BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ni J, Liu D, Wang W, Wang A, Jia J, Tian J, Xing Z. Hierarchical defect-rich flower-like BiOBr/Ag nanoparticles/ultrathin g-C3N4 with transfer channels plasmonic Z-scheme heterojunction photocatalyst for accelerated visible-light-driven photothermal-photocatalytic oxytetracycline degradation. Chemical Engineering Journal 2021;419:129969. [DOI: 10.1016/j.cej.2021.129969] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Wen C, Li D, Zhong J, Wang Z, Huang S, Liu H, Wu J, Chen P, Lv W, Liu G. In situ synthesis of S-scheme AgBr/BiOBr for efficient degradation of sulfonamide antibiotics: Synergistic effects of oxygen vacancies and heterojunctions promote exciton dissociation. Chemical Engineering Journal 2022;450:138075. [DOI: 10.1016/j.cej.2022.138075] [Reference Citation Analysis]
2 Wang A, Ni J, Wang W, Liu D, Zhu Q, Xue B, Chang C, Ma J, Zhao Y. MOF Derived Co−Fe nitrogen doped graphite carbon@crosslinked magnetic chitosan Micro−nanoreactor for environmental applications: Synergy enhancement effect of adsorption−PMS activation. Applied Catalysis B: Environmental 2022;319:121926. [DOI: 10.1016/j.apcatb.2022.121926] [Reference Citation Analysis]
3 Cui L, Sun M, Zhang Z. Flow-through integration of FeOCl/graphite felt-based heterogeneous electro-Fenton and Ti4O7-based anodic oxidation for efficient contaminant degradation. Chemical Engineering Journal 2022;450:138263. [DOI: 10.1016/j.cej.2022.138263] [Reference Citation Analysis]
4 Regulska E, Breczko J, Basa A, Niemirowicz-laskowska K, Kiszkiel-taudul I. Photocatalytic degradation of oxytetracycline with the REMs (Er, Tm, Yb)-doped nickel and copper aluminates. Materials Science and Engineering: B 2022;285:115959. [DOI: 10.1016/j.mseb.2022.115959] [Reference Citation Analysis]
5 Yang J, Hou Y, Sun J, Liang J, Yu Z, Zhu H, Wang S. In-situ generation of oxygen vacancies and Bi0 clusters on MoSe2/Bi@BiOBr-OV via Fermi inter-level electron transfer for efficient elimination of chlorotetracycline and Cr (VI). Separation and Purification Technology 2022;299:121701. [DOI: 10.1016/j.seppur.2022.121701] [Reference Citation Analysis]
6 Sun H, Zhou T, Kang J, Zhao Y, Zhang Y, Wang T, Yin X. High-efficient degradation of oxytetracycline by visible photo-Fenton process using MnFe2O4/g-C3N4: Performance and mechanisms. Separation and Purification Technology 2022;299:121771. [DOI: 10.1016/j.seppur.2022.121771] [Reference Citation Analysis]
7 Zhao X, Xu W, Dong Y, Su Y, Liu Y, Chen W, Xu M, Li R, Gao Y, Chen X, Pan X. Facile Surfactant-Free synthesis of Pd-Sn1.1Nb2O5.5F0.9@SnO2 Core–Shell Nano-Octahedrons for efficient photocatalytic ethylene oxidation. Separation and Purification Technology 2022;297:121478. [DOI: 10.1016/j.seppur.2022.121478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lei J, Gu X, Xiao P, Ding G, Yang Y, Fu X, Long B, Chen S, Meng S. Fabrication of 2D/2D BiOBr/g-C3N4 with efficient photocatalytic activity and clarification of its mechanism. Phys Chem Chem Phys 2022;24:19806-16. [PMID: 35946338 DOI: 10.1039/d2cp02381d] [Reference Citation Analysis]
9 Lin B, Xia M, Xu B, Chong B, Chen Z, Yang G. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. Chinese Journal of Catalysis 2022;43:2141-72. [DOI: 10.1016/s1872-2067(22)64110-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Liu S, Jiang X, Waterhouse GI, Zhang Z, Yu L. A novel Z-scheme NH2-MIL-125(Ti)/Ti3C2 QDs/ZnIn2S4 photocatalyst with fast interfacial electron transfer properties for visible light-driven antibiotic degradation and hydrogen evolution. Separation and Purification Technology 2022;294:121094. [DOI: 10.1016/j.seppur.2022.121094] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
11 Vinoth S, Ong W, Pandikumar A. Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coordination Chemistry Reviews 2022;464:214541. [DOI: 10.1016/j.ccr.2022.214541] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
12 Yi L, Qin J, Sun H, Ruan Y, Fang D, Wang J. Construction of Z-scheme (TiO2/Er3+:YAlO3)/NiFe2O4 photocatalyst composite for intensifying hydrodynamic cavitation degradation of oxytetracycline in aqueous solution. Separation and Purification Technology 2022;293:121138. [DOI: 10.1016/j.seppur.2022.121138] [Reference Citation Analysis]
13 Shi H, Jin T, Li J, Li Y, Chang Y, Jin Z, Jiang W, Qu X, Chen Z. Construction of Z-scheme Cs3PMo12O40/g-C3N4 composite photocatalyst with highly efficient photocatalytic performance under visible light irradiation. Journal of Solid State Chemistry 2022;311:123069. [DOI: 10.1016/j.jssc.2022.123069] [Reference Citation Analysis]
14 Wang W, Luo Q, Li J, Li L, Li Y, Huo X, Du X, Li Z, Wang N. Photothermal‐Amplified Single Atom Nanozyme for Biofouling Control in Seawater. Adv Funct Materials. [DOI: 10.1002/adfm.202205461] [Reference Citation Analysis]
15 Shu X, Bi H, Wang J, Yang J, Wang J, Liu G, Su B. Highly stable and efficient calcined γ-Al2O3 catalysts loaded with MnOx-CeOx for the ozonation of oxytetracycline. Environ Sci Pollut Res Int 2022. [PMID: 35715680 DOI: 10.1007/s11356-022-21355-y] [Reference Citation Analysis]
16 Dai X, Feng S, Wu W, Zhou Y, Ye Z, Wang Y, Cao X. Photocatalytic Degradation of Tetracycline by Z-Scheme Bi2WO6/ZIF-8. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02273-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Tian Y, Zhang J, Wang W, Liu J, Zheng X, Li J, Guan X. Facile assembly and excellent elimination behavior of porous BiOBr-g-C3N4 heterojunctions for organic pollutants. Environ Res 2022;209:112889. [PMID: 35131321 DOI: 10.1016/j.envres.2022.112889] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 13.0] [Reference Citation Analysis]
18 Zhou Q, Chen L, Yan L, Cheng T, Wang X, Zhang Y. Singlet oxygen-dominated transformation of oxytetracycline by peroxymonosulfate with CoAl-LDH modified hierarchical porous ceramics: Toxicity assessment. Chemical Engineering Journal 2022;436:135199. [DOI: 10.1016/j.cej.2022.135199] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Feng C, Lu Z, Zhang Y, Liang Q, Zhou M, Li X, Yao C, Li Z, Xu S. A magnetically recyclable dual Z-scheme GCNQDs-CoTiO3/CoFe2O4 composite photocatalyst for efficient photocatalytic degradation of oxytetracycline. Chemical Engineering Journal 2022;435:134833. [DOI: 10.1016/j.cej.2022.134833] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
20 Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
21 Lian X, Chen S, He F, Dong S, Liu E, Li H, Xu K. Photocatalytic degradation of ammonium dinitramide over novel S-scheme g-C3N4/BiOBr heterostructure nanosheets. Separation and Purification Technology 2022;286:120449. [DOI: 10.1016/j.seppur.2022.120449] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Kumar OP, Shahzad K, Nazir MA, Farooq N, Malik M, Ahmad Shah SS, Rehman AU. Photo-Fenton activated C3N4x/AgOy@Co1-xBi0.1-yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Optical Materials 2022;126:112199. [DOI: 10.1016/j.optmat.2022.112199] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Wang X, Wang X, Tian W, Meng A, Li Z, Li S, Wang L, Li G. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Applied Catalysis B: Environmental 2022;303:120933. [DOI: 10.1016/j.apcatb.2021.120933] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 14.0] [Reference Citation Analysis]
24 Song S, Xing Z, Zhao H, Li Z, Wei Zhou. Recent advances in bismuth-based photocatalysts: Environment and energy applications. Green Energy & Environment 2022. [DOI: 10.1016/j.gee.2022.04.004] [Reference Citation Analysis]
25 Nawaz T, Tahir MB, Sagir M, Shahzad K, Ali AM, Alrobei H. Rapid photocatalytic degradation of dye and energy production through ternary BiVO4/Ag/NiFe2O4 nanocomposites under visible light irradiation. Ceramics International 2022;48:11779-85. [DOI: 10.1016/j.ceramint.2022.01.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Chen X, Xu X, Jia X, Qian H, Zhu X. Surface and interface engineering of Z-scheme 1D/2D imprinted CoZn-LDH/C3N4 nanorods for boosting selective visible-light photocatalytic activity. Advanced Powder Technology 2022;33:103531. [DOI: 10.1016/j.apt.2022.103531] [Reference Citation Analysis]
27 Hu X, Yu Y, Chen D, Xu W, Fang J, Liu Z, Li R, Yao L, Qin J, Fang Z. Anatase/Rutile homojunction quantum dots anchored on g-C3N4 nanosheets for antibiotics degradation in seawater matrice via coupled adsorption-photocatalysis: Mechanism insight and toxicity evaluation. Chemical Engineering Journal 2022;432:134375. [DOI: 10.1016/j.cej.2021.134375] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
28 Zhang K, Cao H, Dar A, Li D, Zhou L, Wang C. Construction of oxygen defective ZnO/ZnFe2O4 yolk-shell composite with photothermal effect for tetracycline degradation: Performance and mechanism insight. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.03.031] [Reference Citation Analysis]
29 Djellabi R, Noureen L, Dao V, Meroni D, Falletta E, Dionysiou DD, Bianchi CL. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chemical Engineering Journal 2022;431:134024. [DOI: 10.1016/j.cej.2021.134024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 18.0] [Reference Citation Analysis]
30 Dong W, Xie T, Peng H, Ren H, Lin H. Preparation of BiOBr coating based on bismuth glass for water purification from organic pollutants. Materials Letters 2022;308:131162. [DOI: 10.1016/j.matlet.2021.131162] [Reference Citation Analysis]
31 Liu N, Lu N, Yu H, Chen S, Quan X. Enhanced degradation of organic water pollutants by photocatalytic in-situ activation of sulfate based on Z-scheme g-C3N4/BiPO4. Chemical Engineering Journal 2022;428:132116. [DOI: 10.1016/j.cej.2021.132116] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 11.0] [Reference Citation Analysis]
32 Wang A, Ni J, Wang W, Wang X, Liu D, Zhu Q. MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: Mechanism, pathways and DFT calculation. J Hazard Mater 2021;426:128106. [PMID: 34953261 DOI: 10.1016/j.jhazmat.2021.128106] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 16.0] [Reference Citation Analysis]
33 Ge B, Han B, Lv J, Zhao L, Yin Y, Ren G, Zhang Z. Design of Self‐Floating Photothermal Conversion Devices with Solar Steam Generation Capability. Adv Materials Inter 2022;9:2101357. [DOI: 10.1002/admi.202101357] [Reference Citation Analysis]
34 Ma J, Liu K, Yang X, Jin D, Li Y, Jiao G, Zhou J, Sun R. Recent Advances and Challenges in Photoreforming of Biomass-Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem 2021;14:4903-22. [PMID: 34636483 DOI: 10.1002/cssc.202101173] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
35 Zuo W, Liang L, Ye F, Zhao S. Construction of visible light driven silver sulfide/graphitic carbon nitride p-n heterojunction for improving photocatalytic disinfection. Chemosphere 2021;283:131167. [PMID: 34153915 DOI: 10.1016/j.chemosphere.2021.131167] [Cited by in F6Publishing: 9] [Reference Citation Analysis]