BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tian Y, Zhang J, Wang W, Liu J, Zheng X, Li J, Guan X. Facile assembly and excellent elimination behavior of porous BiOBr-g-C3N4 heterojunctions for organic pollutants. Environ Res 2022;209:112889. [PMID: 35131321 DOI: 10.1016/j.envres.2022.112889] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
Number Citing Articles
1 Dos Santos D, Santiago AA, Teodoro MD, Motta FV, Bomio MR. Investigation of the photocatalytic and optical properties of the SrMoO4/g-C3N4 heterostructure obtained via sonochemical synthesis with temperature control. Journal of Environmental Management 2023;325:116396. [DOI: 10.1016/j.jenvman.2022.116396] [Reference Citation Analysis]
2 Yang R, Chen Q, Huang G, Bi J. Interfacial engineering of novel inorganic-organic β-Ga2O3/COF heterojunction for accelerated charge transfer towards artificial photosynthesis. Environmental Research 2023;216:114541. [DOI: 10.1016/j.envres.2022.114541] [Reference Citation Analysis]
3 Zhang X, Zhang Y, Wang Z, Zhang N, Jia X. Construction of a novel Ag2O/P-g-C3N4 p-n type heterojunction for efficient degradation of organic pollutants under visible light irradiation. Diamond and Related Materials 2022;130:109398. [DOI: 10.1016/j.diamond.2022.109398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Li H, Li D, Long M, Bai X, Wen Q, Song F. Solvothermal synthesis of MIL-53Fe@g-C3N4 for peroxymonosulfate activation towards enhanced photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130646] [Reference Citation Analysis]
5 Keerthana M, N. KC. Vanadium sulfide decorated graphitic carbon nitride nanocomposite for the enhanced photocatalytic activity towards organic pollutants. Diamond and Related Materials 2022;129:109353. [DOI: 10.1016/j.diamond.2022.109353] [Reference Citation Analysis]
6 Long W, Xu P, Yu Y, Xing F, He C. Scalable preparation of high-dispersion g-C3N4 via GQDs-assisted ultrasonic exfoliation for accelerating cement hydration. Cement and Concrete Composites 2022;134:104782. [DOI: 10.1016/j.cemconcomp.2022.104782] [Reference Citation Analysis]
7 Tian Y, Li J, Zheng H, Guan X, Zhang X, Zheng X. Synthesis and enhanced photocatalytic performance of Ni2+-doped Bi4O7 nanorods with broad-spectrum photoresponse. Separation and Purification Technology 2022;300:121898. [DOI: 10.1016/j.seppur.2022.121898] [Reference Citation Analysis]
8 Hu Y, Hu X, Xue L, Cui B, Du Y. Preparation of CaCO3 mediated BiOBr that rich (1 1 0) facet and research of the photocatalytic properties. Applied Surface Science 2022;598:153800. [DOI: 10.1016/j.apsusc.2022.153800] [Reference Citation Analysis]
9 Liu H, Huang C, Wang P, Huang S, Yang X, Xu H, Zhu J, Ling D, Feng C, Liu Z. A novel Fe/Mo co-catalyzed graphene-based nanocomposite to activate peroxymonosulfate for highly efficient degradation of organic pollutants. Environ Res 2022;:114233. [PMID: 36058268 DOI: 10.1016/j.envres.2022.114233] [Reference Citation Analysis]
10 Su J, Jin X, Chen H, Xue F, Li J, Yang Q, Yang Z. Constructing Ni4/Fe@Fe3O4-g-C3N4 nanocomposites for highly efficient degradation of carbon tetrachloride from aqueous solution. Chemosphere 2022;:136169. [PMID: 36037964 DOI: 10.1016/j.chemosphere.2022.136169] [Reference Citation Analysis]
11 Sun J, Jiang C, Wu Z, Liu Y, Sun S. A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites. Chemosphere 2022;:136107. [PMID: 35998730 DOI: 10.1016/j.chemosphere.2022.136107] [Reference Citation Analysis]
12 Wang Q, Tian Y, Chen M, Guan R, Yuan H. Preparation of porous C doped g-C3N4 nanosheets controlled by acetamide for photocatalytic H2 evolution. International Journal of Hydrogen Energy 2022. [DOI: 10.1016/j.ijhydene.2022.07.026] [Reference Citation Analysis]
13 Zhu Y, He L, Ni Y, Li G, Li D, Lin W, Wang Q, Li L, Yang H. Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (g−CN) Electrodes. Nanomaterials 2022;12:2374. [DOI: 10.3390/nano12142374] [Reference Citation Analysis]
14 Harini G, Okla MK, Alaraidh IA, Mohebaldin A, Al-Ghamdi AA, Abdel-Maksoud MA, Abdelaziz RF, Raju LL, Thomas AM, Khan SS. Sunlit expeditious visible light-mediated photo-fenton degradation of ciprofloxacin by exfoliation of NiCo2O4 and Zn0·3Fe2·7O4 over g-C3N4 matrix: A brief insight on degradation mechanism, degraded product toxicity, and genotoxic evaluation in Allium cepa. Chemosphere 2022;:134963. [PMID: 35588875 DOI: 10.1016/j.chemosphere.2022.134963] [Reference Citation Analysis]
15 Hu L, Wang R, Wang M, Xu Y, Wang C, Liu Y, Chen J. Research progress of photocatalysis for algae killing and inhibition: a review. Environ Sci Pollut Res Int 2022. [PMID: 35522403 DOI: 10.1007/s11356-022-20645-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Swedha M, Alatar AA, Okla MK, Alaraidh IA, Mohebaldin A, Aufy M, Raju LL, Thomas AM, Abdel-maksoud MA, Sudheer Khan S. Graphitic carbon nitride embedded Ni3(VO4)2/ZnCr2O4 Z-scheme photocatalyst for efficient degradation of p-chlorophenol and 5-fluorouracil. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.05.018] [Reference Citation Analysis]
17 Li Y, Tan S, Wang S, Li X, Gao L. Enhanced visible light photocatalytic activity of the needle-like SrMoO 4 decorated g-C 3 N 4 heterostructure for degradation of tetracycline. New J Chem . [DOI: 10.1039/d2nj01534j] [Reference Citation Analysis]