1 |
Debas M, Freire RVM, Salentinig S. Supramolecular design of CO(2)-responsive lipid nanomaterials. J Colloid Interface Sci 2023;637:513-21. [PMID: 36724665 DOI: 10.1016/j.jcis.2023.01.060] [Reference Citation Analysis]
|
2 |
Pimenta BV, Madrid RRM, Mathews PD, Riske KA, Loh W, Angelov B, Angelova A, Mertins O. Interaction of polyelectrolyte-shell cubosomes with serum albumin for triggering drug release in gastrointestinal cancer. J Mater Chem B 2023;11:2490-503. [PMID: 36852541 DOI: 10.1039/d2tb02670h] [Reference Citation Analysis]
|
3 |
Behera A, Padhi S, Nayak AK. Engineered liposomes as drug delivery and imaging agents. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00010-6] [Reference Citation Analysis]
|
4 |
Agarawal K, Anant Kulkarni Y, Wairkar S. Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Deliv Transl Res 2023;13:18-36. [PMID: 35637334 DOI: 10.1007/s13346-022-01174-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Ding L, Wang X, Wang T, Yu B, Han M, Guo Y. Effect of Lipophilic Chains on the Antitumor Effect of a Dendritic Nano Drug Delivery System. Molecules 2022;28. [PMID: 36615265 DOI: 10.3390/molecules28010069] [Reference Citation Analysis]
|
6 |
Clemente I, D’aria F, Giancola C, Bonechi C, Slouf M, Pavlova E, Rossi C, Ristori S. Structuring and de-structuring of nanovectors from algal lipids. Part 1: physico-chemical characterization. Colloids and Surfaces B: Biointerfaces 2022;220:112939. [DOI: 10.1016/j.colsurfb.2022.112939] [Reference Citation Analysis]
|
7 |
Bor G, Lin JH, Lin KY, Chen HC, Prajnamitra RP, Salentinig S, Hsieh PCH, Moghimi SM, Yaghmur A. PEGylation of Phosphatidylglycerol/Docosahexaenoic Acid Hexosomes with d-α-Tocopheryl Succinate Poly(ethylene glycol)2000 Induces Morphological Transformation into Vesicles with Prolonged Circulation Times. ACS Appl Mater Interfaces 2022. [PMID: 36271846 DOI: 10.1021/acsami.2c14375] [Reference Citation Analysis]
|
8 |
Tewari AK, Upadhyay SC, Kumar M, Pathak K, Kaushik D, Verma R, Bhatt S, Massoud EES, Rahman MH, Cavalu S. Insights on Development Aspects of Polymeric Nanocarriers: The Translation from Bench to Clinic. Polymers 2022;14:3545. [DOI: 10.3390/polym14173545] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
9 |
Cytryniak A, Żelechowska-Matysiak K, Nazaruk E, Bilewicz R, Walczak R, Majka E, Mames A, Bruchertseifer F, Morgenstern A, Bilewicz A, Majkowska-Pilip A. Cubosomal Lipid Formulation for Combination Cancer Treatment: Delivery of a Chemotherapeutic Agent and Complexed α-Particle Emitter 213Bi. Mol Pharm 2022. [PMID: 35849547 DOI: 10.1021/acs.molpharmaceut.2c00182] [Reference Citation Analysis]
|
10 |
Lee Y, Mo Y, Park D, Lee H, Lee W, Park H, Han S, Park K. Highly efficient lithium-ion exchange membrane water electrolysis. Journal of Power Sources 2022;529:231188. [DOI: 10.1016/j.jpowsour.2022.231188] [Reference Citation Analysis]
|
11 |
Lamch Ł, Wilk KA, Dékány I, Deák Á, Hornok V, Janovák L. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide-co-glycolide). Langmuir 2022. [PMID: 35442685 DOI: 10.1021/acs.langmuir.1c03360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Chountoulesi M, Pispas S, Tseti IK, Demetzos C. Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals 2022;15:429. [DOI: 10.3390/ph15040429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Abdel Maksoud MIA, Ghobashy MM, Kodous AS, Fahim RA, Osman AI, Al-muhtaseb AH, Rooney DW, Mamdouh MA, Nady N, Ashour AH. Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications. Nanotechnology Reviews 2022;11:372-413. [DOI: 10.1515/ntrev-2022-0027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
14 |
Marson D, Aulic S, Laurini E, Pricl S. Cubosomes: a promising vesicular system for drug delivery. Systems of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91864-0.00021-8] [Reference Citation Analysis]
|
15 |
Das B, Basu A, Hasnain MS, Nayak AK. Liposomes as efficient lipid nanovesicular systems for drug delivery. Systems of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91864-0.00024-3] [Reference Citation Analysis]
|
16 |
Arshad S, Masood-ur-rehman, Asim MH, Mahmood A, Ijaz M, Alamgeer, Irfan HM, Anwar F, Ali MY. Calycosin-loaded nanostructured lipid carriers: In-vitro and in-vivo evaluation for enhanced anti-cancer potential. Journal of Drug Delivery Science and Technology 2022;67:102957. [DOI: 10.1016/j.jddst.2021.102957] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Bhutta ZA, Kanwal A, Ashar A, Ali M, Mahfooz A, Kulyar MF, Shoaib M, Ahmed R, Li K. Role of Nanoparticles in Cancer Therapy. Handbook of Research on Green Synthesis and Applications of Nanomaterials 2022. [DOI: 10.4018/978-1-7998-8936-6.ch016] [Reference Citation Analysis]
|
18 |
Jeon SW, Jin HS, Park YJ. Formation of Self-Assembled Liquid Crystalline Nanoparticles and Absorption Enhancement of Ω-3s by Phospholipids and Oleic Acids. Pharmaceutics 2021;14:68. [PMID: 35056964 DOI: 10.3390/pharmaceutics14010068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
19 |
Bailey LF, Vavolil Prabhakaran J, Vishwapathi VK, Kulkarni CV. Electroformation of Particulate Emulsions Using Lamellar and Nonlamellar Lipid Self-Assemblies. Langmuir 2021;37:14527-39. [PMID: 34855404 DOI: 10.1021/acs.langmuir.1c02721] [Reference Citation Analysis]
|
20 |
Notarstefano V, Pisani M, Bramucci M, Quassinti L, Maggi F, Vaccari L, Parlapiano M, Giorgini E, Astolfi P. A vibrational in vitro approach to evaluate the potential of monoolein nanoparticles as isofuranodiene carrier in MDA-MB 231 breast cancer cell line: New insights from Infrared and Raman microspectroscopies. Spectrochim Acta A Mol Biomol Spectrosc 2021;269:120735. [PMID: 34923374 DOI: 10.1016/j.saa.2021.120735] [Reference Citation Analysis]
|
21 |
Magana J, Esquena J, Solans C, Rodriguez-abreu C. Deconstruction of technical grade diglycerol isostearate enables the controlled preparation of hexosomes and liposomes. Journal of Molecular Liquids 2021;343:117594. [DOI: 10.1016/j.molliq.2021.117594] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Lim S, Salentinig S. Protein nanocage-stabilized Pickering emulsions. Current Opinion in Colloid & Interface Science 2021;56:101485. [DOI: 10.1016/j.cocis.2021.101485] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
23 |
Sivaranjini B, Umadevi S, Khan RK, Pratibha R, Dekshinamoorthy A, Vijayaraghavan S, Ganesh V. Planar and Vertical Alignment of Rod-like and Bent-core Liquid Crystals Using Functionalized Indium Tin Oxide Substrates. Liquid Crystals. [DOI: 10.1080/02678292.2021.1995061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
24 |
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021;13:1897. [PMID: 34834311 DOI: 10.3390/pharmaceutics13111897] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
25 |
Rakotoarisoa M, Angelov B, Espinoza S, Khakurel K, Bizien T, Drechsler M, Angelova A. Composition-Switchable Liquid Crystalline Nanostructures as Green Formulations of Curcumin and Fish Oil. ACS Sustainable Chem Eng 2021;9:14821-35. [DOI: 10.1021/acssuschemeng.1c04706] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
26 |
Mehta M, Malyla V, Paudel KR, Chellappan DK, Hansbro PM, Oliver BG, Dua K. Berberine loaded liquid crystalline nanostructure inhibits cancer progression in adenocarcinomic human alveolar basal epithelial cells in vitro. J Food Biochem 2021;45:e13954. [PMID: 34609010 DOI: 10.1111/jfbc.13954] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
27 |
Xie HJ, Zhan-Dui N, Zhao J, Er-Bu AGA, Zhen P, ZhuoMa D, Sang T. Evaluation of nanoscaled dual targeting drug-loaded liposomes on inhibiting vasculogenic mimicry channels of brain glioma. Artif Cells Nanomed Biotechnol 2021;49:596-605. [PMID: 34514904 DOI: 10.1080/21691401.2020.1814314] [Reference Citation Analysis]
|
28 |
Mathews PD, Mertins O, Angelov B, Angelova A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: A synchrotron SAXS study. J Colloid Interface Sci 2022;607:440-50. [PMID: 34509118 DOI: 10.1016/j.jcis.2021.08.187] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
|
29 |
Waheed A, Aqil M. Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. Journal of Molecular Liquids 2021;338:116919. [DOI: 10.1016/j.molliq.2021.116919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
30 |
Knoke S, Bunjes H. Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures. Pharmaceuticals (Basel) 2021;14:865. [PMID: 34577565 DOI: 10.3390/ph14090865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Astolfi P, Giorgini E, Perinelli DR, Vita F, Adamo FC, Logrippo S, Parlapiano M, Bonacucina G, Pucciarelli S, Francescangeli O, Vaccari L, Pisani M. Cubic and Hexagonal Mesophases for Protein Encapsulation: Structural Effects of Insulin Confinement. Langmuir 2021;37:10166-76. [PMID: 34369787 DOI: 10.1021/acs.langmuir.1c01587] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
32 |
Zatloukalová M, Jedinák L, Riman D, Franková J, Novák D, Cytryniak A, Nazaruk E, Bilewicz R, Vrba J, Papoušková B, Kabeláč M, Vacek J. Cubosomal lipid formulation of nitroalkene fatty acids: Preparation, stability and biological effects. Redox Biol 2021;46:102097. [PMID: 34418599 DOI: 10.1016/j.redox.2021.102097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
33 |
Bor G, Salentinig S, Şahin E, Nur Ödevci B, Roursgaard M, Liccardo L, Hamerlik P, Moghimi SM, Yaghmur A. Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/ω-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. J Colloid Interface Sci 2021;606:464-79. [PMID: 34399363 DOI: 10.1016/j.jcis.2021.07.149] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
34 |
Gontsarik M, Mansour AB, Hong L, Guizar-Sicairos M, Salentinig S. pH-responsive aminolipid nanocarriers for antimicrobial peptide delivery. J Colloid Interface Sci 2021;603:398-407. [PMID: 34197988 DOI: 10.1016/j.jcis.2021.06.050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
35 |
Ilhan-Ayisigi E, Ghazal A, Sartori B, Dimaki M, Svendsen WE, Yesil-Celiktas O, Yaghmur A. Continuous Microfluidic Production of Citrem-Phosphatidylcholine Nano-Self-Assemblies for Thymoquinone Delivery. Nanomaterials (Basel) 2021;11:1510. [PMID: 34200457 DOI: 10.3390/nano11061510] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
36 |
Angelova A, Angelov B, Deng Y. Lipid Membranes: Fusion, Instabilities, and Cubic Structure Formation. Biological Soft Matter 2021. [DOI: 10.1002/9783527811014.ch5] [Reference Citation Analysis]
|
37 |
Pormohammad A, Monych NK, Ghosh S, Turner DL, Turner RJ. Nanomaterials in Wound Healing and Infection Control. Antibiotics (Basel) 2021;10:473. [PMID: 33919072 DOI: 10.3390/antibiotics10050473] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
|
38 |
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021;11:871-85. [PMID: 33996404 DOI: 10.1016/j.apsb.2021.02.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
|
39 |
Ceresino EB, Johansson E, Sato HH, Plivelic TS, Hall SA, Bez J, Kuktaite R. Lupin Protein Isolate Structure Diversity in Frozen-Cast Foams: Effects of Transglutaminases and Edible Fats. Molecules 2021;26:1717. [PMID: 33808718 DOI: 10.3390/molecules26061717] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
40 |
Shah V, Bharatiya B, Gawali S, Hassan PA, Shukla AD, Khandelwal A, Bhatt H, Vasu V, Shah DO. Thermoresponsive liquid crystalline formulation of Exemestane: Design and structural characterization. Colloids Surf B Biointerfaces 2021;202:111683. [PMID: 33721804 DOI: 10.1016/j.colsurfb.2021.111683] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
41 |
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021;48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Cited by in Crossref: 42] [Cited by in F6Publishing: 49] [Article Influence: 21.0] [Reference Citation Analysis]
|
42 |
Mahmoud NN, Aqabani H, Hikmat S, Abu-Dahab R. Colloidal Stability and Cytotoxicity of Polydopamine-Conjugated Gold Nanorods against Prostate Cancer Cell Lines. Molecules 2021;26:1299. [PMID: 33670890 DOI: 10.3390/molecules26051299] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
43 |
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021;15:557-76. [PMID: 33603345 DOI: 10.2147/DDDT.S292417] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
44 |
Gontsarik M, Yaghmur A, Salentinig S. Dispersed liquid crystals as pH-adjustable antimicrobial peptide nanocarriers. Journal of Colloid and Interface Science 2021;583:672-82. [DOI: 10.1016/j.jcis.2020.09.081] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
45 |
Xie H, Feng S, Farag MA, Sun P, Shao P. Synergistic cytotoxicity of erianin, a bisbenzyl in the dietetic Chinese herb Dendrobium against breast cancer cells. Food Chem Toxicol 2021;149:111960. [PMID: 33385512 DOI: 10.1016/j.fct.2020.111960] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
46 |
Ghosh S, Turner RJ, Bhagwat T, Webster TJ. Novel and Future Treatment Strategies for Biofilm-Associated Infections. Biofilm-Mediated Diseases: Causes and Controls 2021. [DOI: 10.1007/978-981-16-0745-5_10] [Reference Citation Analysis]
|
47 |
Ghorai S, Bag BG. First Vesicular Self‐assembly of a Trihydroxy‐Diterpenoid Andrographolide in Aqueous Medium: Entrapment and Release of Fluorophore and Anti‐Cancer Drug Doxorubicin. ChemistrySelect 2020;5:15032-8. [DOI: 10.1002/slct.202003248] [Reference Citation Analysis]
|
48 |
Wang T, Dou Y, Lin G, Li Q, Nie J, Chen B, Xie J, Su Z, Zeng H, Chen J, Xie Y. The anti-hepatocellular carcinoma effect of Brucea javanica oil in ascitic tumor-bearing mice: The detection of brusatol and its role. Biomed Pharmacother 2021;134:111122. [PMID: 33341052 DOI: 10.1016/j.biopha.2020.111122] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
|
49 |
Champanery R, Joshi D. Genetics of Colorectal Cancer: Role of p53. J Drug Delivery Ther 2020;10:183-185. [DOI: 10.22270/jddt.v10i6-s.4423] [Reference Citation Analysis]
|
50 |
Jung SY, Kim HM, Hwang S, Jeung DG, Rhee KJ, Oh JM. Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System. Pharmaceutics 2020;12:E1210. [PMID: 33327415 DOI: 10.3390/pharmaceutics12121210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
51 |
Cytryniak A, Nazaruk E, Bilewicz R, Górzyńska E, Żelechowska-Matysiak K, Walczak R, Mames A, Bilewicz A, Majkowska-Pilip A. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled with 177Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials (Basel) 2020;10:E2272. [PMID: 33207760 DOI: 10.3390/nano10112272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
52 |
Meng W, Tian Z, Yao P, Fang X, Wu T, Cheng J, Zou A. Preparation of a novel sustained-release system for pyrethroids by using metal-organic frameworks (MOFs) nanoparticle. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;604:125266. [DOI: 10.1016/j.colsurfa.2020.125266] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
53 |
Rostamabadi H, Falsafi SR, Assadpour E, Jafari SM. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Comprehensive Reviews in Food Science and Food Safety 2020;19:3266-322. [DOI: 10.1111/1541-4337.12653] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
|
54 |
Ramalheiro A, Paris JL, Silva BFB, Pires LR. Rapidly dissolving microneedles for the delivery of cubosome-like liquid crystalline nanoparticles with sustained release of rapamycin. Int J Pharm 2020;591:119942. [PMID: 33039495 DOI: 10.1016/j.ijpharm.2020.119942] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
|
55 |
Glatter O, Salentinig S. Inverting structures: from micelles via emulsions to internally self-assembled water and oil continuous nanocarriers. Current Opinion in Colloid & Interface Science 2020;49:82-93. [DOI: 10.1016/j.cocis.2020.05.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
56 |
Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opinion on Drug Delivery 2020;17:1781-805. [DOI: 10.1080/17425247.2020.1819979] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
|
57 |
Astolfi P, Pisani M, Giorgini E, Rossi B, Damin A, Vita F, Francescangeli O, Luciani L, Galassi R. Synchrotron Characterization of Hexagonal and Cubic Lipidic Phases Loaded with Azolate/Phosphane Gold(I) Compounds: A New Approach to the Uploading of Gold(I)-Based Drugs. Nanomaterials (Basel) 2020;10:E1851. [PMID: 32947840 DOI: 10.3390/nano10091851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
58 |
Liu D, Angelova A, Liu J, Garamus VM, Angelov B, Zhang X, Li Y, Feger G, Li N, Zou A. Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1-hexokinase-II complex. J Mater Chem B 2019;7:4706-16. [PMID: 31364685 DOI: 10.1039/c9tb00629j] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
|
59 |
Yu Helvig S, Woythe L, Pham S, Bor G, Andersen H, Moein Moghimi S, Yaghmur A. A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (mPEG)-lipids showing variable complement activation properties. J Colloid Interface Sci 2021;582:906-17. [PMID: 32919118 DOI: 10.1016/j.jcis.2020.08.085] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
|
60 |
Murgia S, Biffi S, Mezzenga R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid & Interface Science 2020;48:28-39. [DOI: 10.1016/j.cocis.2020.03.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
|
61 |
Tomchuk OV. The Concept of Fractals in the Structural Analysis of Nanosystems: A Retrospective Look and Prospects. Ukr J Phys 2020;65:709. [DOI: 10.15407/ujpe65.8.709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
62 |
Hao H, Wang N, Zhang Y, Zhang K, Teng H. Effects of apolar organic additives on phase behaviors of cationic-anionic surfactant mixtures. Journal of Dispersion Science and Technology 2020;41:1311-1318. [DOI: 10.1080/01932691.2019.1617734] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
63 |
Cheu C, Yang L, Nieh MP. Refining internal bilayer structure of bicelles resolved by extended-q small angle X-ray scattering. Chem Phys Lipids 2020;231:104945. [PMID: 32621811 DOI: 10.1016/j.chemphyslip.2020.104945] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
64 |
Mohapatra P, Singh P, Sahoo SK. Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells. Drug Discov Today 2020;25:1307-21. [PMID: 32554061 DOI: 10.1016/j.drudis.2020.06.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
65 |
Lin Y, Yu R, Yin G, Chen Z, Lin H. Syringic acid delivered via mPEG-PLGA-PLL nanoparticles enhances peripheral nerve regeneration effect. Nanomedicine 2020;15:1487-99. [DOI: 10.2217/nnm-2020-0042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
66 |
Helvig SY, Andersen H, Antopolsky M, Airaksinen AJ, Urtti A, Yaghmur A, Moghimi SM. Hexosome engineering for targeting of regional lymph nodes. Materialia 2020;11:100705. [DOI: 10.1016/j.mtla.2020.100705] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
|
67 |
Loo YS, Madheswaran T, Rajendran R, Bose RJ. Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. Journal of Drug Delivery Science and Technology 2020;57:101756. [DOI: 10.1016/j.jddst.2020.101756] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
68 |
Mertins O, Mathews PD, Angelova A. Advances in the Design of pH-Sensitive Cubosome Liquid Crystalline Nanocarriers for Drug Delivery Applications. Nanomaterials (Basel) 2020;10:E963. [PMID: 32443582 DOI: 10.3390/nano10050963] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 14.7] [Reference Citation Analysis]
|
69 |
Pisani M, Quassinti L, Bramucci M, Galassi R, Maggi F, Rossi B, Damin A, Carloni P, Astolfi P. Nanostructured liquid crystalline particles as delivery vectors for isofuranodiene: Characterization and in-vitro anticancer activity. Colloids Surf B Biointerfaces 2020;192:111050. [PMID: 32344164 DOI: 10.1016/j.colsurfb.2020.111050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
70 |
Silva DA, Xavier MJ, Dutra JDL, Gimenez IF, Freire RO, da Costa NB. Prediction of correct intermolecular interactions in host-guest systems involving cyclodextrins. Journal of Molecular Structure 2020;1205:127517. [DOI: 10.1016/j.molstruc.2019.127517] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
71 |
Radbeh Z, Asefi N, Hamishehkar H, Roufegarinejad L, Pezeshki A. Novel carriers ensuring enhanced anti-cancer activity of Cornus mas (cornelian cherry) bioactive compounds. Biomed Pharmacother 2020;125:109906. [PMID: 32106382 DOI: 10.1016/j.biopha.2020.109906] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
72 |
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020;321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Cited by in Crossref: 81] [Cited by in F6Publishing: 84] [Article Influence: 27.0] [Reference Citation Analysis]
|
73 |
Narayanan T, Konovalov O. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. Materials (Basel) 2020;13:E752. [PMID: 32041363 DOI: 10.3390/ma13030752] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
|
74 |
Tezgel Ö, Distasio N, Laghezza-masci V, Taddei A, Szarpak-jankowska A, Auzély-velty R, Navarro FP, Texier I. Collagen scaffold-mediated delivery of NLC/siRNA as wound healing materials. Journal of Drug Delivery Science and Technology 2020;55:101421. [DOI: 10.1016/j.jddst.2019.101421] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
|
75 |
Yadav N, Parveen S, Banerjee M. Potential of nano-phytochemicals in cervical cancer therapy. Clin Chim Acta 2020;505:60-72. [PMID: 32017926 DOI: 10.1016/j.cca.2020.01.035] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
|
76 |
Millán-chiu BE, del Pilar Rodriguez-torres M, Loske AM. Nanotoxicology in Plants. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-39246-8_3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
77 |
Innocenti Malini R, Zabara M, Gontsarik M, Maniura-weber K, Rossi RM, Spano F, Salentinig S. Self-assembly of glycerol monooleate with the antimicrobial peptide LL-37: a molecular dynamics study. RSC Adv 2020;10:8291-302. [DOI: 10.1039/c9ra10037g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
78 |
Kovačević AB. Lipid nanocarriers for delivery of poorly soluble and poorly permeable drugs. Nanopharmaceuticals 2020. [DOI: 10.1016/b978-0-12-817778-5.00008-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
79 |
Yaghmur A, Tran BV, Moghimi SM. Non-Lamellar Liquid Crystalline Nanocarriers for Thymoquinone Encapsulation. Molecules 2019;25:E16. [PMID: 31861549 DOI: 10.3390/molecules25010016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
|
80 |
Yaghmur A, Lotfi S, Ariabod SA, Bor G, Gontsarik M, Salentinig S. Internal Lamellar and Inverse Hexagonal Liquid Crystalline Phases During the Digestion of Krill and Astaxanthin Oil-in-Water Emulsions. Front Bioeng Biotechnol 2019;7:384. [PMID: 31867316 DOI: 10.3389/fbioe.2019.00384] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
|
81 |
Pedro IDR, Almeida OP, Martins HR, Lemos JDA, Branco de Barros AL, Leite EA, Carneiro G. Optimization and in vitro/in vivo performance of paclitaxel-loaded nanostructured lipid carriers for breast cancer treatment. Journal of Drug Delivery Science and Technology 2019;54:101370. [DOI: 10.1016/j.jddst.2019.101370] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
82 |
Han J, An X. A novel method to prepare lipid vesicles as carrier of hydrophilic bioactive substances. Journal of Dispersion Science and Technology 2020;41:30-8. [DOI: 10.1080/01932691.2018.1484295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
83 |
Li Y, Angelova A, Hu F, Garamus VM, Peng C, Li N, Liu J, Liu D, Zou A. pH Responsiveness of Hexosomes and Cubosomes for Combined Delivery of Brucea javanica Oil and Doxorubicin. Langmuir 2019;35:14532-42. [PMID: 31635451 DOI: 10.1021/acs.langmuir.9b02257] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
|
84 |
Angelova A, Drechsler M, Garamus VM, Angelov B. Pep‐Lipid Cubosomes and Vesicles Compartmentalized by Micelles from Self‐Assembly of Multiple Neuroprotective Building Blocks Including a Large Peptide Hormone PACAP‐DHA. ChemNanoMat 2019;5:1381-9. [DOI: 10.1002/cnma.201900468] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
|
85 |
Fu M, Tang W, Liu JJ, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J Drug Target 2020;28:245-58. [PMID: 31462111 DOI: 10.1080/1061186X.2019.1656725] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
|
86 |
Rakotoarisoa M, Angelov B, Espinoza S, Khakurel K, Bizien T, Angelova A. Cubic Liquid Crystalline Nanostructures Involving Catalase and Curcumin: BioSAXS Study and Catalase Peroxidatic Function after Cubosomal Nanoparticle Treatment of Differentiated SH-SY5Y Cells. Molecules 2019;24:E3058. [PMID: 31443533 DOI: 10.3390/molecules24173058] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 9.0] [Reference Citation Analysis]
|
87 |
Wei D, Ge L, Wang Z, Wang Y, Guo R. Self-Assembled Dual Helical Nanofibers of Amphiphilic Perylene Diimides with Oligopeptide Substitution. Langmuir 2019;35:11745-54. [DOI: 10.1021/acs.langmuir.9b01745] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
88 |
Clemente I, Falsini S, Di Cola E, Fadda GC, Gonnelli C, Spinozzi F, Bacia-verloop M, Grillo I, Ristori S. Green Nanovectors for Phytodrug Delivery: In-Depth Structural and Morphological Characterization. ACS Sustainable Chem Eng 2019;7:12838-12846. [DOI: 10.1021/acssuschemeng.9b01748] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
89 |
Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond) 2019;14:2083-100. [PMID: 31368405 DOI: 10.2217/nnm-2018-0379] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
|
90 |
Maiorova LA, Erokhina SI, Pisani M, Barucca G, Marcaccio M, Koifman OI, Salnikov DS, Gromova OA, Astolfi P, Ricci V, Erokhin V. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf B Biointerfaces 2019;182:110366. [PMID: 31351273 DOI: 10.1016/j.colsurfb.2019.110366] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
|
91 |
Astolfi P, Giorgini E, Adamo FC, Vita F, Logrippo S, Francescangeli O, Pisani M. Effects of a cationic surfactant incorporation in phytantriol bulk cubic phases and dispersions loaded with the anticancer drug 5-fluorouracil. Journal of Molecular Liquids 2019;286:110954. [DOI: 10.1016/j.molliq.2019.110954] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
92 |
van T Hag L, de Campo L, Tran N, Sokolova A, Trenker R, Call ME, Call MJ, Garvey CJ, Leung AE, Darwish TA, Krause-Heuer A, Knott R, Meikle TG, Drummond CJ, Mezzenga R, Conn CE. Protein-Eye View of the in Meso Crystallization Mechanism. Langmuir 2019;35:8344-56. [PMID: 31122018 DOI: 10.1021/acs.langmuir.9b00647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
93 |
Yaghmur A, Ghazal A, Ghazal R, Dimaki M, Svendsen WE. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Phys Chem Chem Phys 2019;21:13005-13. [PMID: 31165825 DOI: 10.1039/c9cp02393c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
|
94 |
Lacatusu I, Badea N, Badea G, Mihaila M, Ott C, Stan R, Meghea A. Advanced bioactive lipid nanocarriers loaded with natural and synthetic anti-inflammatory actives. Chemical Engineering Science 2019;200:113-26. [DOI: 10.1016/j.ces.2019.01.044] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
|
95 |
Zhang Y, Tian Z, Zhao X, Li N, Garamus VM, Yin P, Zou A. Dual-modified bufalin loaded liposomes for enhanced tumor targeting. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;571:72-9. [DOI: 10.1016/j.colsurfa.2019.03.060] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
96 |
Chen T, Li S, Zhu W, Liang Z, Zeng Q. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. Journal of Microencapsulation 2019;36:96-107. [DOI: 10.1080/02652048.2019.1604846] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 8.5] [Reference Citation Analysis]
|
97 |
Bag BG, Hasan SN, Ghorai S, Panja SK. First Self-Assembly of Dihydroxy Triterpenoid Maslinic Acid Yielding Vesicles. ACS Omega 2019;4:7684-90. [DOI: 10.1021/acsomega.8b03667] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
|
98 |
Mierzwa M, Cytryniak A, Krysiński P, Bilewicz R. Lipidic Liquid Crystalline Cubic Phases and Magnetocubosomes as Methotrexate Carriers. Nanomaterials (Basel) 2019;9:E636. [PMID: 31010165 DOI: 10.3390/nano9040636] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
|
99 |
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, López-Romero JM. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials (Basel) 2019;9:E638. [PMID: 31010180 DOI: 10.3390/nano9040638] [Cited by in Crossref: 163] [Cited by in F6Publishing: 172] [Article Influence: 40.8] [Reference Citation Analysis]
|
100 |
Gad HA, Abd El-rahman FA, Hamdy GM. Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing. Journal of Drug Delivery Science and Technology 2019;50:329-38. [DOI: 10.1016/j.jddst.2019.01.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
|
101 |
Angelova A, Angelov B, Garamus VM, Drechsler M. A vesicle-to-sponge transition via the proliferation of membrane-linking pores in ω-3 polyunsaturated fatty acid-containing lipid assemblies. Journal of Molecular Liquids 2019;279:518-23. [DOI: 10.1016/j.molliq.2019.01.124] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
102 |
Bayón-Cordero L, Alkorta I, Arana L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials (Basel) 2019;9:E474. [PMID: 30909401 DOI: 10.3390/nano9030474] [Cited by in Crossref: 103] [Cited by in F6Publishing: 112] [Article Influence: 25.8] [Reference Citation Analysis]
|
103 |
Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BCSJ 2019;92:391-9. [DOI: 10.1246/bcsj.20180293] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 18.8] [Reference Citation Analysis]
|
104 |
Le TC, Tran N. Using Machine Learning To Predict the Self-Assembled Nanostructures of Monoolein and Phytantriol as a Function of Temperature and Fatty Acid Additives for Effective Lipid-Based Delivery Systems. ACS Appl Nano Mater 2019;2:1637-47. [DOI: 10.1021/acsanm.9b00075] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
|
105 |
Salentinig S. Supramolecular structures in lipid digestion and implications for functional food delivery. Current Opinion in Colloid & Interface Science 2019;39:190-201. [DOI: 10.1016/j.cocis.2019.02.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
|
106 |
Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects. Therapeutic Delivery 2019;10:113-32. [DOI: 10.4155/tde-2018-0062] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 18.8] [Reference Citation Analysis]
|
107 |
Menezes PDP, Andrade TA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AAS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019;559:312-28. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 8.8] [Reference Citation Analysis]
|
108 |
Murakami T, Hijikuro I, Yamashita K, Tsunoda S, Hirai K, Suzuki T, Sakai Y, Tabata Y. Antiadhesion effect of the C17 glycerin ester of isoprenoid-type lipid forming a nonlamellar liquid crystal. Acta Biomater 2019;84:257-67. [PMID: 30529080 DOI: 10.1016/j.actbio.2018.12.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
109 |
Gontsarik M, Yaghmur A, Ren Q, Maniura-Weber K, Salentinig S. From Structure to Function: pH-Switchable Antimicrobial Nano-Self-Assemblies. ACS Appl Mater Interfaces 2019;11:2821-9. [PMID: 30589253 DOI: 10.1021/acsami.8b18618] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 12.0] [Reference Citation Analysis]
|
110 |
Chan LY, Khung YL, Lin CY. Preparation of Messenger RNA Nanomicelles via Non-Cytotoxic PEG-Polyamine Nanocomplex for Intracerebroventicular Delivery: A Proof-of-Concept Study in Mouse Models. Nanomaterials (Basel) 2019;9:E67. [PMID: 30621291 DOI: 10.3390/nano9010067] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
|
111 |
Assadpour E, Jafari SM. An overview of lipid-based nanostructures for encapsulation of food ingredients. Lipid-Based Nanostructures for Food Encapsulation Purposes 2019. [DOI: 10.1016/b978-0-12-815673-5.00001-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
112 |
Yaghmur A. Nanoencapsulation of food ingredients by cubosomes and hexosomes. Lipid-Based Nanostructures for Food Encapsulation Purposes 2019. [DOI: 10.1016/b978-0-12-815673-5.00012-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
113 |
Prajapati R, Larsen SW, Yaghmur A. Citrem–phosphatidylcholine nano-self-assemblies: solubilization of bupivacaine and its role in triggering a colloidal transition from vesicles to cubosomes and hexosomes. Phys Chem Chem Phys 2019;21:15142-50. [DOI: 10.1039/c9cp01878f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
|
114 |
Bag BG, Garai C, Ghorai S. Vesicular self-assembly of a natural ursane-type dihydroxy-triterpenoid corosolic acid. RSC Adv 2019;9:15190-5. [DOI: 10.1039/c9ra02801c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
|
115 |
Yang J, Zhang J, Liu Y, Shi Z, Han H, Li Q. Phenylboronic acid-modified polyamidoamine-mediated delivery of short GC rich DNA for hepatocarcinoma gene therapy. Biomater Sci 2019;7:3348-58. [DOI: 10.1039/c9bm00394k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
|
116 |
Boge L, Hallstensson K, Ringstad L, Johansson J, Andersson T, Davoudi M, Larsson PT, Mahlapuu M, Håkansson J, Andersson M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm 2019;134:60-7. [PMID: 30445164 DOI: 10.1016/j.ejpb.2018.11.009] [Cited by in Crossref: 90] [Cited by in F6Publishing: 78] [Article Influence: 18.0] [Reference Citation Analysis]
|
117 |
Ma D, Chen C, Chen M, Zhu S, Wu Y, Li Z, Li Y, Zhou L. A hydrostable Cadmium–Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Al3+ Ion. J Inorg Organomet Polym 2019;29:1829-37. [DOI: 10.1007/s10904-018-1023-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
118 |
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018;261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 10.0] [Reference Citation Analysis]
|
119 |
Prajapati R, Salentinig S, Yaghmur A. Temperature triggering of kinetically trapped self-assemblies in citrem-phospholipid nanoparticles. Chemistry and Physics of Lipids 2018;216:30-8. [DOI: 10.1016/j.chemphyslip.2018.09.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
|
120 |
Clemente I, Menicucci F, Colzi I, Sbraci L, Benelli C, Giordano C, Gonnelli C, Ristori S, Petruccelli R. Unconventional and Sustainable Nanovectors for Phytohormone Delivery: Insights on Olea europaea. ACS Sustainable Chem Eng 2018;6:15022-31. [DOI: 10.1021/acssuschemeng.8b03489] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
|
121 |
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019;58:2958-78. [PMID: 29926520 DOI: 10.1002/anie.201804067] [Cited by in Crossref: 211] [Cited by in F6Publishing: 218] [Article Influence: 42.2] [Reference Citation Analysis]
|
122 |
Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem 2019;131:2984-3006. [DOI: 10.1002/ange.201804067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
|
123 |
Jantarat C, Sirathanarun P, Boonmee S, Meechoosin W, Wangpittaya H. Effect of Piperine on Skin Permeation of Curcumin from a Bacterially Derived Cellulose-Composite Double-Layer Membrane for Transdermal Curcumin Delivery. Sci Pharm 2018;86:E39. [PMID: 30216984 DOI: 10.3390/scipharm86030039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
|
124 |
Shao X, Bor G, Al-Hosayni S, Salentinig S, Yaghmur A. Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides. Phys Chem Chem Phys 2018;20:23928-41. [PMID: 30209464 DOI: 10.1039/c8cp04256j] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
|
125 |
Li Y, Angelova A, Liu J, Garamus VM, Li N, Drechsler M, Gong Y, Zou A. In situ phase transition of microemulsions for parenteral injection yielding lyotropic liquid crystalline carriers of the antitumor drug bufalin. Colloids Surf B Biointerfaces 2019;173:217-25. [PMID: 30296646 DOI: 10.1016/j.colsurfb.2018.09.023] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
|
126 |
Chountoulesi M, Pippa N, Pispas S, Chrysina ED, Forys A, Trzebicka B, Demetzos C. Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. Int J Pharm 2018;550:57-70. [PMID: 30121331 DOI: 10.1016/j.ijpharm.2018.08.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
|
127 |
Zhai J, Luwor RB, Ahmed N, Escalona R, Tan FH, Fong C, Ratcliffe J, Scoble JA, Drummond CJ, Tran N. Paclitaxel-Loaded Self-Assembled Lipid Nanoparticles as Targeted Drug Delivery Systems for the Treatment of Aggressive Ovarian Cancer. ACS Appl Mater Interfaces 2018;10:25174-85. [PMID: 29963859 DOI: 10.1021/acsami.8b08125] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 12.8] [Reference Citation Analysis]
|
128 |
Azmi IDM, Østergaard J, Stürup S, Gammelgaard B, Urtti A, Moghimi SM, Yaghmur A. Cisplatin Encapsulation Generates Morphologically Different Multicompartments in the Internal Nanostructures of Nonlamellar Liquid-Crystalline Self-Assemblies. Langmuir 2018;34:6570-81. [DOI: 10.1021/acs.langmuir.8b01149] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
|
129 |
Speziale C, Ghanbari R, Mezzenga R. Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases. Langmuir 2018;34:5052-9. [PMID: 29648837 DOI: 10.1021/acs.langmuir.8b00737] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
|
130 |
Angelova A, Drechsler M, Garamus VM, Angelov B. Liquid Crystalline Nanostructures as PEGylated Reservoirs of Omega-3 Polyunsaturated Fatty Acids: Structural Insights toward Delivery Formulations against Neurodegenerative Disorders. ACS Omega 2018;3:3235-47. [PMID: 30023865 DOI: 10.1021/acsomega.7b01935] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 9.4] [Reference Citation Analysis]
|
131 |
Zayed GM, Kamal I, Abdelhafez WA, M. Alsharif F, Amin MA, Shaykoon MSA, Sarhan HA, Abdelsalam AM. Effect of Chemical Binding of Doxorubicin Hydrochloride to Gold Nanoparticles, Versus Electrostatic Adsorption, on the In Vitro Drug Release and Cytotoxicity to Breast Cancer Cells. Pharm Res 2018;35. [DOI: 10.1007/s11095-018-2393-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
|
132 |
Xie Y, Liu X, Hu Z, Hou Z, Guo Z, Chen Z, Hu J, Yang L. Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates. Nanomaterials (Basel) 2018;8:E195. [PMID: 29584691 DOI: 10.3390/nano8040195] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
|
133 |
Boge L, Västberg A, Umerska A, Bysell H, Eriksson J, Edwards K, Millqvist-Fureby A, Andersson M. Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide. J Colloid Interface Sci 2018;522:126-35. [PMID: 29587194 DOI: 10.1016/j.jcis.2018.03.062] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
|
134 |
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018;277:1-13. [PMID: 29501721 DOI: 10.1016/j.jconrel.2018.02.040] [Cited by in Crossref: 154] [Cited by in F6Publishing: 135] [Article Influence: 30.8] [Reference Citation Analysis]
|
135 |
Martínez-Negro M, Guerrero-Martínez A, García-Río L, Domènech Ò, Aicart E, Tros de Ilarduya C, Junquera E. Multidisciplinary Approach to the Transfection of Plasmid DNA by a Nonviral Nanocarrier Based on a Gemini-Bolaamphiphilic Hybrid Lipid. ACS Omega 2018;3:208-17. [PMID: 30023772 DOI: 10.1021/acsomega.7b01657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
|
136 |
Yaghmur A, Al-hosayni S, Amenitsch H, Salentinig S. Structural Investigation of Bulk and Dispersed Inverse Lyotropic Hexagonal Liquid Crystalline Phases of Eicosapentaenoic Acid Monoglyceride. Langmuir 2017;33:14045-57. [DOI: 10.1021/acs.langmuir.7b03078] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
|
137 |
Astolfi P, Giorgini E, Gambini V, Rossi B, Vaccari L, Vita F, Francescangeli O, Marchini C, Pisani M. Lyotropic Liquid-Crystalline Nanosystems as Drug Delivery Agents for 5-Fluorouracil: Structure and Cytotoxicity. Langmuir 2017;33:12369-78. [PMID: 29023126 DOI: 10.1021/acs.langmuir.7b03173] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
|
138 |
Kulkarni CV, Vishwapathi VK, Quarshie A, Moinuddin Z, Page J, Kendrekar P, Mashele SS. Self-Assembled Lipid Cubic Phase and Cubosomes for the Delivery of Aspirin as a Model Drug. Langmuir 2017;33:9907-15. [DOI: 10.1021/acs.langmuir.7b02486] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
|
139 |
Wakaskar RR. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. Journal of Drug Targeting 2018;26:311-8. [DOI: 10.1080/1061186x.2017.1367006] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 12.2] [Reference Citation Analysis]
|
140 |
Angelov B, Angelova A. Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. Nanoscale 2017;9:9797-804. [DOI: 10.1039/c7nr03454g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
|