1 |
Subhan MA, Parveen F, Filipczak N, Yalamarty SSK, Torchilin VP. Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis. JPM 2023;13:389. [DOI: 10.3390/jpm13030389] [Reference Citation Analysis]
|
2 |
Suleman M. The phenomena of heat dissipation by magnetic nanoparticles under applied magnetic field. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment 2023. [DOI: 10.1016/b978-0-443-13286-5.00003-x] [Reference Citation Analysis]
|
3 |
Suleman M. Historical background of magnetic fluid hyperthermia. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment 2023. [DOI: 10.1016/b978-0-443-13286-5.00002-8] [Reference Citation Analysis]
|
4 |
Kulkarni-Dwivedi N, Patel PR, Shravage BV, Umrani RD, Paknikar KM, Jadhav SH. Hyperthermia and doxorubicin release by Fol-LSMO nanoparticles induce apoptosis and autophagy in breast cancer cells. Nanomedicine (Lond) 2022;17:1929-49. [PMID: 36645007 DOI: 10.2217/nnm-2022-0171] [Reference Citation Analysis]
|
5 |
Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022;20:395. [PMID: 36045386 DOI: 10.1186/s12951-022-01605-4] [Reference Citation Analysis]
|
6 |
Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022;349:1009-30. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Caizer IS, Caizer C. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy. IJMS 2022;23:4350. [DOI: 10.3390/ijms23084350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. IJMS 2022;23:1339. [DOI: 10.3390/ijms23031339] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
9 |
Fizesan I, Iacovita C, Pop A, Kiss B, Dudric R, Stiufiuc R, Lucaciu CM, Loghin F. The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Pharmaceutics 2021;13:2148. [PMID: 34959431 DOI: 10.3390/pharmaceutics13122148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Rio ISR, Rodrigues ARO, Rodrigues JM, Queiroz MRP, Calhelha RC, Ferreira ICFR, Almeida BG, Pires A, Pereira AM, Araújo JP, Castanheira EMS, Coutinho PJG. Magnetoliposomes Based on Magnetic/Plasmonic Nanoparticles Loaded with Tricyclic Lactones for Combined Cancer Therapy. Pharmaceutics 2021;13:1905. [PMID: 34834322 DOI: 10.3390/pharmaceutics13111905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Ortiz-casas B, Galdámez-martínez A, Gutiérrez-flores J, Baca Ibañez A, Kumar Panda P, Santana G, de la Vega HA, Suar M, Gutiérrez Rodelo C, Kaushik A, Kumar Mishra Y, Dutt A. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Materials Today 2021;50:533-69. [DOI: 10.1016/j.mattod.2021.07.025] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 14.0] [Reference Citation Analysis]
|
12 |
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021;50:11614-67. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 58] [Article Influence: 19.0] [Reference Citation Analysis]
|
13 |
Manescu Paltanea V, Paltanea G, Antoniac I, Vasilescu M. Magnetic Nanoparticles Used in Oncology. Materials (Basel) 2021;14:5948. [PMID: 34683540 DOI: 10.3390/ma14205948] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
14 |
Manescu Paltanea V, Paltanea G, Antoniac I, Vasilescu M. Magnetic Nanoparticles Used in Oncology. Materials (Basel) 2021;14. [PMID: 34683540 DOI: 10.3390/ma14205948] [Reference Citation Analysis]
|
15 |
Manescu (Paltanea) V, Paltanea G, Antoniac I, Vasilescu M. Magnetic Nanoparticles Used in Oncology. Materials 2021;14:5948. [DOI: 10.3390/ma14205948] [Cited by in Crossref: 15] [Article Influence: 7.5] [Reference Citation Analysis]
|
16 |
Caizer C, Rai M. Magnetic Nanoparticles in Alternative Tumors Therapy. Magnetic Nanoparticles in Human Health and Medicine 2021. [DOI: 10.1002/9781119754725.ch16] [Reference Citation Analysis]
|
17 |
Day NB, Wixson WC, Shields CW 4th. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021;11:2172-96. [PMID: 34522583 DOI: 10.1016/j.apsb.2021.03.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
18 |
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. Nanoscale Adv 2021;3:3663-80. [PMID: 36133021 DOI: 10.1039/d1na00224d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
19 |
Tremi I, Spyratou E, Souli M, Efstathopoulos EP, Makropoulou M, Georgakilas AG, Sihver L. Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers (Basel) 2021;13:3185. [PMID: 34202342 DOI: 10.3390/cancers13133185] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Gupta R, Tomar R, Chakraverty S, Sharma D. Effect of manganese doping on the hyperthermic profile of ferrite nanoparticles using response surface methodology. RSC Adv 2021;11:16942-54. [PMID: 35479670 DOI: 10.1039/d1ra02376d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Peigneux A, Glitscher EA, Charbaji R, Weise C, Wedepohl S, Calderón M, Jimenez-Lopez C, Hedtrich S. Protein corona formation and its influence on biomimetic magnetite nanoparticles. J Mater Chem B 2020;8:4870-82. [PMID: 32108191 DOI: 10.1039/c9tb02480h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
22 |
Lavanya Rathi P, Ponraj B, Deepa S. Structural, magnetic and electrical properties of electroactive-superparamagnetic PVDF-Sn0.2Fe2.8O4 nanocomposite films. Ceramics International 2021;47:9727-35. [DOI: 10.1016/j.ceramint.2020.12.112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
23 |
Carter TJ, Agliardi G, Lin FY, Ellis M, Jones C, Robson M, Richard-Londt A, Southern P, Lythgoe M, Zaw Thin M, Ryzhov V, de Rosales RTM, Gruettner C, Abdollah MRA, Pedley RB, Pankhurst QA, Kalber TL, Brandner S, Quezada S, Mulholland P, Shevtsov M, Chester K. Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation. Small 2021;17:e2005241. [PMID: 33734595 DOI: 10.1002/smll.202005241] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
24 |
Scutigliani EM, Liang Y, Crezee H, Kanaar R, Krawczyk PM. Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021;13:1243. [PMID: 33808973 DOI: 10.3390/cancers13061243] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
25 |
Ngen EJ, Chen Y, Azad BB, Boinapally S, Jacob D, Lisok A, Shen C, Hossain MS, Jin J, Bhujwalla ZM, Pomper MG, Banerjee SR. Prostate-specific membrane antigen (PSMA)-targeted photodynamic therapy enhances the delivery of PSMA-targeted magnetic nanoparticles to PSMA-expressing prostate tumors. Nanotheranostics 2021;5:182-96. [PMID: 33564617 DOI: 10.7150/ntno.52361] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
26 |
Bharadwaj P, Das SS, Beg S, Rahman M. Formulation and biological stability of nanomedicines in cancer treatment. Nanoformulation Strategies for Cancer Treatment 2021. [DOI: 10.1016/b978-0-12-821095-6.00020-3] [Reference Citation Analysis]
|
27 |
Idiago-lópez J, Moreno-antolín E, de la Fuente JM, Fratila RM. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. Nanoscale Adv 2021;3:1261-92. [DOI: 10.1039/d0na00873g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
28 |
Michael OS. Emerging Biomimetic Approaches in the Optimization of Drug Therapies. Series in BioEngineering 2021. [DOI: 10.1007/978-3-319-53214-1_9] [Reference Citation Analysis]
|
29 |
Caizer C. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Nanomaterials (Basel) 2020;11:E40. [PMID: 33375292 DOI: 10.3390/nano11010040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
30 |
Yang SJ, Huang CH, Wang CH, Shieh MJ, Chen KC. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine 2020;15:10331-47. [PMID: 33376324 DOI: 10.2147/IJN.S281029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
|
31 |
Li J, Zhang J, Guo Z, Jiang H, Zhang H, Wang X. Self-Assembly Fabrication of Honeycomb-like Magnetic-Fluorescent Fe3O4-QDs Nanocomposites for Bimodal Imaging. Langmuir 2020;36:14471-7. [PMID: 33231462 DOI: 10.1021/acs.langmuir.0c00077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
32 |
Sahin O, Meiyazhagan A, Ajayan PM, Krishnan S. Immunogenicity of Externally Activated Nanoparticles for Cancer Therapy. Cancers (Basel) 2020;12:E3559. [PMID: 33260534 DOI: 10.3390/cancers12123559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
33 |
Nabavinia M, Beltran-huarac J. Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering. ACS Appl Bio Mater 2020;3:8172-87. [DOI: 10.1021/acsabm.0c00947] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
|
34 |
Yang S, Tseng S, Wang C, Young T, Chen K, Shieh M. Magnetic nanomedicine for CD133-expressing cancer therapy using locoregional hyperthermia combined with chemotherapy. Nanomedicine 2020;15:2543-61. [DOI: 10.2217/nnm-2020-0222] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
35 |
Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A, Gallo S, Groppi F, Guerrini A, Innocenti C, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Veronese I, Lascialfari A. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. Nanomaterials (Basel) 2020;10:E1919. [PMID: 32993001 DOI: 10.3390/nano10101919] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
|
36 |
Suleman M, Riaz S, Jalil R. A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. J Therm Anal Calorim 2021;146:1193-219. [DOI: 10.1007/s10973-020-10080-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
37 |
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020;10:819. [PMID: 32596144 DOI: 10.3389/fonc.2020.00819] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
|
38 |
Getiren B, Çıplak Z, Gökalp C, Yıldız N. NIR ‐responsive Fe 3 O 4 @ PPy nanocomposite for efficient potential use in photothermal therapy. J Appl Polym Sci 2020;137:49343. [DOI: 10.1002/app.49343] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
39 |
Wang R, Liu J, Liu Y, Zhong R, Yu X, Liu Q, Zhang L, Lv C, Mao K, Tang P. The cell uptake properties and hyperthermia performance of Zn0.5Fe2.5O4/SiO2 nanoparticles as magnetic hyperthermia agents. R Soc Open Sci 2020;7:191139. [PMID: 32218945 DOI: 10.1098/rsos.191139] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
40 |
Khot S, Rawal SU, Patel MM. Theranostics Nanoformulations: Merging Diagnostics and Nanotherapeutics. Nanoformulations in Human Health 2020. [DOI: 10.1007/978-3-030-41858-8_4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
41 |
Saifullah S, Ali I, Kawish M, El-shabasy RM, Chen L, El-seedi HR. Surface functionalized magnetic nanoparticles for targeted cancer therapy and diagnosis. Metal Nanoparticles for Drug Delivery and Diagnostic Applications 2020. [DOI: 10.1016/b978-0-12-816960-5.00012-4] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
42 |
Thorat ND, Tofail SAM, von Rechenberg B, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews 2019;6:041306. [DOI: 10.1063/1.5049467] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
|
43 |
Zhuang H, Lin R, Liu Y, Zhang M, Zhai D, Huan Z, Wu C. Three-Dimensional-Printed Bioceramic Scaffolds with Osteogenic Activity for Simultaneous Photo/Magnetothermal Therapy of Bone Tumors. ACS Biomater Sci Eng 2019;5:6725-34. [PMID: 33423490 DOI: 10.1021/acsbiomaterials.9b01095] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
|
44 |
Oltolina F, Colangelo D, Miletto I, Clemente N, Miola M, Verné E, Prat M, Follenzi A. Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. Nanomaterials (Basel) 2019;9:E1575. [PMID: 31698869 DOI: 10.3390/nano9111575] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
|
45 |
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019;11:E395. [PMID: 31390773 DOI: 10.3390/pharmaceutics11080395] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
|
46 |
Peigneux A, Oltolina F, Colangelo D, Iglesias GR, Delgado AV, Prat M, Jimenez‐lopez C. Functionalized Biomimetic Magnetic Nanoparticles as Effective Nanocarriers for Targeted Chemotherapy. Part Part Syst Charact 2019;36:1900057. [DOI: 10.1002/ppsc.201900057] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
47 |
Rogers SJ, Puric E, Eberle B, Datta NR, Bodis SB. Radiotherapy for Melanoma: More than DNA Damage. Dermatol Res Pract 2019;2019:9435389. [PMID: 31073304 DOI: 10.1155/2019/9435389] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
48 |
Diaconu A, Chiriac AP, Neamtu I, Nita LE. Magnetic Polymeric Nanocomposites. Polymeric Nanomaterials in Nanotherapeutics 2019. [DOI: 10.1016/b978-0-12-813932-5.00010-8] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
49 |
Veloso SRS, Magalhães CAB, Rodrigues ARO, Vilaça H, Queiroz MRP, Martins JA, Coutinho PJG, Ferreira PMT, Castanheira EMS. Novel dehydropeptide-based magnetogels containing manganese ferrite nanoparticles as antitumor drug nanocarriers. Phys Chem Chem Phys 2019;21:10377-90. [DOI: 10.1039/c9cp00352e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
|
50 |
Caizer C. Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_14] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
51 |
Idiago-lópez J, Moreno-antolín E, Fratila RM. Nanomaterials for Combined Thermo-Chemotherapy of Cancer. Nanomaterials for Magnetic and Optical Hyperthermia Applications 2019. [DOI: 10.1016/b978-0-12-813928-8.00011-9] [Reference Citation Analysis]
|
52 |
Beola L, Gutiérrez L, Grazú V, Asín L. A Roadmap to the Standardization of In Vivo Magnetic Hyperthermia. Nanomaterials for Magnetic and Optical Hyperthermia Applications 2019. [DOI: 10.1016/b978-0-12-813928-8.00012-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
53 |
Fratila RM, de la Fuente JM. Introduction to Hyperthermia. Nanomaterials for Magnetic and Optical Hyperthermia Applications 2019. [DOI: 10.1016/b978-0-12-813928-8.09997-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
54 |
Fiorentini G, Sarti D, Milandri C, Dentico P, Mambrini A, Fiorentini C, Mattioli G, Casadei V, Guadagni S. Modulated Electrohyperthermia in Integrative Cancer Treatment for Relapsed Malignant Glioblastoma and Astrocytoma: Retrospective Multicenter Controlled Study. Integr Cancer Ther 2019;18:1534735418812691. [PMID: 30580645 DOI: 10.1177/1534735418812691] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
|
55 |
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018;261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 10.0] [Reference Citation Analysis]
|
56 |
Veloso SRS, Ferreira PMT, Martins JA, Coutinho PJG, Castanheira EMS. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018;10:E145. [PMID: 30181472 DOI: 10.3390/pharmaceutics10030145] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
|
57 |
Chee HL, Gan CRR, Ng M, Low L, Fernig DG, Bhakoo KK, Paramelle D. Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging. ACS Nano 2018;12:6480-91. [PMID: 29979569 DOI: 10.1021/acsnano.7b07572] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 11.6] [Reference Citation Analysis]
|
58 |
Mehta JP, Knappett BR, Divitini G, Ringe E, Midgley PA, Fairen-jimenez D, Wheatley AE. Advances in the synthesis and long-term protection of zero-valent iron nanoparticles. 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO) 2018. [DOI: 10.1109/nano.2018.8626392] [Reference Citation Analysis]
|
59 |
Mehta JP, Knappett BR, Divitini G, Ringe E, Midgley PA, Fairen-jimenez D, Wheatley AEH. Advances in the Synthesis and Long-Term Protection of Zero-Valent Iron Nanoparticles. Part Part Syst Charact 2018;35:1800120. [DOI: 10.1002/ppsc.201800120] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
|
60 |
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018;8:1824-49. [PMID: 29556359 DOI: 10.7150/thno.22172] [Cited by in Crossref: 157] [Cited by in F6Publishing: 164] [Article Influence: 31.4] [Reference Citation Analysis]
|
61 |
Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, Zheng X, Li M, He K, Zhang M, Chen L, Dong W. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials 2018;154:147-57. [DOI: 10.1016/j.biomaterials.2017.10.047] [Cited by in Crossref: 86] [Cited by in F6Publishing: 94] [Article Influence: 17.2] [Reference Citation Analysis]
|
62 |
Yan H, Shang W, Sun X, Zhao L, Wang J, Xiong Z, Yuan J, Zhang R, Huang Q, Wang K, Li B, Tian J, Kang F, Feng S. “All-in-One” Nanoparticles for Trimodality Imaging-Guided Intracellular Photo-magnetic Hyperthermia Therapy under Intravenous Administration. Adv Funct Mater 2018;28:1705710. [DOI: 10.1002/adfm.201705710] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 13.6] [Reference Citation Analysis]
|
63 |
Muthuraman A, Rishitha N, Mehdi S. Role of nanoparticles in bioimaging, diagnosis and treatment of cancer disorder. Design of Nanostructures for Theranostics Applications 2018. [DOI: 10.1016/b978-0-12-813669-0.00013-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
|
64 |
Sosnik A. From the “Magic Bullet” to Advanced Nanomaterials for Active Targeting in Diagnostics and Therapeutics. Biomedical Applications of Functionalized Nanomaterials. Elsevier; 2018. pp. 1-32. [DOI: 10.1016/b978-0-323-50878-0.00001-x] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
|
65 |
Xing H, Wang Z, Shao D, Chang Z, Ge M, Li L, Wu M, Yan Z, Dong W. Janus nanocarriers for magnetically targeted and hyperthermia-enhanced curcumin therapy of liver cancer. RSC Adv 2018;8:30448-54. [DOI: 10.1039/c8ra05694c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
|
66 |
Rajsiglova L, Vannucci L. Local Treatment of Brain Tumors and the Blood-Brain Barrier. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy 2018. [DOI: 10.1007/978-3-319-75007-1_7] [Reference Citation Analysis]
|
67 |
Awasthi R, Rathbone MJ, Hansbro PM, Bebawy M, Dua K. Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug Deliv and Transl Res 2018;8:97-110. [DOI: 10.1007/s13346-017-0440-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
|
68 |
Cen Y, Xiao A, Chen X, Liu L. Screening and separation of α-amylase inhibitors from Solanum nigrum with amylase-functionalized magnetic graphene oxide combined with high-speed counter-current chromatography. J Sep Sci 2017;40:4780-7. [DOI: 10.1002/jssc.201700333] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
|
69 |
Liu J, Chen H, Fu Y, Li X, Chen Y, Zhang H, Wang Z. Fabrication of multifunctional ferric oxide nanoparticles for tumor-targeted magnetic resonance imaging and precise photothermal therapy with magnetic field enhancement. J Mater Chem B 2017;5:8554-62. [PMID: 32264523 DOI: 10.1039/c7tb01959a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
|
70 |
Wells J, Kazakova O, Posth O, Steinhoff U, Petronis S, Bogart LK, Southern P, Pankhurst Q, Johansson C. Standardisation of magnetic nanoparticles in liquid suspension. J Phys D: Appl Phys 2017;50:383003. [DOI: 10.1088/1361-6463/aa7fa5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 8.3] [Reference Citation Analysis]
|
71 |
Peeken JC, Vaupel P, Combs SE. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front Oncol 2017;7:132. [PMID: 28713771 DOI: 10.3389/fonc.2017.00132] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 13.0] [Reference Citation Analysis]
|
72 |
Curto S, Garcia-Miquel A, Suh M, Vidal N, Lopez-Villegas JM, Prakash P. Design and characterisation of a phased antenna array for intact breast hyperthermia. Int J Hyperthermia 2018;34:250-60. [PMID: 28605946 DOI: 10.1080/02656736.2017.1337935] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
|
73 |
Fu S, Wang S, Zhang X, Qi A, Liu Z, Yu X, Chen C, Li L. Structural effect of Fe3O4 nanoparticles on peroxidase-like activity for cancer therapy. Colloids and Surfaces B: Biointerfaces 2017;154:239-45. [DOI: 10.1016/j.colsurfb.2017.03.038] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 9.3] [Reference Citation Analysis]
|