BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Goitre L, De Luca E, Braggion S, Trapani E, Guglielmotto M, Biasi F, Forni M, Moglia A, Trabalzini L, Retta SF. KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 2014;68:134-47. [PMID: 24291398 DOI: 10.1016/j.freeradbiomed.2013.11.020] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: a traffic warden at the busy crossroads between redox signaling and the pathogenesis of Cerebral Cavernous Malformation disease. Antioxid Redox Signal 2022. [PMID: 36047808 DOI: 10.1089/ars.2021.0263] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Tu T, Peng Z, Ren J, Zhang H. Cerebral Cavernous Malformation: Immune and Inflammatory Perspectives. Front Immunol 2022;13:922281. [DOI: 10.3389/fimmu.2022.922281] [Reference Citation Analysis]
3 Benedetti V, Canzoneri R, Perrelli A, Arduino C, Zonta A, Brusco A, Retta SF. Next-Generation Sequencing Advances the Genetic Diagnosis of Cerebral Cavernous Malformation (CCM). Antioxidants 2022;11:1294. [DOI: 10.3390/antiox11071294] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Wang D, Wang C, Hao X, Carter G, Carter R, Welch WJ, Wilcox CS. Activation of Nrf2 in Mice Causes Early Microvascular Cyclooxygenase-Dependent Oxidative Stress and Enhanced Contractility. Antioxidants 2022;11:845. [DOI: 10.3390/antiox11050845] [Reference Citation Analysis]
5 Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr 2022;:1-23. [PMID: 35285752 DOI: 10.1080/10408398.2022.2050349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Munakomi S, Torregrossa F, Grasso G. Natural Course, Clinical Profile, and Treatment Strategies for Cerebral Cavernous Malformations. World Neurosurgery 2022;159:373-80. [DOI: 10.1016/j.wneu.2021.08.134] [Reference Citation Analysis]
7 Venugopal V, Sumi S. Molecular Biomarkers and Drug Targets in Brain Arteriovenous and Cavernous Malformations: Where Are We? Stroke 2021;:STROKEAHA121035654. [PMID: 34784742 DOI: 10.1161/STROKEAHA.121.035654] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
8 Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021;172:403-17. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
9 De Luca E, Perrelli A, Swamy H, Nitti M, Passalacqua M, Furfaro AL, Salzano AM, Scaloni A, Glading AJ, Retta SF. Protein kinase Cα regulates the nucleocytoplasmic shuttling of KRIT1. J Cell Sci 2021;134:jcs250217. [PMID: 33443102 DOI: 10.1242/jcs.250217] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021;18:849-76. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Deng G, Li L, Ouyang Y. Modeling paraquat-induced lung fibrosis in C. elegans reveals KRIT1 as a key regulator of collagen gene transcription. Aging (Albany NY) 2021;13:4452-67. [PMID: 33495402 DOI: 10.18632/aging.202406] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Ercoli J, Finetti F, Woodby B, Belmonte G, Miracco C, Valacchi G, Trabalzini L. KRIT1 as a possible new player in melanoma aggressiveness. Arch Biochem Biophys 2020;691:108483. [PMID: 32735866 DOI: 10.1016/j.abb.2020.108483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Kim HA, Perrelli A, Ragni A, Retta F, De Silva TM, Sobey CG, Retta SF. Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants (Basel) 2020;9:E327. [PMID: 32316584 DOI: 10.3390/antiox9040327] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
14 Polster SP, Cao Y, Carroll T, Flemming K, Girard R, Hanley D, Hobson N, Kim H, Koenig J, Koskimäki J, Lane K, Majersik JJ, McBee N, Morrison L, Shenkar R, Stadnik A, Thompson RE, Zabramski J, Zeineddine HA, Awad IA. Trial Readiness in Cavernous Angiomas With Symptomatic Hemorrhage (CASH). Neurosurgery 2019;84:954-64. [PMID: 29660039 DOI: 10.1093/neuros/nyy108] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
15 Antognelli C, Perrelli A, Armeni T, Nicola Talesa V, Retta SF. Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020;9:E124. [PMID: 32024152 DOI: 10.3390/antiox9020124] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
16 Finetti F, Schiavo I, Ercoli J, Zotta A, Boda E, Retta SF, Trabalzini L. KRIT1 loss-mediated upregulation of NOX1 in stromal cells promotes paracrine pro-angiogenic responses. Cell Signal 2020;68:109527. [PMID: 31917192 DOI: 10.1016/j.cellsig.2020.109527] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
17 DiStefano PV, Glading AJ. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J Cell Mol Med 2020;24:632-9. [PMID: 31746130 DOI: 10.1111/jcmm.14773] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
18 Vieceli Dalla Sega F, Mastrocola R, Aquila G, Fortini F, Fornelli C, Zotta A, Cento AS, Perrelli A, Boda E, Pannuti A, Marchi S, Pinton P, Ferrari R, Rizzo P, Retta SF. KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction. Int J Mol Sci 2019;20:E4930. [PMID: 31590384 DOI: 10.3390/ijms20194930] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
19 Cianfruglia L, Perrelli A, Fornelli C, Magini A, Gorbi S, Salzano AM, Antognelli C, Retta F, Benedetti V, Cassoni P, Emiliani C, Principato G, Scaloni A, Armeni T, Retta SF. KRIT1 Loss-Of-Function Associated with Cerebral Cavernous Malformation Disease Leads to Enhanced S-Glutathionylation of Distinct Structural and Regulatory Proteins. Antioxidants (Basel) 2019;8:E27. [PMID: 30658464 DOI: 10.3390/antiox8010027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
20 De Luca E, Pedone D, Moglianetti M, Pulcini D, Perrelli A, Retta SF, Pompa PP. Multifunctional Platinum@BSA-Rapamycin Nanocarriers for the Combinatorial Therapy of Cerebral Cavernous Malformation. ACS Omega 2018;3:15389-98. [PMID: 30556006 DOI: 10.1021/acsomega.8b01653] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
21 Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus 2018;2:21. [PMID: 31360916 DOI: 10.20517/2574-1209.2018.34] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
22 Perrelli A, Goitre L, Salzano AM, Moglia A, Scaloni A, Retta SF. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxid Med Cell Longev 2018;2018:6015351. [PMID: 30245775 DOI: 10.1155/2018/6015351] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
23 Antognelli C, Trapani E, Delle Monache S, Perrelli A, Fornelli C, Retta F, Cassoni P, Talesa VN, Retta SF. Data in support of sustained upregulation of adaptive redox homeostasis mechanisms caused by KRIT1 loss-of-function. Data Brief 2018;16:929-38. [PMID: 29511711 DOI: 10.1016/j.dib.2017.12.026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
24 Antognelli C, Trapani E, Delle Monache S, Perrelli A, Daga M, Pizzimenti S, Barrera G, Cassoni P, Angelucci A, Trabalzini L, Talesa VN, Goitre L, Retta SF. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med 2018;115:202-18. [PMID: 29170092 DOI: 10.1016/j.freeradbiomed.2017.11.014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 7.6] [Reference Citation Analysis]
25 Lampugnani MG, Malinverno M, Dejana E, Rudini N. Endothelial cell disease: emerging knowledge from cerebral cavernous malformations. Curr Opin Hematol 2017;24:256-64. [PMID: 28212190 DOI: 10.1097/MOH.0000000000000338] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
26 Cunha SI, Magnusson PU, Dejana E, Lampugnani MG. Deregulated TGF-β/BMP Signaling in Vascular Malformations. Circ Res 2017;121:981-99. [PMID: 28963191 DOI: 10.1161/CIRCRESAHA.117.309930] [Cited by in Crossref: 45] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
27 Goitre L, DiStefano PV, Moglia A, Nobiletti N, Baldini E, Trabalzini L, Keubel J, Trapani E, Shuvaev VV, Muzykantov VR, Sarelius IH, Retta SF, Glading AJ. Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep 2017;7:8296. [PMID: 28811547 DOI: 10.1038/s41598-017-08373-4] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 6.6] [Reference Citation Analysis]
28 Russo A, Neu MA, Theruvath J, Kron B, Wingerter A, Hey-Koch S, Tanyildizi Y, Faber J. Novel loss of function mutation in KRIT1/CCM1 is associated with distinctly progressive cerebral and spinal cavernous malformations after radiochemotherapy for intracranial malignant germ cell tumor. Childs Nerv Syst 2017;33:1275-83. [PMID: 28488085 DOI: 10.1007/s00381-017-3434-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
29 Kim J. Introduction to cerebral cavernous malformation: a brief review. BMB Rep 2016;49:255-62. [PMID: 26923303 DOI: 10.5483/bmbrep.2016.49.5.036] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
30 Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol. 2016;81:254-270. [PMID: 27639680 DOI: 10.1016/j.biocel.2016.09.011] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 8.3] [Reference Citation Analysis]
31 Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, Ferroni L, Patergnani S, Missiroli S, Goitre L, Trabalzini L, Rimessi A, Giorgi C, Zavan B, Cassoni P, Dejana E, Retta SF, Pinton P. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 2015;7:1403-17. [PMID: 26417067 DOI: 10.15252/emmm.201505316] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 13.3] [Reference Citation Analysis]
32 Moglianetti M, De Luca E, Pedone D, Marotta R, Catelani T, Sartori B, Amenitsch H, Retta SF, Pompa PP. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 2016;8:3739-52. [PMID: 26815950 DOI: 10.1039/c5nr08358c] [Cited by in Crossref: 113] [Cited by in F6Publishing: 123] [Article Influence: 18.8] [Reference Citation Analysis]
33 Marchi S, Trapani E, Corricelli M, Goitre L, Pinton P, Retta SF. Beyond multiple mechanisms and a unique drug: Defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies. Rare Dis 2016;4:e1142640. [PMID: 27141412 DOI: 10.1080/21675511.2016.1142640] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
34 Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1. Free Radic Biol Med 2016;92:100-9. [PMID: 26795600 DOI: 10.1016/j.freeradbiomed.2016.01.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 4.5] [Reference Citation Analysis]
35 Moglia A, Goitre L, Gianoglio S, Baldini E, Trapani E, Genre A, Scattina A, Dondo G, Trabalzini L, Beekwilder J, Retta SF. Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. Biofactors 2015;41:15-27. [PMID: 25639351 DOI: 10.1002/biof.1197] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
36 Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, Shiu YT, Grossmann AH, Thomas KR, Donato AJ, Lesniewski LA, Whitehead KJ, Li DY. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 2015;131:289-99. [PMID: 25486933 DOI: 10.1161/CIRCULATIONAHA.114.010403] [Cited by in Crossref: 105] [Cited by in F6Publishing: 92] [Article Influence: 13.1] [Reference Citation Analysis]
37 DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling. J Biol Chem 2014;289:33054-65. [PMID: 25320085 DOI: 10.1074/jbc.M114.582304] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
38 Jung KH, Han DM, Jeong SG, Choi MR, Chai YG, Cho GW. Proteomic analysis reveals KRIT1 as a modulator for the antioxidant effects of valproic acid in human bone-marrow mesenchymal stromal cells. Drug Chem Toxicol 2015;38:286-92. [PMID: 25203678 DOI: 10.3109/01480545.2014.951762] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]