BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, Guardia MDL. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosensors and Bioelectronics 2020;169:112599. [DOI: 10.1016/j.bios.2020.112599] [Cited by in Crossref: 13] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhou Y, Wang Z, Zhang S, Deng L. An ultrasensitive fluorescence detection template of pathogenic bacteria based on dual catalytic hairpin DNA Walker@Gold nanoparticles enzyme-free amplification. Spectrochim Acta A Mol Biomol Spectrosc 2022;277:121259. [PMID: 35489113 DOI: 10.1016/j.saa.2022.121259] [Reference Citation Analysis]
2 Dash S, Das T, Patel P, Panda PK, Suar M, Verma SK. Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology 2022;20:393. [PMID: 36045375 DOI: 10.1186/s12951-022-01595-3] [Reference Citation Analysis]
3 Ning Y, Zhang C, Wang C, Zhou C, Gong N, Wang Q, Zhu Y. DNA self-assembled FeNxC nanocatalytic network for ultrasensitive electrochemical detection of microRNA. Analytica Chimica Acta 2022;1223:340218. [DOI: 10.1016/j.aca.2022.340218] [Reference Citation Analysis]
4 Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022;349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Jia B, Chen J, Zhou J, Zeng Y, Ho H, Shao Y. Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection. Nano Res . [DOI: 10.1007/s12274-022-4515-z] [Reference Citation Analysis]
6 Wen X, Ding Y, Li Z, Wang K, Zhao H, Hong X. A bimodal strategy for highly sensitive and accurate miRNA-21 detection based on photoluminescence and multi-phonon resonant Raman scattering properties of ZnTe nanoparticles. Sensors and Actuators B: Chemical 2022;363:131821. [DOI: 10.1016/j.snb.2022.131821] [Reference Citation Analysis]
7 Liu Y, Deng Y, Li S, Wang-ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science & Technology 2022;125:200-35. [DOI: 10.1016/j.tifs.2022.04.008] [Reference Citation Analysis]
8 Hedhly M, Wang Y, Zeng S, Ouerghi F, Zhou J, Humbert G. Highly Sensitive Plasmonic Waveguide Biosensor Based on Phase Singularity-Enhanced Goos-Hänchen Shift. Biosensors (Basel) 2022;12:457. [PMID: 35884260 DOI: 10.3390/bios12070457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Wu Q, Wu W, Chen F, Ren P. Highly sensitive and selective surface plasmon resonance biosensor for the detection of SARS-CoV-2 spike S1 protein. Analyst 2022;147:2809-18. [PMID: 35616214 DOI: 10.1039/d2an00426g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Fang Y, Jiang L, Jin S, Li Y, Jiang C, Zhang X, Peng Y. AuNPs beacons-enhanced surface plasmon resonance imaging sensor for rapid, high-throughput and ultra-sensitive detection of three fusion genes related to acute promyelocytic leukemia. Sensors and Actuators B: Chemical 2022;361:131728. [DOI: 10.1016/j.snb.2022.131728] [Reference Citation Analysis]
11 Guo X, Tian T, Deng X, Song Y, Zhou X, Song E. CRISPR/Cas13a assisted amplification of magnetic relaxation switching sensing for accurate detection of miRNA-21 in human serum. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339853] [Reference Citation Analysis]
12 Hu S, Yang C, Luo H. Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
13 Monirinasab H, Zakariazadeh M, Kohestani H, Kouhestani M, Fathi F. Study of β-lactam-based drug interaction with albumin protein using optical, sensing, and docking methods. J Biol Phys. [DOI: 10.1007/s10867-021-09599-0] [Reference Citation Analysis]
14 Bidar N, Darroudi M, Ebrahimzadeh A, Safdari M, de la Guardia M, Baradaran B, Goodarzi V, Oroojalian F, Mokhtarzadeh A. Simultaneous nanocarrier-mediated delivery of siRNAs and chemotherapeutic agents in cancer therapy and diagnosis: Recent advances. Eur J Pharmacol 2022;915:174639. [PMID: 34919890 DOI: 10.1016/j.ejphar.2021.174639] [Reference Citation Analysis]
15 Wu L, Che K, Xiang Y, Qin Y. Enhancement of Sensitivity with High-Reflective-Index Guided-Wave Nanomaterials for a Long-Range Surface Plasmon Resonance Sensor. Nanomaterials (Basel) 2022;12:168. [PMID: 35010118 DOI: 10.3390/nano12010168] [Reference Citation Analysis]
16 Liu M, Shen R, Li H, Jia Y, Mak P, Martins RP. Ratiometric fluorescence analysis for miR-141 detection with hairpin DNA-templated silver nanoclusters. J Mater Chem C 2022;10:655-64. [DOI: 10.1039/d1tc04488e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Lee J, Na HK, Lee S, Kim WK. Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA. Mikrochim Acta 2021;189:35. [PMID: 34940914 DOI: 10.1007/s00604-021-05140-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Jing J, Liu K, Jiang J, Xu T, Wang S, Ma J, Zhang Z, Zhang W, Liu T. Performance improvement approaches for optical fiber SPR sensors and their sensing applications. Photon Res 2022;10:126. [DOI: 10.1364/prj.439861] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta 2021;235:122735. [PMID: 34517602 DOI: 10.1016/j.talanta.2021.122735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
20 Wang L, Dai X, Feng Y, Zhao Q, Liu L, Xue C, Xiao L, Wang R. Dual Catalytic Hairpin Assembly-Based Automatic Molecule Machine for Amplified Detection of Auxin Response Factor-Targeted MicroRNA-160. Molecules 2021;26:6432. [PMID: 34770841 DOI: 10.3390/molecules26216432] [Reference Citation Analysis]
21 Xiao Y, Tai Y, Quan X, Zhao C, Liu R, Tong H, Huang Z, Tang C, Gao J. Quantification of chromogranin A using a surface plasmon resonance-based biosensor. Anal Methods 2021;13:3772-8. [PMID: 34378549 DOI: 10.1039/d1ay00782c] [Reference Citation Analysis]
22 Li Y, Yuan J, Zhan S, Hu J, Guo Y, Ding L, Huang X, Xiong Y. Dynamic light scattering immunosensor based on metal-organic framework mediated gold growth strategy for the ultra-sensitive detection of alpha-fetoprotein. Sensors and Actuators B: Chemical 2021;341:130030. [DOI: 10.1016/j.snb.2021.130030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Kitta M, Murai K, Yoshii K, Sano H. Electrochemical Surface Plasmon Resonance Spectroscopy for Investigation of the Initial Process of Lithium Metal Deposition. J Am Chem Soc 2021;143:11160-70. [PMID: 34260226 DOI: 10.1021/jacs.1c04934] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
24 Chang CC. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors (Basel) 2021;11:233. [PMID: 34356703 DOI: 10.3390/bios11070233] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
25 Huang Y, Sun T, Liu L, Xia N, Zhao Y, Yi X. Surface plasmon resonance biosensor for the detection of miRNAs by combining the advantages of homogeneous reaction and heterogeneous detection. Talanta 2021;234:122622. [PMID: 34364431 DOI: 10.1016/j.talanta.2021.122622] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
26 Zheng Y, Chen L, Yin X, Lin F, Xu Y, Lin X, Weng S. Dual-mode biosensor for femtomolar miRNA-155 detection by electrochemiluminescence and adsorptive stripping voltammetry. Microchemical Journal 2021;165:106091. [DOI: 10.1016/j.microc.2021.106091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
27 Nangare S, Patil P. Black Phosphorus Nanostructure Based Highly Sensitive and Selective Surface Plasmon Resonance Sensor for Biological and Chemical Sensing: A Review. Crit Rev Anal Chem 2021;:1-26. [PMID: 34053388 DOI: 10.1080/10408347.2021.1927669] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Écija-Arenas Á, Kirchner EM, Hirsch T, Fernández-Romero JM. Development of an aptamer-based SPR-biosensor for the determination of kanamycin residues in foods. Anal Chim Acta 2021;1169:338631. [PMID: 34088369 DOI: 10.1016/j.aca.2021.338631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
29 Leung WH, Pang CC, Pang SN, Weng SX, Lin YL, Chiou YE, Pang ST, Weng WH. High-Sensitivity Dual-Probe Detection of Urinary miR-141 in Cancer Patients via a Modified Screen-Printed Carbon Electrode-Based Electrochemical Biosensor. Sensors (Basel) 2021;21:3183. [PMID: 34063705 DOI: 10.3390/s21093183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
30 Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. Sensors (Basel) 2020;20:E6926. [PMID: 33291722 DOI: 10.3390/s20236926] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]