13069-79. [PMID: 31460434 DOI: 10.1021/acsomega.9b00944] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
194 van de Logt AE, Fresquet M, Wetzels JF, Brenchley P. The anti-PLA2R antibody in membranous nephropathy: what we know and what remains a decade after its discovery. Kidney Int. 2019;96:1292-1302. [PMID: 31611068 DOI: 10.1016/j.kint.2019.07.014] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 18.3] [Reference Citation Analysis]
195 Fresquet M, Rhoden SJ, Jowitt TA, McKenzie EA, Roberts I, Lennon R, Brenchley PE. Autoantigens PLA2R and THSD7A in membranous nephropathy share a common epitope motif in the N-terminal domain. J Autoimmun 2020;106:102308. [PMID: 31395435 DOI: 10.1016/j.jaut.2019.102308] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
196 Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun. 2019;103:102301. [PMID: 31326230 DOI: 10.1016/j.jaut.2019.06.012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 23.0] [Reference Citation Analysis]
197 Gu BH, Sprouse ML, Madison MC, Hong MJ, Yuan X, Tung HY, Landers CT, Song LZ, Corry DB, Bettini M, Kheradmand F. A Novel Animal Model of Emphysema Induced by Anti-Elastin Autoimmunity. J Immunol 2019;203:349-59. [PMID: 31182478 DOI: 10.4049/jimmunol.1900113] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
198 Gershteyn IM, Ferreira LMR. Immunodietica: A data-driven approach to investigate interactions between diet and autoimmune disorders. J Transl Autoimmun 2019;1:100003. [PMID: 32743493 DOI: 10.1016/j.jtauto.2019.100003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
199 Gershteyn IM, Ferreira LM. Immunodietica: A data-driven approach to investigate interactions between diet and autoimmune disorders.. [DOI: 10.1101/619700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
200 Vial G, Rivière E, Raymond AA, James C, Di-Tommaso S, Dugot-Senant N, Dupuy JW, Yacoub M, Parrens M, Saltel F, Viallard JF. Antigenic Mimicry in Paraneoplastic Immune Thrombocytopenia. Front Immunol 2019;10:523. [PMID: 30967864 DOI: 10.3389/fimmu.2019.00523] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
201 Reilly RJ, Johnston W, Culshaw S. Autoimmunity and the Oral Cavity. Curr Oral Health Rep 2019;6:1-8. [DOI: 10.1007/s40496-019-0203-9] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
202 Amaya-Uribe L, Rojas M, Azizi G, Anaya JM, Gershwin ME. Primary immunodeficiency and autoimmunity: A comprehensive review. J Autoimmun 2019;99:52-72. [PMID: 30795880 DOI: 10.1016/j.jaut.2019.01.011] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 22.7] [Reference Citation Analysis]