1 |
Zhang L, Li Y, Yuan L, Zhang Q, Yan Y, Dong F, Tang J, Wang Y. Advanced and Readily-Available Wireless-Powered Blue-Light-Implant for Non-Invasive Peri-Implant Disinfection. Adv Sci (Weinh) 2023;:e2203472. [PMID: 36935373 DOI: 10.1002/advs.202203472] [Reference Citation Analysis]
|
2 |
Andrade Del Olmo J, Pérez-Álvarez L, Sáez Martínez V, Benito Cid S, Ruiz-Rubio L, Pérez González R, Vilas-Vilela JL, Alonso JM. Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications. Int J Biol Macromol 2023;231:123328. [PMID: 36681215 DOI: 10.1016/j.ijbiomac.2023.123328] [Reference Citation Analysis]
|
3 |
Wang N, Dai Y, Fuh JYH, Yen C, Lu WF. Applications of Triboelectric Nanogenerators in Bone Tissue Engineering. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201310] [Reference Citation Analysis]
|
4 |
Pizarek JA, Fischer NG, Aparicio C. Immunomodulatory IL-23 receptor antagonist peptide nanocoatings for implant soft tissue healing. Dent Mater 2023;39:204-16. [PMID: 36642687 DOI: 10.1016/j.dental.2023.01.001] [Reference Citation Analysis]
|
5 |
Sun Z, Ma L, Sun X, Sloan AJ, O'brien‐simpson NM, Li W. The overview of antimicrobial peptide‐coated implants against oral bacterial infections. Aggregate 2023. [DOI: 10.1002/agt2.309] [Reference Citation Analysis]
|
6 |
Ge X, Li T, Yu M, Zhu H, Wang Q, Bi X, Xi T, Wu X, Gao Y. A review: strategies to reduce infection in tantalum and its derivative applied to implants. Biomed Tech (Berl) 2023. [PMID: 36587948 DOI: 10.1515/bmt-2022-0211] [Reference Citation Analysis]
|
7 |
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023;311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Reference Citation Analysis]
|
8 |
Gasmi Benahmed A, Gasmi A, Tippairote T, Mujawdiya PK, Avdeev O, Shanaida Y, Bjørklund G. Metabolic Conditions and Peri-Implantitis. Antibiotics (Basel) 2022;12. [PMID: 36671266 DOI: 10.3390/antibiotics12010065] [Reference Citation Analysis]
|
9 |
Bertolini M, Costa RC, Barão VAR, Cunha Villar C, Retamal-Valdes B, Feres M, Silva Souza JG. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022;10. [PMID: 36557666 DOI: 10.3390/microorganisms10122413] [Reference Citation Analysis]
|
10 |
Terranova ML. Key Challenges in Diamond Coating of Titanium Implants: Current Status and Future Prospects. Biomedicines 2022;10. [PMID: 36551907 DOI: 10.3390/biomedicines10123149] [Reference Citation Analysis]
|
11 |
Zhang C, Chu G, Ruan Z, Tang N, Song C, Li Q, Zhou W, Jin J, Haick H, Chen Y, Cui D. Biomimetic Self-Assembling Metal-Organic Architectures with Non-Iridescent Structural Coloration for Synergetic Antibacterial and Osteogenic Activity of Implants. ACS Nano 2022;16:16584-97. [PMID: 36001338 DOI: 10.1021/acsnano.2c06030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Wang S, Wu Z, Wang Y, Hong H, Zhang L, Chen Z, Zhang P, Chen Z, Zhang W, Zheng S, Li Q, Li W, Li X, Qiu H, Chen J. A homogeneous dopamine-silver nanocomposite coating: striking a balance between the antibacterial ability and cytocompatibility of dental implants. Regen Biomater 2023;10:rbac082. [PMID: 36683759 DOI: 10.1093/rb/rbac082] [Reference Citation Analysis]
|
13 |
Nagasawa MA, Formiga MC, Moraschini V, Bertolini M, Souza JGS, Feres M, Figueiredo LC, Shibli JA. Do the progression of experimentally induced gingivitis and peri-implant mucositis present common features? A systematic review of clinical human studies. Biofouling 2022;:1-10. [PMID: 36250998 DOI: 10.1080/08927014.2022.2133603] [Reference Citation Analysis]
|
14 |
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022;16:249-70. [PMID: 35415290 DOI: 10.1016/j.bioactmat.2022.02.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
15 |
Alberta LA, Vishnu J, Hariharan A, Pilz S, Gebert A, Calin M. Novel low modulus beta-type Ti–Nb alloys by gallium and copper minor additions for antibacterial implant applications. Journal of Materials Research and Technology 2022;20:3306-3322. [DOI: 10.1016/j.jmrt.2022.08.111] [Reference Citation Analysis]
|
16 |
Souza JGS, Costa Oliveira BE, Costa RC, Bechara K, Cardoso-Filho O, Benso B, Shibli JA, Bertolini M, Barāo VAR. Bacterial-derived extracellular polysaccharides reduce antimicrobial susceptibility on biotic and abiotic surfaces. Arch Oral Biol 2022;142:105521. [PMID: 35988499 DOI: 10.1016/j.archoralbio.2022.105521] [Reference Citation Analysis]
|
17 |
Wong W, Lai CN, Cheng W, Tung L, Chang RC, Leung FK. Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. J Compos Sci 2022;6:218. [DOI: 10.3390/jcs6080218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
18 |
Park J, Chi L, Kwon H, Lee J, Kim S, Hong S. Decaffeinated green tea extract as a nature-derived antibiotic alternative: An application in antibacterial nano-thin coating on medical implants. Food Chemistry 2022;383:132399. [DOI: 10.1016/j.foodchem.2022.132399] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
19 |
Xu A, Alhamad M, Ampadi Ramachandran R, Shukla A, Barão VA, Sukotjo C, Mathew MT. Peri-Implantitis in Relation to Titanium Corrosion: Current Status and Future Perspectives. J Bio Tribo Corros 2022;8. [DOI: 10.1007/s40735-022-00644-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
20 |
Costa RC, Bertolini M, Costa Oliveira BE, Nagay BE, Dini C, Benso B, Klein MI, Barāo VAR, Souza JGS. Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Crit Rev Microbiol 2022;:1-21. [PMID: 35584310 DOI: 10.1080/1040841X.2022.2062219] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics 2022;14:455. [PMID: 35214186 DOI: 10.3390/pharmaceutics14020455] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
|
22 |
Nagay BE, Cordeiro JM, Barao VAR. Insight Into Corrosion of Dental Implants: From Biochemical Mechanisms to Designing Corrosion-Resistant Materials. Curr Oral Health Rep 2022;9:7-21. [PMID: 35127334 DOI: 10.1007/s40496-022-00306-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
23 |
Bueno J, Virto L, Toledano-osorio M, Figuero E, Toledano M, Medina-castillo AL, Osorio R, Sanz M, Herrera D. Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model. Polymers 2022;14:358. [DOI: 10.3390/polym14030358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
24 |
Yılmaz E, Türk S. Loading antibiotics on the surface of nano-networked sodium hydroxide treated titanium. Chem Pap . [DOI: 10.1007/s11696-021-02045-4] [Reference Citation Analysis]
|
25 |
Riccio P, Zare M, Gomes D, Green D, Stamboulis A. Antimicrobial Bioceramics for Biomedical Applications. Innovative Bioceramics in Translational Medicine I 2022. [DOI: 10.1007/978-981-16-7435-8_5] [Reference Citation Analysis]
|
26 |
Grover V, Chopra P, Mehta M. Natural prokaryotic antimicrobial peptide coated titanium discs prevent Staphylococcus auerus growth and biofilm formation – Implications on peri-implant infections. Materials Today: Proceedings 2022;50:673-678. [DOI: 10.1016/j.matpr.2021.04.383] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Sun Y, Li Y, Zhang Y, Wang T, Lin K, Liu J. A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways. Mater Sci Eng C Mater Biol Appl 2021;131:112482. [PMID: 34857268 DOI: 10.1016/j.msec.2021.112482] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
28 |
Costa RC, Nagay BE, Bertolini M, Costa-Oliveira BE, Sampaio AA, Retamal-Valdes B, Shibli JA, Feres M, Barão VAR, Souza JGS. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021;298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
|
29 |
Tan G, Xu J, Chirume WM, Zhang J, Zhang H, Hu X. Antibacterial and Anti-Inflammatory Coating Materials for Orthopedic Implants: A Review. Coatings 2021;11:1401. [DOI: 10.3390/coatings11111401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
30 |
Holban AM, Farcasiu C, Andrei OC, Grumezescu AM, Farcasiu AT. Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. Materials (Basel) 2021;14:6994. [PMID: 34832390 DOI: 10.3390/ma14226994] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
31 |
Cordeiro JM, Nagay BE, Dini C, Souza JG, Rangel EC, da Cruz NC, Yang F, van den Beucken JJ, Barão VA. Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
|
32 |
Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics- and Heavy Metals-Based Titanium Alloy Surface Modifications for Local Prosthetic Joint Infections. Antibiotics (Basel) 2021;10:1270. [PMID: 34680850 DOI: 10.3390/antibiotics10101270] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
33 |
Nica IC, Popa M, Marutescu L, Dinischiotu A, Iconaru SL, Ciobanu SC, Predoi D. Biocompatibility and Antibiofilm Properties of Samarium Doped Hydroxyapatite Coatings: An In Vitro Study. Coatings 2021;11:1185. [DOI: 10.3390/coatings11101185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Liu H, Tang Y, Zhang S, Liu H, Wang Z, Li Y, Wang X, Ren L, Yang K, Qin L. Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioact Mater 2022;8:381-95. [PMID: 34541408 DOI: 10.1016/j.bioactmat.2021.05.053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
|
35 |
Sukrey NA, Rizwan M, Bushroa AR, Salleh SZ, Basirun WJ. Development and characterization of bioglass incorporated plasma electrolytic oxidation layer on titanium substrate for biomedical application. REVIEWS ON ADVANCED MATERIALS SCIENCE 2021;60:678-90. [DOI: 10.1515/rams-2021-0052] [Reference Citation Analysis]
|
36 |
Costa RC, Abdo VL, Mendes PHC, Mota-veloso I, Bertolini M, Mathew MT, Barão VAR, Souza JGS. Microbial Corrosion in Titanium-Based Dental Implants: How Tiny Bacteria Can Create a Big Problem? J Bio Tribo Corros 2021;7. [DOI: 10.1007/s40735-021-00575-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
37 |
Alshammari H, Bakitian F, Neilands J, Andersen OZ, Stavropoulos A. Antimicrobial Properties of Strontium Functionalized Titanium Surfaces for Oral Applications, A Systematic Review. Coatings 2021;11:810. [DOI: 10.3390/coatings11070810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
38 |
Qiang WP, He XD, Zhang K, Cheng YF, Lu ZS, Li CM, Kang ET, Xia QY, Xu LQ. Mussel Adhesive Mimetic Silk Sericin Prepared by Enzymatic Oxidation for the Construction of Antibacterial Coatings. ACS Biomater Sci Eng 2021;7:3379-88. [PMID: 34161086 DOI: 10.1021/acsbiomaterials.1c00271] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
39 |
Ferraris S, Warchomicka F, Barberi J, Cochis A, Scalia AC, Spriano S. Contact Guidance Effect and Prevention of Microfouling on a Beta Titanium Alloy Surface Structured by Electron-Beam Technology. Nanomaterials (Basel) 2021;11:1474. [PMID: 34199432 DOI: 10.3390/nano11061474] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
40 |
Fang Y, Attarilar S, Yang Z, Wei G, Fu Y, Wang L. Toward Bactericidal Enhancement of Additively Manufactured Titanium Implants. Coatings 2021;11:668. [DOI: 10.3390/coatings11060668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
41 |
Kasperkiewicz K, Major R, Sypien A, Kot M, Dyner M, Major Ł, Byrski A, Kopernik M, Lackner JM. Antibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implants. Molecules 2021;26:3145. [PMID: 34074062 DOI: 10.3390/molecules26113145] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
42 |
Li X, Sun L, Zhang P, Wang Y. Novel Approaches to Combat Medical Device-Associated BioFilms. Coatings 2021;11:294. [DOI: 10.3390/coatings11030294] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
|