BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chini CCS, Zeidler JD, Kashyap S, Warner G, Chini EN. Evolving concepts in NAD+ metabolism. Cell Metab 2021;33:1076-87. [PMID: 33930322 DOI: 10.1016/j.cmet.2021.04.003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Li W, Gao M, Hu C, Chen X, Zhou Y. NMNAT2: An important metabolic enzyme affecting the disease progression. Biomed Pharmacother 2023;158:114143. [PMID: 36528916 DOI: 10.1016/j.biopha.2022.114143] [Reference Citation Analysis]
2 Johnson S, Yoshioka K, Brace CS, Imai S. Quantification of localized NAD+ changes reveals unique specificity of NAD+ regulation in the hypothalamus. npj Aging 2023;9:1. [DOI: 10.1038/s41514-023-00098-1] [Reference Citation Analysis]
3 Sack MN. Tackling Inflammation at its Source in Heart Failure: Are Mitochondria the Key? JACC Basic Transl Sci 2022;7:1197-9. [PMID: 36644286 DOI: 10.1016/j.jacbts.2022.07.008] [Reference Citation Analysis]
4 Li T, Zou Y, Liu S, Yang Y, Zhang Z, Zhao Y. Monitoring NAD(H) and NADP(H) dynamics during organismal development with genetically encoded fluorescent biosensors. Cell Regen 2022;11:5. [DOI: 10.1186/s13619-021-00105-4] [Reference Citation Analysis]
5 Cai L, Ke C, Lin Z, Huang Y, Wang A, Wang S, Chen C, Zhong C, Fu L, Hu P, Chai J, Zhang H, Zhang B. Prognostic value of nicotinamide adenine dinucleotide (NAD(+)) metabolic genes in patients with stomach adenocarcinoma based on bioinformatics analysis. J Gastrointest Oncol 2022;13:2845-62. [PMID: 36636067 DOI: 10.21037/jgo-22-1092] [Reference Citation Analysis]
6 Gao L, Du X, Li J, Qin FX. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2022. [PMID: 36396822 DOI: 10.1038/s41416-022-02052-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Lin C, Xu J, Zhong G, Chen H, Xue H, Yang M, Chen C. Integrating RNA-seq and scRNA-seq to explore the biological significance of NAD + metabolism-related genes in the initial diagnosis and relapse of childhood B-cell acute lymphoblastic leukemia. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1043111] [Reference Citation Analysis]
8 Sarkar A, Dutta S, Sur M, Chakraborty S, Dey P, Mukherjee P. Early loss of endogenous NAD + following rotenone treatment leads to mitochondrial dysfunction and Sarm1 induction that is ameliorated by PARP inhibition. The FEBS Journal 2022. [DOI: 10.1111/febs.16652] [Reference Citation Analysis]
9 Zeidler JD, Chini CCS, Kanamori KS, Kashyap S, Espindola-Netto JM, Thompson K, Warner G, Cabral FS, Peclat TR, Gomez LS, Lopez SA, Wandersee MK, Schoon RA, Reid K, Menzies K, Beckedorff F, Reid JM, Brachs S, Meyer RG, Meyer-Ficca ML, Chini EN. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience 2022;25:105431. [PMID: 36388973 DOI: 10.1016/j.isci.2022.105431] [Reference Citation Analysis]
10 Narne P, Phanithi PB. Role of NAD+ and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2022. [PMID: 36180651 DOI: 10.1007/s10571-022-01287-4] [Reference Citation Analysis]
11 Gil Alabarse P, Chen LY, Oliveira P, Qin H, Liu-Bryan R. Targeting CD38 to Suppress Osteoarthritis Development and Associated Pain After Joint Injury in Mice. Arthritis Rheumatol 2022. [PMID: 36103412 DOI: 10.1002/art.42351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Li X, Li W, Zhang Z, Wang W, Huang H. SIRT6 overexpression retards renal interstitial fibrosis through targeting HIPK2 in chronic kidney disease. Front Pharmacol 2022;13:1007168. [DOI: 10.3389/fphar.2022.1007168] [Reference Citation Analysis]
13 Wong W, Crane ED, Zhang H, Li J, Day TA, Green AE, Menzies KJ, Crane JD. Pgc-1α controls epidermal stem cell fate and skin repair by sustaining NAD+ homeostasis during aging. Mol Metab 2022;:101575. [PMID: 35987498 DOI: 10.1016/j.molmet.2022.101575] [Reference Citation Analysis]
14 Ito N, Takatsu A, Ito H, Koike Y, Yoshioka K, Kamei Y, Imai SI. Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging. Cell Rep 2022;40:111131. [PMID: 35905718 DOI: 10.1016/j.celrep.2022.111131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Camponeschi A, Kläsener K, Sundell T, Lundqvist C, Manna PT, Ayoubzadeh N, Sundqvist M, Thorarinsdottir K, Gatto M, Visentini M, Önnheim K, Aranburu A, Forsman H, Ekwall O, Fogelstrand L, Gjertsson I, Reth M, Mårtensson IL. Human CD38 regulates B cell antigen receptor dynamic organization in normal and malignant B cells. J Exp Med 2022;219. [PMID: 35819358 DOI: 10.1084/jem.20220201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
16 Guo X, Tan S, Wang T, Sun R, Li S, Tian P, Li M, Wang Y, Zhang Y, Yan Y, Dong Z, Yan L, Yue X, Wu Z, Li C, Yamagata K, Gao L, Ma C, Li T, Liang X. NAD(+) salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology 2022. [PMID: 35815363 DOI: 10.1002/hep.32658] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Li W, Liang L, Liao Q, Li Y, Zhou Y. CD38: An important regulator of T cell function. Biomed Pharmacother 2022;153:113395. [PMID: 35834988 DOI: 10.1016/j.biopha.2022.113395] [Reference Citation Analysis]
18 Higashida H, Furuhara K, Lopatina O, Gerasimenko M, Hori O, Hattori T, Hayashi Y, Cherepanov SM, Shabalova AA, Salmina AB, Minami K, Yuhi T, Tsuji C, Fu P, Liu Z, Luo S, Zhang A, Yokoyama S, Shuto S, Watanabe M, Fujiwara K, Munesue S, Harashima A, Yamamoto Y. Oxytocin Dynamics in the Body and Brain Regulated by the Receptor for Advanced Glycation End-Products, CD38, CD157, and Nicotinamide Riboside. Front Neurosci 2022;16:858070. [DOI: 10.3389/fnins.2022.858070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Leseigneur C, Boucontet L, Duchateau M, Pizarro-Cerda J, Matondo M, Colucci-Guyon E, Dussurget O. NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes. Elife 2022;11:e79941. [PMID: 35723663 DOI: 10.7554/eLife.79941] [Reference Citation Analysis]
20 Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD+ in preserving DNA integrity. J Biol Chem 2022;298:102037. [PMID: 35595095 DOI: 10.1016/j.jbc.2022.102037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Linares JF, Cid-Diaz T, Duran A, Osrodek M, Martinez-Ordoñez A, Reina-Campos M, Kuo HH, Elemento O, Martin ML, Cordes T, Thompson TC, Metallo CM, Moscat J, Diaz-Meco MT. The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep 2022;39:110792. [PMID: 35545049 DOI: 10.1016/j.celrep.2022.110792] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Meyer-Ficca ML, Zwerdling AE, Swanson CA, Tucker AG, Lopez SA, Wandersee MK, Warner GM, Thompson KL, Chini CCS, Chen H, Chini EN, Meyer RG. Low NAD(+) Levels Are Associated With a Decline of Spermatogenesis in Transgenic ANDY and Aging Mice. Front Endocrinol (Lausanne) 2022;13:896356. [PMID: 35600581 DOI: 10.3389/fendo.2022.896356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Muoio DM, Williams AS, Grimsrud PA. Mitochondrial lysine acylation and cardiometabolic stress: Truth or consequence? Current Opinion in Physiology 2022. [DOI: 10.1016/j.cophys.2022.100551] [Reference Citation Analysis]
24 Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Progress in Neurobiology 2022. [DOI: 10.1016/j.pneurobio.2022.102289] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Jiang Y, Deng Y, Pang H, Ma T, Ye Q, Chen Q, Chen H, Hu Z, Qin CF, Xu Z. Treatment of SARS-CoV-2-induced pneumonia with NAD+ and NMN in two mouse models. Cell Discov 2022;8:38. [PMID: 35487885 DOI: 10.1038/s41421-022-00409-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W, Ding G. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 2022;:155194. [PMID: 35346693 DOI: 10.1016/j.metabol.2022.155194] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Jerves T, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. VIII. Neoplasias. Molecular Genetics and Metabolism 2022. [DOI: 10.1016/j.ymgme.2022.03.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, Gomez LS, Mazdeh DZ, Warner GM, Thompson KL, Chini CCS, Chini EN. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol 2022. [PMID: 35138178 DOI: 10.1152/ajpcell.00451.2021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
29 Mishra K, Péter M, Nardiello AM, Keller G, Llado V, Fernandez-Garcia P, Kahlert UD, Barasch D, Saada A, Török Z, Balogh G, Escriba PV, Piotto S, Kakhlon O. Multifaceted Analyses of Isolated Mitochondria Establish the Anticancer Drug 2-Hydroxyoleic Acid as an Inhibitor of Substrate Oxidation and an Activator of Complex IV-Dependent State 3 Respiration. Cells 2022;11:578. [PMID: 35159387 DOI: 10.3390/cells11030578] [Reference Citation Analysis]
30 Yang H, Jia X, Han Y. Microbial redox coenzyme engineering and applications in biosynthesis. Trends in Microbiology 2022. [DOI: 10.1016/j.tim.2022.01.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 O'Loghlen A. The potential of aging rejuvenation. Cell Cycle 2022;:1-6. [PMID: 34978468 DOI: 10.1080/15384101.2021.2013612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Chu X, Raju RP. Regulation of NAD(+) metabolism in aging and disease. Metabolism 2022;126:154923. [PMID: 34743990 DOI: 10.1016/j.metabol.2021.154923] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
33 Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. Medical Review 2021;1:199-221. [DOI: 10.1515/mr-2021-0015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Abdellatif M, Sedej S, Kroemer G. NAD+ Metabolism in Cardiac Health, Aging, and Disease. Circulation 2021;144:1795-817. [PMID: 34843394 DOI: 10.1161/CIRCULATIONAHA.121.056589] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
35 Lundt S, Ding S. NAD+ Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021;12:1776. [PMID: 34828382 DOI: 10.3390/genes12111776] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Liu Z, Chaillou T, Santos Alves E, Mader T, Jude B, Ferreira DMS, Hynynen H, Cheng AJ, Jonsson WO, Pironti G, Andersson DC, Kenne E, Ruas JL, Tavi P, Lanner JT. Mitochondrial NDUFA4L2 is a novel regulator of skeletal muscle mass and force. FASEB J 2021;35:e22010. [PMID: 34724256 DOI: 10.1096/fj.202100066R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Do VD, Tulsian NK, Tan WK, Li Z, Cheng L, Autio MI, Tan WL, Tiang Z, Perrin A, Ching J, Lee M, Bonne I, Ramachandra C, Lim CK, Hausenloy DJ, Drum CL, Richards AM, Anand GS, Foo RS. The novel conserved NAD+-binding micropeptide SGHRT regulates mitochondrial function and metabolism in human cardiomyocytes.. [DOI: 10.1101/2021.10.24.465637] [Reference Citation Analysis]
38 Wei Z, Chai H, Chen Y, Cheng Y, Liu X. Nicotinamide mononucleotide: An emerging nutraceutical against cardiac aging? Curr Opin Pharmacol 2021;60:291-7. [PMID: 34507029 DOI: 10.1016/j.coph.2021.08.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Boo YC. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants (Basel) 2021;10:1315. [PMID: 34439563 DOI: 10.3390/antiox10081315] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
40 Leseigneur C, Boucontet L, Duchateau M, Pizarro-cerda J, Matondo M, Colucci-guyon E, Dussurget O. NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes.. [DOI: 10.1101/2021.08.09.455706] [Reference Citation Analysis]
41 Sarkar A, Sur M, Dutta S, Dey P, Mukherjee P. Early loss of endogenous NAD+ following rotenone treatment leads to Sarm1 activation that is ameliorated by PARP inhibition.. [DOI: 10.1101/2021.07.30.454548] [Reference Citation Analysis]
42 Wan W, Zhu W, Wu Y, Long Y, Liu H, Wan W, Wan G, Yu J. Grape Seed Proanthocyanidin Extract Moderated Retinal Pigment Epithelium Cellular Senescence Through NAMPT/SIRT1/NLRP3 Pathway. J Inflamm Res 2021;14:3129-43. [PMID: 34285539 DOI: 10.2147/JIR.S306456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
43 Montllor-Albalate C, Song Z, Chen D. The therapeutic promises of NAD+ boosters. Cell Metab 2021;33:1274-5. [PMID: 34233170 DOI: 10.1016/j.cmet.2021.06.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]