BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tal T, Yaghoobi B, Lein PJ. Translational Toxicology in Zebrafish. Curr Opin Toxicol 2020;23-24:56-66. [PMID: 32656393 DOI: 10.1016/j.cotox.2020.05.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Curcio V, Macirella R, Sesti S, Ahmed AIM, Talarico F, Tagarelli A, Mezzasalma M, Brunelli E. Morphological and Functional Alterations Induced by Two Ecologically Relevant Concentrations of Lead on Danio rerio Gills. IJMS 2022;23:9165. [DOI: 10.3390/ijms23169165] [Reference Citation Analysis]
2 Mundy PC, Mendieta R, Lein PJ. Diisopropylfluorophosphate (DFP) volatizes and cross-contaminates wells in a common 96-well plate format used in zebrafish larvae toxicology studies. Journal of Pharmacological and Toxicological Methods 2022. [DOI: 10.1016/j.vascn.2022.107173] [Reference Citation Analysis]
3 Hong X, Zhang L, Zha J. Toxicity of waterborne vortioxetine, a new antidepressant, in non-target aquatic organisms: From wonder to concern drugs? Environ Pollut 2022;304:119175. [PMID: 35337889 DOI: 10.1016/j.envpol.2022.119175] [Reference Citation Analysis]
4 Petersen BD, Bertoncello KT, Bonan CD. Standardizing Zebrafish Behavioral Paradigms Across Life Stages: An Effort Towards Translational Pharmacology. Front Pharmacol 2022;13:833227. [DOI: 10.3389/fphar.2022.833227] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022. [PMID: 34983085 DOI: 10.1111/brv.12831] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Medkova D, Lakdawala P, Hodkovicova N, Blahova J, Faldyna M, Mares J, Vaclavik J, Doubkova V, Hollerova A, Svobodova Z. Effects of different pharmaceutical residues on embryos of fish species native to Central Europe. Chemosphere 2021;:132915. [PMID: 34788676 DOI: 10.1016/j.chemosphere.2021.132915] [Reference Citation Analysis]
7 Mighani S, Safari R, Hoseinifar SH, Shabani A, Dadar M. The effect of diazinon as agricultural pesticides on reproductive indices and related genes expression in zebrafish ( Danio rerio ). Aquaculture Research 2022;53:1019-25. [DOI: 10.1111/are.15643] [Reference Citation Analysis]
8 Dickinson AJG, Turner SD, Wahl S, Kennedy AE, Wyatt BH, Howton DA. E-liquids and vanillin flavoring disrupts retinoic acid signaling and causes craniofacial defects in Xenopus embryos. Dev Biol 2021;481:14-29. [PMID: 34543654 DOI: 10.1016/j.ydbio.2021.09.004] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Lachowicz J, Niedziałek K, Rostkowska E, Szopa A, Świąder K, Szponar J, Serefko A. Zebrafish as an Animal Model for Testing Agents with Antidepressant Potential. Life (Basel) 2021;11:792. [PMID: 34440536 DOI: 10.3390/life11080792] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Mundy PC, Pressly B, Carty DR, Yaghoobi B, Wulff H, Lein PJ. The efficacy of γ-aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicol Appl Pharmacol 2021;426:115643. [PMID: 34265354 DOI: 10.1016/j.taap.2021.115643] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kelly JR, Shelton SG, Daniel DK, Bhat A, Mondal R, Nipple F, Amro H, Bower ME, Isaac G, McHaney G, Martins EP, Shelton DS. Wild Zebrafish Sentinels: Biological Monitoring of Site Differences Using Behavior and Morphology. Toxics 2021;9:165. [PMID: 34357908 DOI: 10.3390/toxics9070165] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Walter KM, Singh L, Singh V, Lein PJ. Investigation of NH3 as a selective thyroid hormone receptor modulator in larval zebrafish (Danio rerio). Neurotoxicology 2021;84:96-104. [PMID: 33745965 DOI: 10.1016/j.neuro.2021.03.003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Bieczynski F, Burkhardt-Medicke K, Luquet CM, Scholz S, Luckenbach T. Chemical effects on dye efflux activity in live zebrafish embryos and on zebrafish Abcb4 ATPase activity. FEBS Lett 2021;595:828-43. [PMID: 33274443 DOI: 10.1002/1873-3468.14015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
14 Martin RM, Bereman MS, Marsden KC. BMAA and MCLR interact to modulate behavior and exacerbate molecular changes related to neurodegeneration in larval zebrafish. Toxicol Sci 2020:kfaa178. [PMID: 33295630 DOI: 10.1093/toxsci/kfaa178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2021;49:438-54. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
16 Veeren B, Ghaddar B, Bringart M, Khazaal S, Gonthier MP, Meilhac O, Diotel N, Bascands JL. Phenolic Profile of Herbal Infusion and Polyphenol-Rich Extract from Leaves of the Medicinal Plant Antirhea borbonica: Toxicity Assay Determination in Zebrafish Embryos and Larvae. Molecules 2020;25:E4482. [PMID: 33003608 DOI: 10.3390/molecules25194482] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]