BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sheridan À, Lenahan M, Duffy G, Fanning S, Burgess C. The potential for biocide tolerance in Escherichia coli and its impact on the response to food processing stresses. Food Control 2012;26:98-106. [DOI: 10.1016/j.foodcont.2012.01.018] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Mavri A, Ribič U, Možina SS. The Biocide and Antibiotic Resistance in Campylobacter jejuni and Campylobacter coli. In: Nedović V, Raspor P, Lević J, Tumbas Šaponjac V, Barbosa-cánovas GV, editors. Emerging and Traditional Technologies for Safe, Healthy and Quality Food. Cham: Springer International Publishing; 2016. pp. 269-83. [DOI: 10.1007/978-3-319-24040-4_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
2 Puangseree J, Jeamsripong S, Prathan R, Pungpian C, Chuanchuen R. Resistance to widely-used disinfectants and heavy metals and cross resistance to antibiotics in Escherichia coli isolated from pigs, pork and pig carcass. Food Control 2021;124:107892. [DOI: 10.1016/j.foodcont.2021.107892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sheridan Á, Lenahan M, Condell O, Bonilla-santiago R, Sergeant K, Renaut J, Duffy G, Fanning S, Nally J, Burgess C. Proteomic and phenotypic analysis of triclosan tolerant verocytotoxigenic Escherichia coli O157:H19. Journal of Proteomics 2013;80:78-90. [DOI: 10.1016/j.jprot.2012.12.025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
4 Bo Y, Zhang L, Wang Z, Shen J, Zhou Z, Yang Y, Wang Y, Qin J, He Y. Antibacterial Hydrogel with Self-Healing Property for Wound-Healing Applications. ACS Biomater Sci Eng 2021;7:5135-43. [PMID: 34634909 DOI: 10.1021/acsbiomaterials.1c00719] [Reference Citation Analysis]
5 Guo K, Zhao Y, Cui L, Cao Z, Zhang F, Wang X, Feng J, Dai M. The Influencing Factors of Bacterial Resistance Related to Livestock Farm: Sources and Mechanisms. Front Anim Sci 2021;2:650347. [DOI: 10.3389/fanim.2021.650347] [Reference Citation Analysis]
6 Lépesová K, Krahulcová M, Mackuľak T, Bírošová L. Sewage sludge as a source of triclosan-resistant bacteria. Acta Chimica Slovaca 2019;12:34-40. [DOI: 10.2478/acs-2019-0006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
7 Gadea R, Fernández Fuentes MÁ, Pérez Pulido R, Gálvez A, Ortega E. Adaptive tolerance to phenolic biocides in bacteria from organic foods: Effects on antimicrobial susceptibility and tolerance to physical stresses. Food Res Int 2016;85:131-43. [PMID: 29544828 DOI: 10.1016/j.foodres.2016.04.033] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
8 Vázquez-sánchez D, Antunes Galvão J, Oetterer M. Contamination sources, biofilm-forming ability and biocide resistance of Shiga toxin-producing Escherichia coli O157:H7 and non-O157 isolated from tilapia-processing facilities. J Food Saf 2018;38:e12446. [DOI: 10.1111/jfs.12446] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
9 Périamé M, Pagès J, Davin-regli A. Enterobacter gergoviae adaptation to preservatives commonly used in cosmetic industry. Int J Cosmet Sci 2014;36:386-95. [DOI: 10.1111/ics.12140] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
10 Vázquez-Sánchez D, Galvão JA, Mazine MR, Micotti da Gloria E, de Souza Vieira TMF. Anti-biofilm efficacy of single and binary treatments based on plant essential oils against Escherichia coli persistent in food-processing facilities. Food Sci Technol Int 2019;25:385-93. [PMID: 30691287 DOI: 10.1177/1082013219826817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Kampf G. Adaptive microbial response to low-level benzalkonium chloride exposure. Journal of Hospital Infection 2018;100:e1-e22. [DOI: 10.1016/j.jhin.2018.05.019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
12 Lenahan M, Sheridan Á, Morris D, Duffy G, Fanning S, Burgess CM. Transcriptomic Analysis of Triclosan-Susceptible and -Tolerant Escherichia coli O157:H19 in Response to Triclosan Exposure. Microbial Drug Resistance 2014;20:91-103. [DOI: 10.1089/mdr.2013.0063] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
13 Rhouma M, Romero-Barrios P, Gaucher ML, Bhachoo S. Antimicrobial resistance associated with the use of antimicrobial processing aids during poultry processing operations: cause for concern? Crit Rev Food Sci Nutr 2020;:1-18. [PMID: 32744054 DOI: 10.1080/10408398.2020.1798345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Capita R, Alvarez-Fernández E, Fernández-Buelta E, Manteca J, Alonso-Calleja C. Decontamination treatments can increase the prevalence of resistance to antibiotics of Escherichia coli naturally present on poultry. Food Microbiol 2013;34:112-7. [PMID: 23498186 DOI: 10.1016/j.fm.2012.11.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
15 Périamé M, Pagès J, Davin-regli A. Enterobacter gergoviae membrane modifications are involved in the adaptive response to preservatives used in cosmetic industry. J Appl Microbiol 2015;118:49-61. [DOI: 10.1111/jam.12676] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Kennedy CA, Walsh C, Karczmarczyk M, O'Brien S, Akasheh N, Quirke M, Farrell-Ward S, Buckley T, Fogherty U, Kavanagh K, Parker CT, Sweeney T, Fanning S. Multi-drug resistant Escherichia coli in diarrhoeagenic foals: Pulsotyping, phylotyping, serotyping, antibiotic resistance and virulence profiling. Vet Microbiol 2018;223:144-52. [PMID: 30173740 DOI: 10.1016/j.vetmic.2018.08.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
17 Burgess C, Desvaux M, Ölmez H. 1st Conference of BacFoodNet: mitigating bacterial colonisation in the food chain: bacterial adhesion, biocide resistance and microbial safety of fresh produce. Research in Microbiology 2014;165:305-10. [DOI: 10.1016/j.resmic.2014.03.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
18 Obe T, Nannapaneni R, Sharma CS, Kiess A. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg ATCC8326 on different food-contact surfaces following exposure to sublethal chlorine concentrations. Poultry Science 2018;97:951-61. [DOI: 10.3382/ps/pex346] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
19 Condell O, Sheridan Á, Power KA, Bonilla-Santiago R, Sergeant K, Renaut J, Burgess C, Fanning S, Nally JE. Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. J Proteomics 2012;75:4505-19. [PMID: 22579747 DOI: 10.1016/j.jprot.2012.04.044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
20 Rensch U, Greiner M, Klein G, Kehrenberg C. Mathematical modeling to predict the fitness cost associated with triclosan tolerance in Salmonella enterica serovars. Food Control 2015;53:9-13. [DOI: 10.1016/j.foodcont.2014.12.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
21 Vázquez-sánchez D, Cabo ML, Ibusquiza PS, Rodríguez-herrera JJ. Biofilm-forming ability and resistance to industrial disinfectants of Staphylococcus aureus isolated from fishery products. Food Control 2014;39:8-16. [DOI: 10.1016/j.foodcont.2013.09.029] [Cited by in Crossref: 46] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
22 Yang X, Wang H, He A, Tran F. Biofilm formation and susceptibility to biocides of recurring and transient Escherichia coli isolated from meat fabrication equipment. Food Control 2018;90:205-11. [DOI: 10.1016/j.foodcont.2018.02.050] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
23 Oudh Al-johny B, M. Alkhuzaee A. Isolation and Identification of Pathogenic Bacteria Showing Resistance against Disinfectants. J Pure Appl Microbiol 2019;13:2065-72. [DOI: 10.22207/jpam.13.4.18] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Vázquez-Sánchez D, Galvão JA, Oetterer M. Contamination sources, biofilm-forming ability and biocide resistance of Staphylococcus aureus in tilapia-processing facilities. Food Sci Technol Int 2018;24:209-22. [PMID: 29169268 DOI: 10.1177/1082013217742753] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
25 Dygico LK, Gahan CGM, Grogan H, Burgess CM. Examining the efficacy of mushroom industry biocides on Listeria monocytogenes biofilm. J Appl Microbiol 2021;130:1106-16. [PMID: 32350966 DOI: 10.1111/jam.14681] [Reference Citation Analysis]