BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Linneweber GA, Jacobson J, Busch KE, Hudry B, Christov CP, Dormann D, Yuan M, Otani T, Knust E, de Bono M, Miguel-Aliaga I. Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching. Cell 2014;156:69-83. [PMID: 24439370 DOI: 10.1016/j.cell.2013.12.008] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022;12:982751. [DOI: 10.3389/fonc.2022.982751] [Reference Citation Analysis]
2 Ariga K, Tashiro M. Change in the graphics of journal articles in the life sciences field: analysis of figures and tables in the journal "Cell". Hist Philos Life Sci 2022;44:33. [PMID: 35918565 DOI: 10.1007/s40656-022-00516-9] [Reference Citation Analysis]
3 Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022;15:dmm049332. [PMID: 35344037 DOI: 10.1242/dmm.049332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Chopra G, Kaushik S, Kain P. Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022;23:2694. [PMID: 35269834 DOI: 10.3390/ijms23052694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Guo Q, Yang Y, Zhao L, Chen J, Duan G, Yang Z, Zhou R. Graphene oxide toxicity in W1118 flies. Sci Total Environ 2022;805:150302. [PMID: 34536880 DOI: 10.1016/j.scitotenv.2021.150302] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
6 Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang CH, Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P. A neuropeptidergic circuit gates selective escape behavior of Drosophila larvae. Curr Biol 2021:S0960-9822(21)01513-X. [PMID: 34798050 DOI: 10.1016/j.cub.2021.10.069] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
7 Jang S, Mergaert P, Ohbayashi T, Ishigami K, Shigenobu S, Itoh H, Kikuchi Y. Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. Proc Natl Acad Sci U S A 2021;118:e2020922118. [PMID: 33649233 DOI: 10.1073/pnas.2020922118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
8 Prince E, Kretzschmar J, Trautenberg LC, Broschk S, Brankatschk M. DIlp7-Producing Neurons Regulate Insulin-Producing Cells in Drosophila. Front Physiol 2021;12:630390. [PMID: 34385929 DOI: 10.3389/fphys.2021.630390] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. PeerJ 2021;9:e11799. [PMID: 34316411 DOI: 10.7717/peerj.11799] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020;216:269-313. [PMID: 33023929 DOI: 10.1534/genetics.120.303095] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 22.0] [Reference Citation Analysis]
11 Millington JW, Brownrigg GP, Basner-Collins PJ, Sun Z, Rideout EJ. Genetic manipulation of insulin/insulin-like growth factor signaling pathway activity has sex-biased effects on Drosophila body size. G3 (Bethesda) 2021;11:jkaa067. [PMID: 33793746 DOI: 10.1093/g3journal/jkaa067] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Veenstra JA, Leyria J, Orchard I, Lange AB. Identification of Gonadulin and Insulin-Like Growth Factor From Migratory Locusts and Their Importance in Reproduction in Locusta migratoria. Front Endocrinol (Lausanne) 2021;12:693068. [PMID: 34177814 DOI: 10.3389/fendo.2021.693068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tamamouna V, Rahman MM, Petersson M, Charalambous I, Kux K, Mainor H, Bolender V, Isbilir B, Edgar BA, Pitsouli C. Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in Drosophila. Nat Cell Biol 2021;23:497-510. [PMID: 33972730 DOI: 10.1038/s41556-021-00674-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Perochon J, Yu Y, Aughey GN, Medina AB, Southall TD, Cordero JB. Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila. Nat Cell Biol 2021;23:485-96. [PMID: 33972729 DOI: 10.1038/s41556-021-00676-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
15 Millington JW, Brownrigg GP, Chao C, Sun Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. Elife 2021;10:e58341. [PMID: 33448263 DOI: 10.7554/eLife.58341] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
16 Rodriguez-fernandez IA, Tauc HM, Jasper H. Hallmarks of aging Drosophila intestinal stem cells. Mechanisms of Ageing and Development 2020;190:111285. [DOI: 10.1016/j.mad.2020.111285] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
17 Liao S, Nässel DR. Drosophila Insulin-Like Peptide 8 (DILP8) in Ovarian Follicle Cells Regulates Ovulation and Metabolism. Front Endocrinol (Lausanne) 2020;11:461. [PMID: 32849266 DOI: 10.3389/fendo.2020.00461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
18 Veenstra JA. Arthropod IGF, relaxin and gonadulin, putative orthologs of Drosophila insulin-like peptides 6, 7 and 8, likely originated from an ancient gene triplication. PeerJ 2020;8:e9534. [PMID: 32728497 DOI: 10.7717/peerj.9534] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
19 Linneweber GA, Andriatsilavo M, Dutta SB, Bengochea M, Hellbruegge L, Liu G, Ejsmont RK, Straw AD, Wernet M, Hiesinger PR, Hassan BA. A neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science 2020;367:1112-9. [DOI: 10.1126/science.aaw7182] [Cited by in Crossref: 23] [Cited by in F6Publishing: 35] [Article Influence: 11.5] [Reference Citation Analysis]
20 Ameku T, Beckwith H, Blackie L, Miguel-Aliaga I. Food, microbes, sex and old age: on the plasticity of gastrointestinal innervation. Curr Opin Neurobiol 2020;62:83-91. [PMID: 32028080 DOI: 10.1016/j.conb.2019.12.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019;179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Cited by in Crossref: 98] [Cited by in F6Publishing: 109] [Article Influence: 32.7] [Reference Citation Analysis]
22 Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018;210:357-96. [PMID: 30287514 DOI: 10.1534/genetics.118.300224] [Cited by in Crossref: 152] [Cited by in F6Publishing: 147] [Article Influence: 38.0] [Reference Citation Analysis]
23 Best BT. Single-cell branching morphogenesis in the Drosophila trachea. Dev Biol 2019;451:5-15. [PMID: 30529233 DOI: 10.1016/j.ydbio.2018.12.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
24 Hayashi S, Kondo T. Development and Function of the Drosophila Tracheal System. Genetics 2018;209:367-80. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
25 Semaniuk UV, Gospodaryov DV, Feden'ko KM, Yurkevych IS, Vaiserman AM, Storey KB, Simpson SJ, Lushchak O. Insulin-Like Peptides Regulate Feeding Preference and Metabolism in Drosophila. Front Physiol 2018;9:1083. [PMID: 30197596 DOI: 10.3389/fphys.2018.01083] [Cited by in Crossref: 33] [Cited by in F6Publishing: 39] [Article Influence: 8.3] [Reference Citation Analysis]
26 Herranz H, Cohen SM. Drosophila as a Model to Study the Link between Metabolism and Cancer. J Dev Biol 2017;5:E15. [PMID: 29615570 DOI: 10.3390/jdb5040015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
27 Liu Q, Jin LH. Organ-to-Organ Communication: A Drosophila Gastrointestinal Tract Perspective. Front Cell Dev Biol 2017;5:29. [PMID: 28421183 DOI: 10.3389/fcell.2017.00029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
28 Watanabe K, Furumizo Y, Usui T, Hattori Y, Uemura T. Nutrient-dependent increased dendritic arborization of somatosensory neurons. Genes Cells 2017;22:105-14. [DOI: 10.1111/gtc.12451] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
29 Veenstra JA. WITHDRAWN: Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. General and Comparative Endocrinology 2016. [DOI: 10.1016/j.ygcen.2015.07.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Guo Z, Lucchetta E, Rafel N, Ohlstein B. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis. Curr Opin Genet Dev 2016;40:81-6. [PMID: 27392294 DOI: 10.1016/j.gde.2016.06.009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 9.3] [Reference Citation Analysis]
31 Veenstra JA. Similarities between decapod and insect neuropeptidomes. PeerJ 2016;4:e2043. [PMID: 27257538 DOI: 10.7717/peerj.2043] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 11.7] [Reference Citation Analysis]
32 Liu Y, Liao S, Veenstra JA, Nässel DR. Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci Rep 2016;6:26620. [PMID: 27197757 DOI: 10.1038/srep26620] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 8.7] [Reference Citation Analysis]
33 Veenstra JA. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. General and Comparative Endocrinology 2016;229:41-55. [DOI: 10.1016/j.ygcen.2015.11.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
34 Capo F, Charroux B, Royet J. Bacteria sensing mechanisms in Drosophila gut: Local and systemic consequences. Dev Comp Immunol 2016;64:11-21. [PMID: 26778296 DOI: 10.1016/j.dci.2016.01.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
35 Kuraishi T, Kenmoku H, Kurata S. From mouth to anus: Functional and structural relevance of enteric neurons in the Drosophila melanogaster gut. Insect Biochemistry and Molecular Biology 2015;67:21-6. [DOI: 10.1016/j.ibmb.2015.07.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
36 Nászai M, Carroll LR, Cordero JB. Intestinal stem cell proliferation and epithelial homeostasis in the adult Drosophila midgut. Insect Biochemistry and Molecular Biology 2015;67:9-14. [DOI: 10.1016/j.ibmb.2015.05.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 5.1] [Reference Citation Analysis]
37 Okamoto N, Yamanaka N. Nutrition-dependent control of insect development by insulin-like peptides. Curr Opin Insect Sci 2015;11:21-30. [PMID: 26664828 DOI: 10.1016/j.cois.2015.08.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 6.3] [Reference Citation Analysis]
38 Krupp JJ, Levine JD. Neural circuits: anatomy of a sexual behavior. Curr Biol 2014;24:R327-9. [PMID: 24735858 DOI: 10.1016/j.cub.2014.03.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
39 Rodenfels J, Lavrynenko O, Ayciriex S, Sampaio JL, Carvalho M, Shevchenko A, Eaton S. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev 2014;28:2636-51. [PMID: 25452274 DOI: 10.1101/gad.249763.114] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 9.7] [Reference Citation Analysis]
40 Wong DM, Shen Z, Owyang KE, Martinez-Agosto JA. Insulin- and warts-dependent regulation of tracheal plasticity modulates systemic larval growth during hypoxia in Drosophila melanogaster. PLoS One 2014;9:e115297. [PMID: 25541690 DOI: 10.1371/journal.pone.0115297] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
41 Shimada-Niwa Y, Niwa R. Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila. Nat Commun 2014;5:5778. [PMID: 25502946 DOI: 10.1038/ncomms6778] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 6.5] [Reference Citation Analysis]
42 Zhang W, Yan Z, Li B, Jan LY, Jan YN. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae. Elife 2014;3. [PMID: 25358089 DOI: 10.7554/eLife.03293] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
43 Brankatschk M, Dunst S, Nemetschke L, Eaton S. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling. Elife 2014;3. [PMID: 25275323 DOI: 10.7554/eLife.02862] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 5.8] [Reference Citation Analysis]
44 Padmanabha D, Baker KD. Drosophila gains traction as a repurposed tool to investigate metabolism. Trends in Endocrinology & Metabolism 2014;25:518-27. [DOI: 10.1016/j.tem.2014.03.011] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 9.9] [Reference Citation Analysis]
45 Urquhart-cronish M, Sokolowski MB. Gene-environment interplay in Drosophila melanogaster: Chronic nutritional deprivation in larval life affects adult fecal output. Journal of Insect Physiology 2014;69:95-100. [DOI: 10.1016/j.jinsphys.2014.06.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
46 Rőszer T, Kiss-Tóth ÉD. FMRF-amide is a glucose-lowering hormone in the snail Helix aspersa. Cell Tissue Res 2014;358:371-83. [PMID: 25096715 DOI: 10.1007/s00441-014-1966-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
47 Shafer OT, Yao Z. Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity. Curr Opin Insect Sci 2014;1:73-80. [PMID: 25386391 DOI: 10.1016/j.cois.2014.05.002] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 7.1] [Reference Citation Analysis]
48 Broderick NA, Buchon N, Lemaitre B. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology. mBio 2014;5:e01117-14. [PMID: 24865556 DOI: 10.1128/mBio.01117-14] [Cited by in Crossref: 222] [Cited by in F6Publishing: 228] [Article Influence: 27.8] [Reference Citation Analysis]
49 Kux K, Pitsouli C. Tissue communication in regenerative inflammatory signaling: lessons from the fly gut. Front Cell Infect Microbiol 2014;4:49. [PMID: 24795868 DOI: 10.3389/fcimb.2014.00049] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]