BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yartseva V, Goldstein LD, Rodman J, Kates L, Chen MZ, Chen YJ, Foreman O, Siebel CW, Modrusan Z, Peterson AS, Jovičić A. Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 Signaling in Self-Renewal. Cell Rep 2020;30:1491-1503.e6. [PMID: 32023464 DOI: 10.1016/j.celrep.2019.12.100] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023;858:147172. [PMID: 36621659 DOI: 10.1016/j.gene.2023.147172] [Reference Citation Analysis]
2 Vargas-Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022;66:530-44. [PMID: 35968817 DOI: 10.1002/mus.27684] [Reference Citation Analysis]
3 Wang Y, Wu T, Tsai M, Rezzonico MG, Abdel-haleem AM, Xie L, Gandham VD, Ngu H, Stark K, Glock C, Xu D, Foreman O, Friedman BA, Sheng M, Hanson JE. TPL2 kinase activity regulates microglial inflammatory responses and promotes neurodegeneration in tauopathy mice.. [DOI: 10.1101/2022.10.13.512193] [Reference Citation Analysis]
4 Den Hartog L, Asakura A. Implications of notch signaling in duchenne muscular dystrophy. Front Physiol 2022;13:984373. [DOI: 10.3389/fphys.2022.984373] [Reference Citation Analysis]
5 Dejanovic B, Wu T, Tsai M, Graykowski D, Gandham VD, Rose CM, Bakalarski CE, Ngu H, Wang Y, Pandey S, Rezzonico MG, Friedman BA, Edmonds R, De Mazière A, Rakosi-schmidt R, Singh T, Klumperman J, Foreman O, Chang MC, Xie L, Sheng M, Hanson JE. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nat Aging 2022;2:837-850. [DOI: 10.1038/s43587-022-00281-1] [Reference Citation Analysis]
6 Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022;13:892749. [DOI: 10.3389/fphys.2022.892749] [Reference Citation Analysis]
7 Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle 2022;12:9. [PMID: 35459219 DOI: 10.1186/s13395-022-00293-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Larson AA, Shams AS, McMillin SL, Sullivan BP, Vue C, Roloff ZA, Batchelor E, Kyba M, Lowe DA. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am J Physiol Cell Physiol 2022. [PMID: 35442828 DOI: 10.1152/ajpcell.00429.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Bai K, Jiang L, Wei C, Li Q, Zhang L, Zhang J, Wang T. Dimethylglycine sodium salt activates Nrf2/SIRT1/PGC1α leading to the recovery of muscle stem cell dysfunction in newborns with intrauterine growth restriction. Free Radic Biol Med 2022:S0891-5849(22)00150-2. [PMID: 35405266 DOI: 10.1016/j.freeradbiomed.2022.04.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022;7:16. [PMID: 35177651 DOI: 10.1038/s41536-022-00204-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022. [PMID: 35073461 DOI: 10.1111/febs.16372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Borok MJ, Bou Akar R, Mourikis P, Relaix F. Molecular Regulation of Skeletal Muscle Stem Cells. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00156-5] [Reference Citation Analysis]
14 Eliazer S, Sun X, Barruet E, Brack AS. Heterogeneous levels of delta-like 4 within a multinucleated niche cell maintains muscle stem cell diversity. Elife 2022;11. [PMID: 36583937 DOI: 10.7554/eLife.68180] [Reference Citation Analysis]
15 Hong X, Campanario S, Ramírez-Pardo I, Grima-Terrén M, Isern J, Muñoz-Cánoves P. Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res Rev 2022;73:101528. [PMID: 34818593 DOI: 10.1016/j.arr.2021.101528] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
16 Lahmann I, Zhang Y, Baum K, Wolf J, Birchmeier C. An oscillatory network controlling self-renewal of skeletal muscle stem cells. Exp Cell Res 2021;409:112933. [PMID: 34793773 DOI: 10.1016/j.yexcr.2021.112933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Lee S, Rezzonico MG, Friedman BA, Huntley MH, Meilandt WJ, Pandey S, Chen YJ, Easton A, Modrusan Z, Hansen DV, Sheng M, Bohlen CJ. TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Reports 2021;37:110158. [DOI: 10.1016/j.celrep.2021.110158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
18 McKellar DW, Walter LD, Song LT, Mantri M, Wang MFZ, De Vlaminck I, Cosgrove BD. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun Biol 2021;4:1280. [PMID: 34773081 DOI: 10.1038/s42003-021-02810-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
19 Collins BC, Kardon G. It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration. Development 2021;148:dev199861. [PMID: 34739030 DOI: 10.1242/dev.199861] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
21 Sultan SHA, Dyer C, Knight RD. Notch Signaling Regulates Muscle Stem Cell Homeostasis and Regeneration in a Teleost Fish. Front Cell Dev Biol 2021;9:726281. [PMID: 34650976 DOI: 10.3389/fcell.2021.726281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Zhu H, Lin X, Diao Y. Function and regulation of muscle stem cells in skeletal muscle development and regeneration: a narrative review. Journal of Bio-X Research 2021;4:89-96. [DOI: 10.1097/jbr.0000000000000105] [Reference Citation Analysis]
23 Wang F, Cui D, Zhang Q, Shao Y, Zheng B, Chen L, Luo Y, Yuan L, Wang D. LncRNA00492 is required for marginal zone B-cell development. Immunology 2021. [PMID: 34435359 DOI: 10.1111/imm.13408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021. [PMID: 34435361 DOI: 10.1002/jcp.30562] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
25 Zhang H, Shang R, Bi P. Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet 2021;17:e1009729. [PMID: 34370738 DOI: 10.1371/journal.pgen.1009729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
26 Kann AP, Hung M, Krauss RS. Cell-cell contact and signaling in the muscle stem cell niche. Curr Opin Cell Biol 2021;73:78-83. [PMID: 34352725 DOI: 10.1016/j.ceb.2021.06.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
27 Lee S, Meilandt WJ, Xie L, Gandham VD, Ngu H, Barck KH, Rezzonico MG, Imperio J, Lalehzadeh G, Huntley MA, Stark KL, Foreman O, Carano RA, Friedman BA, Sheng M, Easton A, Bohlen CJ, Hansen DV. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. Neuron 2021;109:1283-1301.e6. [DOI: 10.1016/j.neuron.2021.02.010] [Cited by in Crossref: 65] [Cited by in F6Publishing: 70] [Article Influence: 32.5] [Reference Citation Analysis]
28 Ancel S, Stuelsatz P, Feige JN. Muscle Stem Cell Quiescence: Controlling Stemness by Staying Asleep. Trends Cell Biol 2021;31:556-68. [PMID: 33674167 DOI: 10.1016/j.tcb.2021.02.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
29 Zhang Y, Lahmann I, Baum K, Shimojo H, Mourikis P, Wolf J, Kageyama R, Birchmeier C. Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells. Nat Commun 2021;12:1318. [PMID: 33637744 DOI: 10.1038/s41467-021-21631-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
30 Domenig SA, Palmer AS, Bar-nur O. Stem Cell-Based and Tissue Engineering Approaches for Skeletal Muscle Repair. Organ Tissue Engineering 2021. [DOI: 10.1007/978-3-030-44211-8_19] [Reference Citation Analysis]
31 Leung C, Murad KBA, Tan ALT, Yada S, Sagiraju S, Bode PK, Barker N. Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation. Cell Rep 2020;33:108535. [PMID: 33357435 DOI: 10.1016/j.celrep.2020.108535] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
32 Shuler KT, Wilson BE, Muñoz ER, Mitchell AD, Selsby JT, Hudson MB. Muscle Stem Cell-Derived Extracellular Vesicles Reverse Hydrogen Peroxide-Induced Mitochondrial Dysfunction in Mouse Myotubes. Cells 2020;9:E2544. [PMID: 33256005 DOI: 10.3390/cells9122544] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
33 Eliazer S, Sun X, Brack AS. Spatial Heterogeneity of Delta-like 4 Within a Multinucleated Niche Cell Maintains Muscle Stem Cell Diversity.. [DOI: 10.1101/2020.10.20.347484] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Urata Y, Saiki W, Tsukamoto Y, Sago H, Hibi H, Okajima T, Takeuchi H. Xylosyl Extension of O-Glucose Glycans on the Extracellular Domain of NOTCH1 and NOTCH2 Regulates Notch Cell Surface Trafficking. Cells 2020;9:E1220. [PMID: 32423029 DOI: 10.3390/cells9051220] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
35 Domenig SA, Palmer AS, Bar-nur O. Stem Cell-Based and Tissue Engineering Approaches for Skeletal Muscle Repair. Organ Tissue Engineering 2020. [DOI: 10.1007/978-3-030-18512-1_19-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]