BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Malin AJ, Lesseur C, Busgang SA, Curtin P, Wright RO, Sanders AP. Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013-2016. Environ Int 2019;132:105012. [PMID: 31402058 DOI: 10.1016/j.envint.2019.105012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Den Besten P, Wells CR, Abduweli Uyghurturk D. Fluoride exposure and blood cell markers of inflammation in children and adolescents in the United States: NHANES, 2013-2016. Environ Health 2022;21:102. [PMID: 36289513 DOI: 10.1186/s12940-022-00911-6] [Reference Citation Analysis]
2 Zhao Y, Yu Y, Ommati MM, Xu J, Wang J, Zhang J, Sun Z, Niu R, Wang J. Multiomics Analysis Revealed the Molecular Mechanism of miRNAs in Fluoride-Induced Hepatic Glucose and Lipid Metabolism Disorders. J Agric Food Chem 2022. [PMID: 36222057 DOI: 10.1021/acs.jafc.2c03049] [Reference Citation Analysis]
3 Li R, Zhan W, Ren J, Gao X, Huang X, Ma Y. Associations between organophosphate esters concentrations and markers of liver function in US adolescents aged 12-19 years: A mixture analysis. Environ Pollut 2022;314:120255. [PMID: 36155224 DOI: 10.1016/j.envpol.2022.120255] [Reference Citation Analysis]
4 Xiao L, Yang C, Gu W, Liu R, Chen D. Associations between serum copper, zinc, selenium level and sex hormones among 6–19 years old children and adolescents in NHANES 2013–2016. Front Endocrinol 2022;13:924338. [DOI: 10.3389/fendo.2022.924338] [Reference Citation Analysis]
5 Ortíz-García SG, Torres-Sánchez LE, Muñoz-Rocha TV, Mercado-García A, Peterson KE, Hu H, Osorio-Yáñez C, Téllez-Rojo MM. Maternal urinary fluoride during pregnancy and birth weight and length: Results from ELEMENT cohort study. Sci Total Environ 2022;838:156459. [PMID: 35660617 DOI: 10.1016/j.scitotenv.2022.156459] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Jia Y, Shi S, Cheng B, Cheng S, Liu L, Meng P, Yang X, Chu X, Wen Y, Zhang F, Guo X. Fluorine impairs carboxylesterase 1-mediated hydrolysis of T-2 toxin and increases its chondrocyte toxicity. Front Nutr 2022;9:935112. [PMID: 35990316 DOI: 10.3389/fnut.2022.935112] [Reference Citation Analysis]
7 Zhao S, Guo J, Xue H, Meng J, Xie D, Liu X, Yu Q, Zhong H, Jiang P. Systematic impacts of fluoride exposure on the metabolomics of rats. Ecotoxicol Environ Saf 2022;242:113888. [PMID: 35872488 DOI: 10.1016/j.ecoenv.2022.113888] [Reference Citation Analysis]
8 Rocha-Amador DO, González-Martell AD, Pérez-Vázquez FJ, Cilia López VG. Health Risk Assessment in Mexican Children Exposed to Fluoride from Sweetened Beverages. Biol Trace Elem Res 2022. [PMID: 35854170 DOI: 10.1007/s12011-022-03350-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Aslan A, Beyaz S, Gok O, Can MI, Parlak G, Gundogdu R, Ozercan IH, Baspinar S. Protective effect of royal jelly on fluoride-induced nephrotoxicity in rats via the some protein biomarkers signaling pathways: A new approach for kidney damage. Biomarkers 2022;:1-14. [PMID: 35735023 DOI: 10.1080/1354750X.2022.2093977] [Reference Citation Analysis]
10 Zhou J, Sun D, Wei W. Necessity to Pay Attention to the Effects of Low Fluoride on Human Health: an Overview of Skeletal and Non-skeletal Damages in Epidemiologic Investigations and Laboratory Studies. Biol Trace Elem Res. [DOI: 10.1007/s12011-022-03302-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Meyer F, Enax J, Amaechi BT, Limeback H, Fabritius H, Ganss B, Pawinska M, Paszynska E. Hydroxyapatite as Remineralization Agent for Children's Dental Care. Front Dent Med 2022;3:859560. [DOI: 10.3389/fdmed.2022.859560] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Liu N, Feng Y, Luo X, Ma X, Ma F. Association Between Dietary Inflammatory Index and Sex Hormone Binding Globulin and Sex Hormone in U.S. Adult Females. Front Public Health 2022;10:802945. [DOI: 10.3389/fpubh.2022.802945] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Garcia AL, Matzenbacher CA, Soares S, Rohr P, da Silva J. Fluorosilicic acid and cotinine, separately and in combination, induce genotoxicity and telomeric reduction in human osteoblast cell line MG63. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2022;876-877:503474. [DOI: 10.1016/j.mrgentox.2022.503474] [Reference Citation Analysis]
14 Ballantyne JA, Coyle G, Sarwar S, Kühn T. Fluoride Status and Cardiometabolic Health: Findings from a Representative Survey among Children and Adolescents. Nutrients 2022;14:1459. [DOI: 10.3390/nu14071459] [Reference Citation Analysis]
15 Xiang S, Dong J, Li X, Li C. Urine Phthalate Levels and Liver Function in US Adolescents: Analyses of NHANES 2007–2016. Front Public Health 2022;10:843971. [DOI: 10.3389/fpubh.2022.843971] [Reference Citation Analysis]
16 Guo M, Afrim FK, Li Z, Li N, Fu X, Ding L, Feng Z, Yang S, Huang H, Yu F, Zhou G, Ba Y. Association between fluoride exposure and blood pressure in children and adolescents aged 6 to19 years in the United States: NHANES, 2013-2016. Int J Environ Health Res 2022;:1-11. [PMID: 35168424 DOI: 10.1080/09603123.2022.2040449] [Reference Citation Analysis]
17 Sharma P, Verma PK, Sood S, Singh M, Verma D. Impact of Chronic Sodium Fluoride Toxicity on Antioxidant Capacity, Biochemical Parameters, and Histomorphology in Cardiac, Hepatic, and Renal Tissues of Wistar Rats. Biol Trace Elem Res. [DOI: 10.1007/s12011-022-03113-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Ahmad S, Singh R, Arfin T, Neeti K. Fluoride contamination, consequences and removal techniques in water: a review. Environ Sci : Adv 2022. [DOI: 10.1039/d1va00039j] [Reference Citation Analysis]
19 Khalid S, Nazir R. Nanoadsorption: An innovational and compelling approach toward fluoride remediation from water. Separations of Water Pollutants with Nanotechnology 2022. [DOI: 10.1016/b978-0-323-90763-7.00003-2] [Reference Citation Analysis]
20 Li H, Fan J, Zhao Y, Yang J, Xu H, Manthari RK, Cheng X, Wang J, Wang J. Calcium alleviates fluoride-induced kidney damage via FAS/FASL, TNFR/TNF, DR5/TRAIL pathways in rats. Ecotoxicol Environ Saf 2021;226:112851. [PMID: 34619480 DOI: 10.1016/j.ecoenv.2021.112851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Wu L, Fan C, Zhang Z, Zhang X, Lou Q, Guo N, Huang W, Zhang M, Yin F, Guan Z, Yang Y, Gao Y. Association between fluoride exposure and kidney function in adults: A cross-sectional study based on endemic fluorosis area in China. Ecotoxicol Environ Saf 2021;225:112735. [PMID: 34478979 DOI: 10.1016/j.ecoenv.2021.112735] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Malin AJ, Busgang SA, Garcia JC, Bose S, Sanders AP. Fluoride Exposure and Age of Menarche: Potential Differences Among Adolescent Girls and Women in the United States. Expo Health. [DOI: 10.1007/s12403-021-00448-y] [Reference Citation Analysis]
23 Xin J, Sun N, Wang H, Ma H, Wu B, Li L, Wang Y, Huang H, Zeng D, Bai X, Chen A, Gong S, Ni X, Bai Y. Preventive effects of Lactobacillus johnsonii on the renal injury of mice induced by high fluoride exposure: Insights from colonic microbiota and co-occurrence network analysis. Ecotoxicol Environ Saf 2021;228:113006. [PMID: 34826728 DOI: 10.1016/j.ecoenv.2021.113006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wang S, Zhao Q, Li G, Wang M, Liu H, Yu X, Chen J, Li P, Dong L, Zhou G, Cui Y, Wang M, Liu L, Wang A. The cholinergic system, intelligence, and dental fluorosis in school-aged children with low-to-moderate fluoride exposure. Ecotoxicol Environ Saf 2021;228:112959. [PMID: 34808511 DOI: 10.1016/j.ecoenv.2021.112959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pérez-Vázquez FJ, González-Martell AD, Fernández-Macias JC, Rocha-Amador DO, González-Palomo AK, Ilizaliturri-Hernández CA, González-Mille DJ, Cilia-Lopez VG. Health risk assessment in children living in an urban area with hydrofluorosis: San Luis Potosí Mexico case study. J Trace Elem Med Biol 2021;68:126863. [PMID: 34601282 DOI: 10.1016/j.jtemb.2021.126863] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Saylor C, Malin AJ, Tamayo-Ortiz M, Cantoral A, Amarasiriwardena C, Estrada-Gutierrez G, Tolentino MC, Pantic I, Wright RO, Tellez-Rojo MM, Sanders AP. Early childhood fluoride exposure and preadolescent kidney function. Environ Res 2021;204:112014. [PMID: 34506780 DOI: 10.1016/j.envres.2021.112014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Zhao Y, Wang J, Zhang J, Sun Z, Niu R, Manthari RK, Ommati MM, Wang S, Wang J. Fluoride exposure induces mitochondrial damage and mitophagy via activation of the IL-17A pathway in hepatocytes. Sci Total Environ 2021;804:150184. [PMID: 34517333 DOI: 10.1016/j.scitotenv.2021.150184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Li Y, Liu Y, Yi J, Li Y, Yang B, Shang P, Mehmood K, Bilal RM, Zhang H, Chang YF, Tang Z, Wang Y, Li Y. The potential risks of chronic fluoride exposure on nephrotoxic via altering glucolipid metabolism and activating autophagy and apoptosis in ducks. Toxicology 2021;461:152906. [PMID: 34450209 DOI: 10.1016/j.tox.2021.152906] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
29 Dong H, Yang X, Zhang S, Wang X, Guo C, Zhang X, Ma J, Niu P, Chen T. Associations of low level of fluoride exposure with dental fluorosis among U.S. children and adolescents, NHANES 2015-2016. Ecotoxicol Environ Saf 2021;221:112439. [PMID: 34166938 DOI: 10.1016/j.ecoenv.2021.112439] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
30 Riddell JK, Malin AJ, McCague H, Flora DB, Till C. Urinary Fluoride Levels among Canadians with and without Community Water Fluoridation. Int J Environ Res Public Health 2021;18:6203. [PMID: 34201160 DOI: 10.3390/ijerph18126203] [Reference Citation Analysis]
31 Yu L, Yang M, Cheng M, Fan L, Wang X, Xu T, Wang B, Chen W. Associations between urinary phthalate metabolite concentrations and markers of liver injury in the US adult population. Environ Int 2021;155:106608. [PMID: 33964644 DOI: 10.1016/j.envint.2021.106608] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
32 Jung JA, Noh JH, Jang MS, Gu EY, Cho MK, Lim KH, Park H, Back SM, Kim SP, Han KH. Safety evaluation of fermented Platycodon grandiflorus (Jacq.) A.DC. extract: Genotoxicity, acute toxicity, and 13-week subchronic toxicity study in rats. J Ethnopharmacol 2021;275:114138. [PMID: 33895248 DOI: 10.1016/j.jep.2021.114138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chemical Aspects of Human and Environmental Overload with Fluorine. Chem Rev 2021;121:4678-742. [PMID: 33723999 DOI: 10.1021/acs.chemrev.0c01263] [Cited by in Crossref: 73] [Cited by in F6Publishing: 57] [Article Influence: 73.0] [Reference Citation Analysis]
34 Xu C, Liu Q, Liang J, Weng Z, Xu J, Jiang Z, Gu A. Urinary biomarkers of polycyclic aromatic hydrocarbons and their associations with liver function in adolescents. Environ Pollut 2021;278:116842. [PMID: 33711626 DOI: 10.1016/j.envpol.2021.116842] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
35 Li Z, Zhan D, Saeed A, Zhao N, Wang J, Xu W, Liu J. Fluoride sensing performance of fluorescent NH2-MIL-53(Al): 2D nanosheets vs. 3D bulk. Dalton Trans 2021;50:8540-8. [PMID: 34075981 DOI: 10.1039/d1dt00666e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
36 Zou J, Guan Z. Modification of Digestive System. Coal-burning Type of Endemic Fluorosis 2021. [DOI: 10.1007/978-981-16-1498-9_7] [Reference Citation Analysis]
37 Wei Y, Zhu J, Wetzstein SA. Plasma and water fluoride levels and hyperuricemia among adolescents: A cross-sectional study of a nationally representative sample of the United States for 2013-2016. Ecotoxicol Environ Saf 2021;208:111670. [PMID: 33396180 DOI: 10.1016/j.ecoenv.2020.111670] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
38 Rodríguez I, Burgos A, Rubio C, Gutiérrez AJ, Paz S, Rodrigues da Silva Júnior FM, Hardisson A, Revert C. Human exposure to fluoride from tea (Camellia sinensis) in a volcanic region—Canary Islands, Spain. Environ Sci Pollut Res 2020;27:43917-28. [DOI: 10.1007/s11356-020-10319-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
39 Li M, Wang J, Wu P, Manthari RK, Zhao Y, Li W, Wang J. Self-recovery study of the adverse effects of fluoride on small intestine: Involvement of pyroptosis induced inflammation. Sci Total Environ 2020;742:140533. [PMID: 32721723 DOI: 10.1016/j.scitotenv.2020.140533] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
40 Bai R, Huang Y, Wang F, Guo J. Associations of fluoride exposure with sex steroid hormones among U.S. children and adolescents, NHANES 2013–2016. Environmental Pollution 2020;260:114003. [DOI: 10.1016/j.envpol.2020.114003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
41 Colicino E, Pedretti NF, Busgang SA, Gennings C. Per- and poly-fluoroalkyl substances and bone mineral density: Results from the Bayesian weighted quantile sum regression. Environ Epidemiol 2020;4:e092. [PMID: 32613152 DOI: 10.1097/EE9.0000000000000092] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
42 Abduweli Uyghurturk D, Goin DE, Martinez-Mier EA, Woodruff TJ, DenBesten PK. Maternal and fetal exposures to fluoride during mid-gestation among pregnant women in northern California. Environ Health 2020;19:38. [PMID: 32248806 DOI: 10.1186/s12940-020-00581-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
43 Malin AJ, Bose S, Busgang SA, Gennings C, Thorpy M, Wright RO, Wright RJ, Arora M. Fluoride exposure and sleep patterns among older adolescents in the United States: a cross-sectional study of NHANES 2015-2016. Environ Health 2019;18:106. [PMID: 31818308 DOI: 10.1186/s12940-019-0546-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
44 Colicino E, Pedretti NF, Busgang S, Gennings C. Per- and poly-fluoroalkyl substances and bone mineral density: results from the Bayesian weighted quantile sum regression.. [DOI: 10.1101/19010710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]