BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun Y, Peng Z, Li H, Wang Z, Mu Y, Zhang G, Chen S, Liu S, Wang G, Liu C, Sun L, Man B, Yang C. Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosensors and Bioelectronics 2019;137:255-62. [DOI: 10.1016/j.bios.2019.04.054] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Xia Y, Sun Y, Li H, Chen S, Zhu T, Wang G, Man B, Pan J, Yang C. Plasma treated graphene FET sensor for the DNA hybridization detection. Talanta 2021;223:121766. [DOI: 10.1016/j.talanta.2020.121766] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
2 Dugasani SR, Gnapareddy B, Kesama MR, Park SH. Chemical and physical characteristics of hydroxyl group-modified multi-walled carbon nanotube-combined DNA layers. J Phys D: Appl Phys 2019;52:415302. [DOI: 10.1088/1361-6463/ab31c6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
3 Dehghani S. Numerical Study of Long Channel Carbon Nanotube Based Transistors by Considering Variation in CNT Diameter. JNanoR 2020;61:78-87. [DOI: 10.4028/www.scientific.net/jnanor.61.78] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Ziegler JM, Andoni I, Choi EJ, Fang L, Flores-Zuleta H, Humphrey NJ, Kim DH, Shin J, Youn H, Penner RM. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016-2020. Anal Chem 2021;93:124-66. [PMID: 33242951 DOI: 10.1021/acs.analchem.0c04476] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
5 Yupapin P, Mahesha CR, Fouladi H, Hamidi A, Farmani A. Recent Advances in CNT-based FET Transistor Biosensors to Detect Biomarkers of Clinical Significance. Silicon. [DOI: 10.1007/s12633-022-01734-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. Journal of Pharmaceutical and Biomedical Analysis 2020;191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ren Q, Zhang Y, Ma S, Wang X, Chang K, Zhang Y, Yin F, Li Z, Zhang M. Low-temperature supercritical activation enables high-performance detection of cell-free DNA by all-carbon-nanotube transistor. Carbon 2022;196:120-7. [DOI: 10.1016/j.carbon.2022.04.068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yang W, Yu J, Xi X, Sun Y, Shen Y, Yue W, Zhang C, Jiang S. Preparation of Graphene/ITO Nanorod Metamaterial/U-Bent-Annealing Fiber Sensor and DNA Biomolecule Detection. Nanomaterials (Basel) 2019;9:E1154. [PMID: 31408969 DOI: 10.3390/nano9081154] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
9 White DL, Day BA, Zeng Z, Schulte ZM, Borland NR, Rosi NL, Wilmer CE, Star A. Size Discrimination of Carbohydrates via Conductive Carbon Nanotube@Metal Organic Framework Composites. J Am Chem Soc 2021;143:8022-33. [PMID: 34003001 DOI: 10.1021/jacs.1c01673] [Reference Citation Analysis]
10 Yuan X, Yang C, He Q, Chen J, Yu D, Li J, Zhai S, Qin Z, Du K, Chu Z, Qin P. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infect Dis 2020;6:1998-2016. [PMID: 32677821 DOI: 10.1021/acsinfecdis.0c00365] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 31.0] [Reference Citation Analysis]
11 Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020;378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
12 Yang W, Jiang M, Jiang S, Du L, Cheng Y, Li P, Wang C. Design and fabrication of Gr/Ag-coated tilted grating sensor for ultra-sensitive detection of DNA hybridization. Sensors and Actuators B: Chemical 2022;359:131587. [DOI: 10.1016/j.snb.2022.131587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Cui TR, Qiao YC, Gao JW, Wang CH, Zhang Y, Han L, Yang Y, Ren TL. Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. Molecules 2021;26:6947. [PMID: 34834039 DOI: 10.3390/molecules26226947] [Reference Citation Analysis]
14 Halima HB, Errachid A, Jaffrezic‐renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. Electroanalysis. [DOI: 10.1002/elan.202100451] [Reference Citation Analysis]
15 Maheswaran R, Shanmugavel BP. A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications. J Electron Mater . [DOI: 10.1007/s11664-022-09516-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ma S, Zhang Y, Ren Q, Wang X, Zhu J, Yin F, Li Z, Zhang M. Tetrahedral DNA nanostructure based biosensor for high-performance detection of circulating tumor DNA using all-carbon nanotube transistor. Biosens Bioelectron 2022;197:113785. [PMID: 34800925 DOI: 10.1016/j.bios.2021.113785] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Karimzadeh S, Safaei B, Jen T. Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study. Journal of Molecular Liquids 2021;322:114890. [DOI: 10.1016/j.molliq.2020.114890] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 15.0] [Reference Citation Analysis]
18 Chen S, Sun Y, Xia Y, Lv K, Man B, Yang C. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors and Bioelectronics 2020;156:112128. [DOI: 10.1016/j.bios.2020.112128] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
19 Liu P, Jiao Y, Chai X, Ma Y, Liu S, Fang X, Fan F, Xue L, Han J, Liu Q. High-performance electric and optical biosensors based on single-walled carbon nanotubes. Journal of Luminescence 2022;250:119084. [DOI: 10.1016/j.jlumin.2022.119084] [Reference Citation Analysis]
20 Hannah S, Blair E, Corrigan DK. Developments in microscale and nanoscale sensors for biomedical sensing. Current Opinion in Electrochemistry 2020;23:7-15. [DOI: 10.1016/j.coelec.2020.02.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
21 Xi X, Xu J, Li S, Song J, Yang W, Sun Y, Jiang S, Han Y, Fan X. An Au Nanofilm-Graphene/D-Type Fiber Surface Plasmon Resonance Sensor for Highly Sensitive Specificity Bioanalysis. Sensors (Basel) 2020;20:E991. [PMID: 32059555 DOI: 10.3390/s20040991] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
22 Gao J, Gao Y, Han Y, Pang J, Wang C, Wang Y, Liu H, Zhang Y, Han L. Ultrasensitive Label-free MiRNA Sensing Based on a Flexible Graphene Field-Effect Transistor without Functionalization. ACS Appl Electron Mater 2020;2:1090-8. [DOI: 10.1021/acsaelm.0c00095] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
23 Sun M, Zhang C, Chen D, Wang J, Ji Y, Liang N, Gao H, Cheng S, Liu H. Ultrasensitive and stable all graphene field‐effect transistor‐based Hg 2+ sensor constructed by using different covalently bonded RGO films assembled by different conjugate linking molecules. SmartMat 2021;2:213-25. [DOI: 10.1002/smm2.1030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
24 Dai B, Zhou R, Ping J, Ying Y, Xie L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116658] [Reference Citation Analysis]
25 Meng Q, Wei S, Xu Z, Cao Q, Xiao Y, Liu N, Liu H, Han G, Zhang J, Yan J, Palov AP, Wu L. Hafnium oxide layer-enhanced single-walled carbon nanotube field-effect transistor-based sensing platform. Anal Chim Acta 2021;1147:99-107. [PMID: 33485588 DOI: 10.1016/j.aca.2020.12.040] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Wang H, Zheng S, Nan X, Zhao Y, Wang Y, Zhang F, Yang L, Lixing X, Xiong B. Non-specific DNAzyme-based biosensor with interfering ions for the Cd2+ determination in feed. Sensors and Actuators B: Chemical 2021;329:129139. [DOI: 10.1016/j.snb.2020.129139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]