BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sardu C, Paolisso P, Santamaria M, Sacra C, Pieretti G, Rizzo MR, Barbieri M, Scisciola L, Nicoletti G, Paolisso G, Marfella R. Cardiac syncope recurrence in type 2 diabetes mellitus patients vs. normoglycemics patients: The CARVAS study. Diabetes Res Clin Pract 2019;151:152-62. [PMID: 31004672 DOI: 10.1016/j.diabres.2019.04.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Patoulias D, Katsimardou A, Fragakis N, Papadopoulos C, Doumas M. Effect of SGLT-2 inhibitors on cardiac autonomic function in type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Acta Diabetol. [DOI: 10.1007/s00592-022-01958-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zhang Y, Bai J, Li L, Yang H, Yang Y, Lv H. Research for correlation between heart rate variability parameters and bone mineral density in patients of type 2 diabetes mellitus. J Endocrinol Invest 2022. [PMID: 35925468 DOI: 10.1007/s40618-022-01886-4] [Reference Citation Analysis]
3 Schubert L, Laroche S, Hartemann A, Bourron O, Phan F. Impaired hypoxic ventilatory drive induced by diabetic autonomic neuropathy, a cause of misdiagnosed severe cardiac events: brief report of two cases. BMC Cardiovasc Disord 2021;21:140. [PMID: 33731006 DOI: 10.1186/s12872-021-01944-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Zhang Z, Ma Y, Fu L, Li L, Liu J, Peng H, Jiang H. Combination of Composite Autonomic Symptom Score 31 and Heart Rate Variability for Diagnosis of Cardiovascular Autonomic Neuropathy in People with Type 2 Diabetes. J Diabetes Res 2020;2020:5316769. [PMID: 33195705 DOI: 10.1155/2020/5316769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Aggarwal Y, Das J, Mazumder PM, Kumar R, Sinha RK. Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine. Biocybernetics and Biomedical Engineering 2020;40:1002-9. [DOI: 10.1016/j.bbe.2020.05.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]