BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today 2020;25:107-25. [DOI: 10.1016/j.drudis.2019.09.017] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Mansoori-Kermani A, Khalighi S, Akbarzadeh I, Niavol FR, Motasadizadeh H, Mahdieh A, Jahed V, Abdinezhad M, Rahbariasr N, Hosseini M, Ahmadkhani N, Panahi B, Fatahi Y, Mozafari M, Kumar AP, Mostafavi E. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer. Mater Today Bio 2022;16:100349. [PMID: 35875198 DOI: 10.1016/j.mtbio.2022.100349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Wan D, Liu Y, Guo X, Zhang J, Pan J. Intelligent Drug Delivery by Peptide-Based Dual-Function Micelles. IJMS 2022;23:9698. [DOI: 10.3390/ijms23179698] [Reference Citation Analysis]
3 Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022;348:1066-88. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Reference Citation Analysis]
4 Xie X, Jiang K, Li B, Hou S, Tang H, Shao B, Ping Y, Zhang Q. A small-molecule self-assembled nanodrug for combination therapy of photothermal-differentiation-chemotherapy of breast cancer stem cells. Biomaterials 2022;286:121598. [DOI: 10.1016/j.biomaterials.2022.121598] [Reference Citation Analysis]
5 Muthukrishnan L. Nanonutraceuticals — Challenges and Novel Nano-based Carriers for Effective Delivery and Enhanced Bioavailability. Food Bioprocess Technol. [DOI: 10.1007/s11947-022-02807-2] [Reference Citation Analysis]
6 Ricciardi L, Chatterjee S, Palermo G, Szerb EI, Sanna A, Palermo F, Pieroni N, Fratini M, Bartolino R, Cedola A, La Deda M, Strangi G. Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. JNT 2022;3:1-17. [DOI: 10.3390/jnt3010001] [Reference Citation Analysis]
7 Miyamaru C, Koide M, Kato N, Matsubara S, Higuchi M. Fabrication of CaCO3-Coated Vesicles by Biomineralization and Their Application as Carriers of Drug Delivery Systems. Int J Mol Sci 2022;23:789. [PMID: 35054975 DOI: 10.3390/ijms23020789] [Reference Citation Analysis]
8 Lu J, Li R, Mu B, Peng Y, Zhao Y, Shi Y, Guo L, Hai L, Wu Y. Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma. Eur J Med Chem 2021;230:114093. [PMID: 35007860 DOI: 10.1016/j.ejmech.2021.114093] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. Curr Res Pharmacol Drug Discov 2021;2:100067. [PMID: 34909685 DOI: 10.1016/j.crphar.2021.100067] [Reference Citation Analysis]
10 Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021;22:13011. [PMID: 34884816 DOI: 10.3390/ijms222313011] [Reference Citation Analysis]
11 Zhou QM, Lu YF, Zhou JP, Yang XY, Wang XJ, Yu JN, Du YZ, Yu RS. Self-amplification of oxidative stress with tumour microenvironment-activatable iron-doped nanoplatform for targeting hepatocellular carcinoma synergistic cascade therapy and diagnosis. J Nanobiotechnology 2021;19:361. [PMID: 34749740 DOI: 10.1186/s12951-021-01102-0] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Sun Y, Yang Q, Xia X, Li X, Ruan W, Zheng M, Zou Y, Shi B. Polymeric Nanoparticles for Mitochondria Targeting Mediated Robust Cancer Therapy. Front Bioeng Biotechnol 2021;9:755727. [PMID: 34692665 DOI: 10.3389/fbioe.2021.755727] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 C de S L Oliveira AL, Schomann T, de Geus-Oei LF, Kapiteijn E, Cruz LJ, de Araújo Junior RF. Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021;13:1321. [PMID: 34452282 DOI: 10.3390/pharmaceutics13081321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021;167:140-58. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Reference Citation Analysis]
15 Lu F, Zhang H, Pan W, Li N, Tang B. Delivery nanoplatforms based on dynamic covalent chemistry. Chem Commun (Camb) 2021;57:7067-82. [PMID: 34195709 DOI: 10.1039/d1cc02246f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xu P, Wang X, Li T, Li L, Wu H, Tu J, Zhang R, Zhang L, Guo Z, Chen Q. Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:33926-36. [PMID: 34254767 DOI: 10.1021/acsami.1c09612] [Reference Citation Analysis]
17 Fei W, Zhao Y, Wu X, Sun D, Yao Y, Wang F, Zhang M, Li C, Qin J, Zheng C. Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy. J Nanobiotechnology 2021;19:184. [PMID: 34130695 DOI: 10.1186/s12951-021-00931-3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. Nanotechnology 2021;32. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
19 Dhas N, Kudarha R, Pandey A, Nikam AN, Sharma S, Singh A, Garkal A, Hariharan K, Singh A, Bangar P, Yadhav D, Parikh D, Sawant K, Mutalik S, Garg N, Mehta T. Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release 2021;333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Liu L, Luan S, Zhang C, Wang R, Zhang Y, Zhang M, Sheng Q, Han G, Wang T, Song S. Encapsulation and pH-responsive release of bortezomib by dopamine grafted hyaluronate nanogels. Int J Biol Macromol 2021;183:369-78. [PMID: 33932413 DOI: 10.1016/j.ijbiomac.2021.04.161] [Reference Citation Analysis]
21 Fei W, Zhang M, Fan X, Ye Y, Zhao M, Zheng C, Li Y, Zheng X. Engineering of bioactive metal sulfide nanomaterials for cancer therapy. J Nanobiotechnology 2021;19:93. [PMID: 33789653 DOI: 10.1186/s12951-021-00839-y] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
22 Liang L, Qiu L. Vitamin E succinate with multiple functions: A versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int J Pharm 2021;600:120457. [PMID: 33676991 DOI: 10.1016/j.ijpharm.2021.120457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano 2021;15:2005-37. [PMID: 33566564 DOI: 10.1021/acsnano.0c06962] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 35.0] [Reference Citation Analysis]
24 Portilla Y, Mellid S, Paradela A, Ramos-Fernández A, Daviu N, Sanz-Ortega L, Pérez-Yagüe S, Morales MP, Barber DF. Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas. ACS Appl Mater Interfaces 2021;13:7924-44. [PMID: 33587585 DOI: 10.1021/acsami.0c20066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Li Q, Fu D, Zhang J, Li T, Wang H, Hou W, Niu B, Guo R, Liu Y. Poly(aspartic acid)-based pH-responsive targeting co-delivery nanoparticles. J Biomater Appl 2021;:885328220988071. [PMID: 33509034 DOI: 10.1177/0885328220988071] [Reference Citation Analysis]
26 La-Beck NM, Islam MR, Markiewski MM. Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine. Front Immunol 2020;11:603039. [PMID: 33488603 DOI: 10.3389/fimmu.2020.603039] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
27 Curcio M, Cirillo G, Saletta F, Michniewicz F, Nicoletta FP, Vittorio O, Hampel S, Iemma F. Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. C 2021;7:3. [DOI: 10.3390/c7010003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Alshehri S, Imam SS, Rizwanullah M, Akhter S, Mahdi W, Kazi M, Ahmad J. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics 2020;13:E24. [PMID: 33374391 DOI: 10.3390/pharmaceutics13010024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
29 Tian L, Pei R, Zhong L, Ji Y, Zhou D, Zhou S. Enhanced targeting of 3D pancreatic cancer spheroids by aptamer-conjugated polymeric micelles with deep tumor penetration. Eur J Pharmacol 2021;894:173814. [PMID: 33352182 DOI: 10.1016/j.ejphar.2020.173814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Sun D, Zhang J, Wang L, Yu Z, O'Driscoll CM, Guo J. Nanodelivery of immunogenic cell death-inducers for cancer immunotherapy. Drug Discov Today 2021;26:651-62. [PMID: 33278602 DOI: 10.1016/j.drudis.2020.11.029] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci 2020;8:5241-59. [PMID: 32996922 DOI: 10.1039/d0bm01158d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
32 Zeinali M, Abbaspour-ravasjani S, Ghorbani M, Babazadeh A, Soltanfam T, Santos AC, Hamishehkar H, Hamblin MR. Nanovehicles for co-delivery of anticancer agents. Drug Discovery Today 2020;25:1416-30. [DOI: 10.1016/j.drudis.2020.06.027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
33 Rositch AF, Loffredo C, Bourlon MT, Pearlman PC, Adebamowo C. Creative Approaches to Global Cancer Research and Control. JCO Glob Oncol 2020;6:4-7. [PMID: 32716656 DOI: 10.1200/GO.20.00237] [Reference Citation Analysis]
34 Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep 2020;10:11292. [PMID: 32647151 DOI: 10.1038/s41598-020-68017-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 54] [Article Influence: 13.5] [Reference Citation Analysis]
35 Wu J, Zhang M, Cheng J, Zhang Y, Luo J, Liu Y, Kong H, Qu H, Zhao Y. Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide. Int J Nanomedicine 2020;15:4139-49. [PMID: 32606669 DOI: 10.2147/IJN.S248467] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Yong T, Wang D, Li X, Yan Y, Hu J, Gan L, Yang X. Extracellular vesicles for tumor targeting delivery based on five features principle. Journal of Controlled Release 2020;322:555-65. [DOI: 10.1016/j.jconrel.2020.03.039] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
37 Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020;28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186X.2020.1766474] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E, Capasso R, Santini A. An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. Int J Mol Sci 2020;21:E2285. [PMID: 32225036 DOI: 10.3390/ijms21072285] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
39 Norouzi M. Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020;156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
40 Shao J, Fang Y, Zhao R, Chen F, Yang M, Jiang J, Chen Z, Yuan X, Jia L. Evolution from small molecule to nano-drug delivery systems: An emerging approach for cancer therapy of ursolic acid. Asian J Pharm Sci 2020;15:685-700. [PMID: 33363625 DOI: 10.1016/j.ajps.2020.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
41 Norouzi M, Yathindranath V, Thliveris JA, Miller DW. Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. Nanomaterials (Basel) 2020;10:E477. [PMID: 32155938 DOI: 10.3390/nano10030477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]