BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Carqueijeiro I, Langley C, Grzech D, Koudounas K, Papon N, O’connor SE, Courdavault V. Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Current Opinion in Biotechnology 2020;65:17-24. [DOI: 10.1016/j.copbio.2019.11.017] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Li H, Fernie AR, Yang X. Using systems metabolic engineering strategies for high-oil maize breeding. Current Opinion in Biotechnology 2023;79:102847. [DOI: 10.1016/j.copbio.2022.102847] [Reference Citation Analysis]
2 Jiang C, Yu J, Fei X, Pan X, Zhu N, Lin C, Zhou D, Zhu H, Qi Y, Wu Z. Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.11.249] [Reference Citation Analysis]
3 da Fonseca-Pereira P, Siqueira JA, Monteiro-Batista RC, Vaz MGMV, Nunes-Nesi A, Araújo WL. Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022;359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Reference Citation Analysis]
4 Batool S, Javaid S, Javed H, Laiba Asim, Shahid I, Khan M, Muhammad A. Addressing artifacts of colorimetric anticancer assays for plant-based drug development. Med Oncol 2022;39:198. [PMID: 36071299 DOI: 10.1007/s12032-022-01791-z] [Reference Citation Analysis]
5 Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. J Agric Food Chem 2022. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Reference Citation Analysis]
6 Sadre R, Anthony TM, Grabar JM, Bedewitz MA, Jones AD, Barry CS. Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids. Nat Commun 2022;13:3832. [PMID: 35780230 DOI: 10.1038/s41467-022-31653-1] [Reference Citation Analysis]
7 Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. Front Plant Sci 2022;13:780257. [PMID: 35197994 DOI: 10.3389/fpls.2022.780257] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
8 Liu J, Liu M, Shi T, Sun G, Gao N, Zhao X, Guo X, Ni X, Yuan Q, Feng J, Liu Z, Guo Y, Chen J, Wang Y, Zheng P, Sun J. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction. Nat Commun 2022;13:891. [PMID: 35173152 DOI: 10.1038/s41467-022-28501-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
9 Beyraghdar Kashkooli A, Farmanpour-kalalagh K, Babaei A. Yeast Synthetic Biology for Production of Artemisinin as an Antimalarial Drug. Synthetic Biology of Yeasts 2022. [DOI: 10.1007/978-3-030-89680-5_6] [Reference Citation Analysis]
10 Barbole RS, Saikhedkar N, Giri A. Plant Peptides as Protease Inhibitors for Therapeutic and Agricultural Applications. Natural Products as Enzyme Inhibitors 2022. [DOI: 10.1007/978-981-19-0932-0_2] [Reference Citation Analysis]
11 Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021;54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
12 Li W, Ma X, Li G, Zhang A, Wang D, Fan F, Ma X, Zhang X, Dai Z, Qian Z. De Novo Biosynthesis of the Oleanane-Type Triterpenoids of Tunicosaponins in Yeast. ACS Synth Biol 2021;10:1874-81. [PMID: 34259519 DOI: 10.1021/acssynbio.1c00065] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021;50:8003-49. [PMID: 34142684 DOI: 10.1039/d0cs01575j] [Cited by in Crossref: 55] [Cited by in F6Publishing: 65] [Article Influence: 55.0] [Reference Citation Analysis]
14 Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front Pharmacol 2021;12:702487. [PMID: 34305611 DOI: 10.3389/fphar.2021.702487] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
15 Wang W, Taber DF, Renata H. Practical Enzymatic Production of Carbocycles. Chemistry 2021;27:11773-94. [PMID: 34107092 DOI: 10.1002/chem.202101232] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Courdavault V, O'Connor SE, Jensen MK, Papon N. Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Nat Prod Rep 2021. [PMID: 33969366 DOI: 10.1039/d0np00092b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
17 Trentini GE, Rojas M, Gajardo D, Alburquenque D, Villagra E, Gómez A, Arru L, Arencibia AD. Elicitation of phenylpropanoids in maqui (Aristotelia chilensis [Mol.] Stuntz) plants micropropagated in photomixotrophic temporary immersion bioreactors (TIBs). Plant Cell Tiss Organ Cult 2021;146:607-19. [DOI: 10.1007/s11240-021-02097-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A Perspective on Synthetic Biology in Drug Discovery and Development-Current Impact and Future Opportunities. SLAS Discov 2021;26:581-603. [PMID: 33834873 DOI: 10.1177/24725552211000669] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Asyakina L, Ivanova S, Prosekov A, Dyshlyuk L, Chupakhin E, Ulrikh E, Babich O, Sukhikh S. Determination of the Qualitative Composition of Biologically Active Substances of Extracts of In Vitro Callus, Cell Suspension, and Root Cultures of the Medicinal Plant Rhaponticum carthamoides. Applied Sciences 2021;11:2555. [DOI: 10.3390/app11062555] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Asyakina L, Sukhikh S, Ivanova S, Prosekov A, Ulrikh E, Chupahin E, Babich O. Determination of the Qualitative Composition of Biologically-Active Substances of Extracts of In Vitro Callus, Cell Suspension, and Root Cultures of the Medicinal Plant Rhodiola rosea. Biomolecules 2021;11:365. [PMID: 33673508 DOI: 10.3390/biom11030365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Ma Y, Li W, Mai J, Wang J, Wei Y, Ledesma-amaro R, Ji X. Engineering Yarrowia lipolytica for sustainable production of the chamomile sesquiterpene (−)-α-bisabolol. Green Chem 2021;23:780-7. [DOI: 10.1039/d0gc03180a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
22 Ramzi AB. Engineering of microbial cell factories for omics-guided production of medically important biomolecules. Microbial Cell Factories Engineering for Production of Biomolecules 2021. [DOI: 10.1016/b978-0-12-821477-0.00024-6] [Reference Citation Analysis]
23 Ramzi AB, Baharum SN, Bunawan H, Scrutton NS. Streamlining Natural Products Biomanufacturing With Omics and Machine Learning Driven Microbial Engineering. Front Bioeng Biotechnol 2020;8:608918. [PMID: 33409270 DOI: 10.3389/fbioe.2020.608918] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
24 Sadler JC. The Bipartisan Future of Synthetic Chemistry and Synthetic Biology. Chembiochem 2020;21:3489-91. [PMID: 33201568 DOI: 10.1002/cbic.202000418] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Stander EA, Sepúlveda LJ, Dugé de Bernonville T, Carqueijeiro I, Koudounas K, Lemos Cruz P, Besseau S, Lanoue A, Papon N, Giglioli-Guivarc'h N, Dirks R, O'Connor SE, Atehortùa L, Oudin A, Courdavault V. Identifying Genes Involved in alkaloid Biosynthesis in Vinca minor Through Transcriptomics and Gene Co-Expression Analysis. Biomolecules 2020;10:E1595. [PMID: 33255314 DOI: 10.3390/biom10121595] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
26 Romanowski S, Eustáquio AS. Synthetic biology for natural product drug production and engineering. Current Opinion in Chemical Biology 2020;58:137-45. [DOI: 10.1016/j.cbpa.2020.09.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
27 Lin TL, Lu CC, Lai WF, Wu TS, Lu JJ, Chen YM, Tzeng CM, Liu HT, Wei H, Lai HC. Role of gut microbiota in identification of novel TCM-derived active metabolites. Protein Cell 2021;12:394-410. [PMID: 32929698 DOI: 10.1007/s13238-020-00784-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
28 Ma J, Gu Y, Xu P. A roadmap to engineering antiviral natural products synthesis in microbes. Curr Opin Biotechnol 2020;66:140-9. [PMID: 32795662 DOI: 10.1016/j.copbio.2020.07.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
29 Shi M, Liao P, Nile SH, Georgiev MI, Kai G. Biotechnological Exploration of Transformed Root Culture for Value-Added Products. Trends Biotechnol 2021;39:137-49. [PMID: 32690221 DOI: 10.1016/j.tibtech.2020.06.012] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 18.5] [Reference Citation Analysis]
30 Guirimand G, Guihur A, Perello C, Phillips M, Mahroug S, Oudin A, Dugé de Bernonville T, Besseau S, Lanoue A, Giglioli-Guivarc'h N, Papon N, St-Pierre B, Rodríguez-Concepcíon M, Burlat V, Courdavault V. Cellular and Subcellular Compartmentation of the 2C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. Plants (Basel) 2020;9:E462. [PMID: 32272573 DOI: 10.3390/plants9040462] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]