BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, Kjær A, Andresen TL. 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 2011;32:2334-41. [PMID: 21216003 DOI: 10.1016/j.biomaterials.2010.11.059] [Cited by in Crossref: 100] [Cited by in F6Publishing: 86] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Poletto G, Evangelista L, Venturini F, Gramegna F, Seno F, Moro S, Vettor R, Realdon N, Cecchin D. Nanoparticles and Radioisotopes: A Long Story in a Nutshell. Pharmaceutics 2022;14:2024. [DOI: 10.3390/pharmaceutics14102024] [Reference Citation Analysis]
2 Obeid MA, Qaraghuli MA, Ruano M, Sangboonruang S, Alsaadi M, Tragoolpua Y, Ferro VA. Lipid-Based Nanomaterials in Cancer Treatment and Diagnosis. Bionanotechnology: Next-Generation Therapeutic Tools 2022. [DOI: 10.2174/9789815051278122010005] [Reference Citation Analysis]
3 Cruz-nova P, Ancira-cortez A, Ferro-flores G, Ocampo-garcía B, Gibbens-bandala B. Controlled-Release Nanosystems with a Dual Function of Targeted Therapy and Radiotherapy in Colorectal Cancer. Pharmaceutics 2022;14:1095. [DOI: 10.3390/pharmaceutics14051095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Dennahy IS, Han Z, Maccuaig WM, Chalfant HM, Condacse A, Hagood JM, Claros-sorto JC, Razaq W, Holter-chakrabarty J, Squires R, Edil BH, Jain A, Mcnally LR. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022;14:917. [DOI: 10.3390/pharmaceutics14050917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS Nano 2022. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Mustafa G, Ahmad MZ, Aslam M, Garg A, Ahmad J. Nanoliposomal System for Breast Cancer Therapy. Hormone Related Cancer Mechanistic and Nanomedicines 2022. [DOI: 10.1007/978-981-19-5558-7_10] [Reference Citation Analysis]
8 Figueroa-pizano M, Carvajal-millan E. Nanovesicles for image-guided drug delivery. Systems of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91864-0.00008-5] [Reference Citation Analysis]
9 Varani M, Galli F, Bentivoglio V, Signore A. Particles and nanoparticles in nuclear medicine: Basic principles and instrumentation. Nuclear Medicine and Molecular Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00079-x] [Reference Citation Analysis]
10 Silva VL, Ruiz A, Ali A, Pereira S, Seitsonen J, Ruokolainen J, Furlong F, Coulter J, Al-Jamal WT. Hypoxia-targeted cupric-tirapazamine liposomes potentiate radiotherapy in prostate cancer spheroids. Int J Pharm 2021;607:121018. [PMID: 34416329 DOI: 10.1016/j.ijpharm.2021.121018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Padmanabhan P, Palanivel M, Kumar A, Máthé D, Radda GK, Lim KL, Gulyás B. Nanotheranostic agents for neurodegenerative diseases. Emerg Top Life Sci 2020;4:645-75. [PMID: 33320185 DOI: 10.1042/ETLS20190141] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021;50:3355-423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Cited by in Crossref: 50] [Cited by in F6Publishing: 60] [Article Influence: 25.0] [Reference Citation Analysis]
13 Kozlovskaya V, Alford A, Dolmat M, Ducharme M, Caviedes R, Radford L, Lapi SE, Kharlampieva E. Multilayer Microcapsules with Shell-Chelated 89 Zr for PET Imaging and Controlled Delivery. ACS Appl Mater Interfaces 2020;12:56792-804. [DOI: 10.1021/acsami.0c17456] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
14 Børresen B, Hansen AE, Fliedner FP, Henriksen JR, Elema DR, Brandt-Larsen M, Kristensen LK, Kristensen AT, Andresen TL, Kjær A. Noninvasive Molecular Imaging of the Enhanced Permeability and Retention Effect by 64Cu-Liposomes: In vivo Correlations with 68Ga-RGD, Fluid Pressure, Diffusivity and 18F-FDG. Int J Nanomedicine 2020;15:8571-81. [PMID: 33173294 DOI: 10.2147/IJN.S239172] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
15 Oliveri V. Biomedical applications of copper ionophores. Coordination Chemistry Reviews 2020;422:213474. [DOI: 10.1016/j.ccr.2020.213474] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
16 Capriotti G, Varani M, Lauri C, Franchi G, Pizzichini P, Signore A. Copper-64 labeled nanoparticles for positron emission tomography imaging: a review of the recent literature. Q J Nucl Med Mol Imaging 2020;64:346-55. [PMID: 33073558 DOI: 10.23736/S1824-4785.20.03315-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
17 Clausen AS, Østergaard DE, Holmberg P, Henriksen JR, Tham J, Damborg PP, Jensen AI, Kjaer A, Hansen AE, Andresen TL. Quantitative determination of 64Cu-liposome accumulation at inflammatory and infectious sites: Potential for future theranostic system. J Control Release 2020;327:737-46. [PMID: 32920081 DOI: 10.1016/j.jconrel.2020.09.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
18 Ringgaard L, Melander F, Eliasen R, Henriksen JR, Jølck RI, Engel TB, Bak M, Fliedner FP, Kristensen K, Elema DR, Kjaer A, Hansen AE, Andresen TL. Tumor repolarization by an advanced liposomal drug delivery system provides a potent new approach for chemo-immunotherapy. Sci Adv 2020;6:eaba5628. [PMID: 32917608 DOI: 10.1126/sciadv.aba5628] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
19 Shin U, Kim J, Lee J, Park D, Lee C, Jung HC, Park J, Lee K, Lee MW, Kim SW, Seo J. Development of 64Cu-loaded Perfluoropentane Nanodroplet: A Potential Tumor Theragnostic Nano-carrier and Dual-Modality PET-Ultrasound Imaging Agents. Ultrasound Med Biol 2020;46:2775-84. [PMID: 32653208 DOI: 10.1016/j.ultrasmedbio.2020.05.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Aranda-Lara L, Morales-Avila E, Luna-Gutiérrez MA, Olivé-Alvarez E, Isaac-Olivé K. Radiolabeled liposomes and lipoproteins as lipidic nanoparticles for imaging and therapy. Chem Phys Lipids 2020;230:104934. [PMID: 32562666 DOI: 10.1016/j.chemphyslip.2020.104934] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
21 Wang W, Fliedner FP, Hansen AE, Eliasen R, Melander F, Kjaer A, Andresen TL, Jensen AI, Henriksen JR. Preclinical evaluation of cationic DOTA-triarginine-lipid conjugates for theranostic liquid brachytherapy. Nanotheranostics 2020;4:142-55. [PMID: 32483520 DOI: 10.7150/ntno.44562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Nagachinta S, Becker G, Dammicco S, Serrano ME, Leroi N, Bahri MA, Plenevaux A, Lemaire C, Lopez R, Luxen A, de la Fuente M. Radiolabelling of lipid-based nanocarriers with fluorine-18 for in vivo tracking by PET. Colloids and Surfaces B: Biointerfaces 2020;188:110793. [DOI: 10.1016/j.colsurfb.2020.110793] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
23 Suhag D, Chauhan M, Shakeel A, Das S. Emerging Trends in Nanotheranostics. NanoBioMedicine 2020. [DOI: 10.1007/978-981-32-9898-9_14] [Reference Citation Analysis]
24 Gabizon AA, de Rosales RTM, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020;158:140-57. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
25 Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2020;228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 17.3] [Reference Citation Analysis]
26 Thébault CJ, Ramniceanu G, Michel A, Beauvineau C, Girard C, Seguin J, Mignet N, Ménager C, Doan BT. In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI. Mol Imaging Biol 2019;21:269-78. [PMID: 29942990 DOI: 10.1007/s11307-018-1238-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
27 Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019;143:134-60. [PMID: 31170428 DOI: 10.1016/j.addr.2019.05.012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 13.8] [Reference Citation Analysis]
28 Xia Y, Xu C, Zhang X, Ning P, Wang Z, Tian J, Chen X. Liposome-based probes for molecular imaging: from basic research to the bedside. Nanoscale 2019;11:5822-38. [DOI: 10.1039/c9nr00207c] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
29 Hervella P, Dam JH, Thisgaard H, Baun C, Olsen BB, Høilund-Carlsen PF, Needham D. Chelation, formulation, encapsulation, retention, and in vivo biodistribution of hydrophobic nanoparticles labelled with 57Co-porphyrin: Oleylamine ensures stable chelation of cobalt in nanoparticles that accumulate in tumors. J Control Release 2018;291:11-25. [PMID: 30291986 DOI: 10.1016/j.jconrel.2018.09.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
30 Christensen E, Henriksen JR, Jørgensen JT, Amitay Y, Shmeeda H, Gabizon AA, Kjær A, Andresen TL, Hansen AE. Folate receptor targeting of radiolabeled liposomes reduces intratumoral liposome accumulation in human KB carcinoma xenografts. Int J Nanomedicine 2018;13:7647-56. [PMID: 30538449 DOI: 10.2147/IJN.S182579] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
31 Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2019;107:251-85. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]
32 Gawne P, Man F, Fonslet J, Radia R, Bordoloi J, Cleveland M, Jimenez-Royo P, Gabizon A, Blower PJ, Long N, de Rosales RTM. Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalton Trans 2018;47:9283-93. [PMID: 29796500 DOI: 10.1039/c8dt00100f] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
33 Arms L, Smith DW, Flynn J, Palmer W, Martin A, Woldu A, Hua S. Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles. Front Pharmacol 2018;9:802. [PMID: 30154715 DOI: 10.3389/fphar.2018.00802] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 11.6] [Reference Citation Analysis]
34 Mirahadi M, Ghanbarzadeh S, Ghorbani M, Gholizadeh A, Hamishehkar H. A review on the role of lipid-based nanoparticles in medical diagnosis and imaging. Therapeutic Delivery 2018;9:557-69. [DOI: 10.4155/tde-2018-0020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
35 Su C, Liu Y, He Y, Gu J. Analytical methods for investigating in vivo fate of nanoliposomes: A review. J Pharm Anal 2018;8:219-25. [PMID: 30140485 DOI: 10.1016/j.jpha.2018.07.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
36 Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018;179:209-45. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Cited by in Crossref: 87] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
37 Lv Y, He H, Qi J, Lu Y, Zhao W, Dong X, Wu W. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int J Pharm 2018;547:395-403. [PMID: 29894757 DOI: 10.1016/j.ijpharm.2018.06.025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
38 Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB 2nd, Raghavan SR, Polf J, Mahmood J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018;23:E288. [PMID: 29385755 DOI: 10.3390/molecules23020288] [Cited by in Crossref: 137] [Cited by in F6Publishing: 144] [Article Influence: 27.4] [Reference Citation Analysis]
39 Kang KW, Song MG. Organic Nanomaterials: Liposomes, Albumin, Dendrimer, Polymeric Nanoparticles. Radionanomedicine 2018. [DOI: 10.1007/978-3-319-67720-0_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
40 Lee DS, Suh M, Lee Y. Radiolabeling Method: Core/Surface Labeling, Chemical and Physical Labeling. Radionanomedicine 2018. [DOI: 10.1007/978-3-319-67720-0_11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
41 Chen D, Hong H. Surface Modification of Radionanomedicine. Radionanomedicine 2018. [DOI: 10.1007/978-3-319-67720-0_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
42 Jensen AI, Severin GW, Hansen AE, Fliedner FP, Eliasen R, Parhamifar L, Kjær A, Andresen TL, Henriksen JR. Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. Journal of Controlled Release 2018;269:100-9. [DOI: 10.1016/j.jconrel.2017.11.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
43 Luo D, Goel S, Liu HJ, Carter KA, Jiang D, Geng J, Kutyreff CJ, Engle JW, Huang WC, Shao S, Fang C, Cai W, Lovell JF. Intrabilayer 64Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes. ACS Nano 2017;11:12482-91. [PMID: 29195037 DOI: 10.1021/acsnano.7b06578] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 9.3] [Reference Citation Analysis]
44 Li N, Yu Z, Pham TT, Blower PJ, Yan R. A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography. Int J Nanomedicine 2017;12:3281-94. [PMID: 28458546 DOI: 10.2147/IJN.S134379] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
45 Klauber TCB, Laursen JM, Zucker D, Brix S, Jensen SS, Andresen TL. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater 2017;53:367-77. [PMID: 28153581 DOI: 10.1016/j.actbio.2017.01.072] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
46 Malinge J, Géraudie B, Savel P, Nataf V, Prignon A, Provost C, Zhang Y, Ou P, Kerrou K, Talbot JN, Siaugue JM, Sollogoub M, Ménager C. Liposomes for PET and MR Imaging and for Dual Targeting (Magnetic Field/Glucose Moiety): Synthesis, Properties, and in Vivo Studies. Mol Pharm 2017;14:406-14. [PMID: 28029258 DOI: 10.1021/acs.molpharmaceut.6b00794] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
47 Kairdolf BA, Qian X, Nie S. Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Anal Chem 2017;89:1015-31. [DOI: 10.1021/acs.analchem.6b04873] [Cited by in Crossref: 103] [Cited by in F6Publishing: 106] [Article Influence: 17.2] [Reference Citation Analysis]
48 Gutiérrez L, Stepien G, Gutiérrez L, Pérez-hernández M, Pardo J, Pardo J, Grazú V, de la Fuente J. Nanotechnology in Drug Discovery and Development. Comprehensive Medicinal Chemistry III 2017. [DOI: 10.1016/b978-0-12-409547-2.12292-9] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
49 Cholkar K, Hirani ND, Natarajan C. Nanotechnology-Based Medical and Biomedical Imaging for Diagnostics. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices 2017. [DOI: 10.1016/b978-0-323-42978-8.00014-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
50 Abadjian MZ, Choi J, Anderson CJ. Nanoparticles for PET Imaging of Tumors and Cancer Metastasis. Design and Applications of Nanoparticles in Biomedical Imaging 2017. [DOI: 10.1007/978-3-319-42169-8_11] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
51 Sun X, Yan X, Jacobson O, Sun W, Wang Z, Tong X, Xia Y, Ling D, Chen X. Improved Tumor Uptake by Optimizing Liposome Based RES Blockade Strategy. Theranostics 2017;7:319-28. [PMID: 28042337 DOI: 10.7150/thno.18078] [Cited by in Crossref: 81] [Cited by in F6Publishing: 89] [Article Influence: 13.5] [Reference Citation Analysis]
52 Silindir-gunay M, Ozer AY. Nanosized drug delivery systems as radiopharmaceuticals. Nanostructures for Cancer Therapy 2017. [DOI: 10.1016/b978-0-323-46144-3.00022-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
53 Edmonds S, Volpe A, Shmeeda H, Parente-Pereira AC, Radia R, Baguña-Torres J, Szanda I, Severin GW, Livieratos L, Blower PJ, Maher J, Fruhwirth GO, Gabizon A, T M de Rosales R. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines. ACS Nano 2016;10:10294-307. [PMID: 27781436 DOI: 10.1021/acsnano.6b05935] [Cited by in Crossref: 58] [Cited by in F6Publishing: 64] [Article Influence: 8.3] [Reference Citation Analysis]
54 Theranostic Nanoagents. Drug Delivery 2016. [DOI: 10.1201/9781315382579-19] [Reference Citation Analysis]
55 Lee SG, Gangangari K, Kalidindi TM, Punzalan B, Larson SM, Pillarsetty NVK. Copper-64 labeled liposomes for imaging bone marrow. Nucl Med Biol 2016;43:781-7. [PMID: 27694056 DOI: 10.1016/j.nucmedbio.2016.08.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.9] [Reference Citation Analysis]
56 van der Geest T, Laverman P, Metselaar JM, Storm G, Boerman OC. Radionuclide imaging of liposomal drug delivery. Expert Opin Drug Deliv 2016;13:1231-42. [PMID: 27351233 DOI: 10.1080/17425247.2016.1205584] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
57 Park JA, Lee YJ, Lee JW, Yoo RJ, Shin UC, Lee KC, Kim BI, Kim KM, Kim JY. Evaluation of [(89)Zr]-Oxalate as a PET Tracer in Inflammation, Tumor, and Rheumatoid Arthritis Models. Mol Pharm 2016;13:2571-7. [PMID: 27243098 DOI: 10.1021/acs.molpharmaceut.6b00411] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
58 Xing H, Hwang K, Lu Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics 2016;6:1336-52. [PMID: 27375783 DOI: 10.7150/thno.15464] [Cited by in Crossref: 154] [Cited by in F6Publishing: 165] [Article Influence: 22.0] [Reference Citation Analysis]
59 Hervella P, Parra E, Needham D. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation. European Journal of Pharmaceutics and Biopharmaceutics 2016;102:64-76. [DOI: 10.1016/j.ejpb.2016.02.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
60 Chaturvedi S, Mishra AK. Small Molecule Radiopharmaceuticals - A Review of Current Approaches. Front Med (Lausanne) 2016;3:5. [PMID: 26942181 DOI: 10.3389/fmed.2016.00005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
61 Ehlerding EB, Goel S, Cai W. Cancer theranostics with ⁶⁴Cu/¹⁷⁷Lu-loaded liposomes. Eur J Nucl Med Mol Imaging 2016;43:938-40. [PMID: 26743898 DOI: 10.1007/s00259-015-3299-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
62 Yue X, Dai Z. Multifunctional Liposomes for Imaging-Guided Therapy. Springer Series in Biomaterials Science and Engineering 2016. [DOI: 10.1007/978-3-662-48544-6_10] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
63 Guo P, Yang J, Jia D, Moses MA, Auguste DT. ICAM-1-Targeted, Lcn2 siRNA-Encapsulating Liposomes are Potent Anti-angiogenic Agents for Triple Negative Breast Cancer. Theranostics 2016;6:1-13. [PMID: 26722369 DOI: 10.7150/thno.12167] [Cited by in Crossref: 73] [Cited by in F6Publishing: 81] [Article Influence: 10.4] [Reference Citation Analysis]
64 Petersen AL, Henriksen JR, Binderup T, Elema DR, Rasmussen PH, Hag AM, Kjær A, Andresen TL. In vivo evaluation of PEGylated 64Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging 2016;43:941-52. [DOI: 10.1007/s00259-015-3272-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 3.5] [Reference Citation Analysis]
65 Henriksen JR, Petersen AL, Hansen AE, Frankær CG, Harris P, Elema DR, Kristensen AT, Kjær A, Andresen TL. Remote Loading of 64 Cu 2+ into Liposomes without the Use of Ion Transport Enhancers. ACS Appl Mater Interfaces 2015;7:22796-806. [DOI: 10.1021/acsami.5b04612] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
66 Hsu W, Chiang I, Chen L, Chiu S, Lee T, Hwang J. Liposomes labeled with Indium-111 by a novel surface labeling method exhibits good biodistribution in vivo. 2015 IEEE International Conference on Imaging Systems and Techniques (IST) 2015. [DOI: 10.1109/ist.2015.7294527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
67 Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR, af Rosenschöld PM, Kristensen AT, Kjær A, Andresen TL. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes. ACS Nano 2015;9:6985-95. [PMID: 26022907 DOI: 10.1021/acsnano.5b01324] [Cited by in Crossref: 171] [Cited by in F6Publishing: 181] [Article Influence: 21.4] [Reference Citation Analysis]
68 Abou DS, Pickett JE, Thorek DL. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. Br J Radiol 2015;88:20150185. [PMID: 26133075 DOI: 10.1259/bjr.20150185] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
69 Huda P, Binderup T, Pedersen MC, Midtgaard SR, Elema DR, Kjær A, Jensen M, Arleth L. PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice. PLoS One 2015;10:e0129310. [PMID: 26132074 DOI: 10.1371/journal.pone.0129310] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
70 Gao F, Cai P, Yang W, Xue J, Gao L, Liu R, Wang Y, Zhao Y, He X, Zhao L, Huang G, Wu F, Zhao Y, Chai Z, Gao X. Ultrasmall [(64)Cu]Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano 2015;9:4976-86. [PMID: 25919205 DOI: 10.1021/nn507130k] [Cited by in Crossref: 79] [Cited by in F6Publishing: 87] [Article Influence: 9.9] [Reference Citation Analysis]
71 Rhim W, Kim M, Hartman KL, Kang KW, Nam J. Radionuclide-labeled nanostructures for In Vivo imaging of cancer. Nano Convergence 2015;2. [DOI: 10.1186/s40580-014-0041-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
72 Lee DS, Im H, Lee Y. Radionanomedicine: Widened perspectives of molecular theragnosis. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:795-810. [DOI: 10.1016/j.nano.2014.12.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 5.9] [Reference Citation Analysis]
73 Gaddy DF, Lee H, Zheng J, Jaffray DA, Wickham TJ, Hendriks BS. Whole-body organ-level and kidney micro-dosimetric evaluations of (64)Cu-loaded HER2/ErbB2-targeted liposomal doxorubicin ((64)Cu-MM-302) in rodents and primates. EJNMMI Res 2015;5:24. [PMID: 25918676 DOI: 10.1186/s13550-015-0096-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
74 Johnsen AM, Heidrich BJ, Durrant CB, Bascom AJ, Ünlü K. Reactor production of 64Cu and 67Cu using enriched zinc target material. J Radioanal Nucl Chem 2015;305:61-71. [DOI: 10.1007/s10967-015-4032-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
75 Elbayoumi T, Torchilin V. Lipid-Based Pharmaceutical Nanocarriers for Imaging Applications. Nanotechnology for Biomedical Imaging and Diagnostics 2015. [DOI: 10.1002/9781118873151.ch3] [Reference Citation Analysis]
76 Aweda T, Sultan D, Liu Y. Radio-Labeled Nanoparticles for Biomedical Imaging. Nanotechnology for Biomedical Imaging and Diagnostics 2015. [DOI: 10.1002/9781118873151.ch7] [Reference Citation Analysis]
77 Severin GW, Jørgensen JT, Wiehr S, Rolle AM, Hansen AE, Maurer A, Hasenberg M, Pichler B, Kjær A, Jensen AI. The impact of weakly bound ⁸⁹Zr on preclinical studies: non-specific accumulation in solid tumors and aspergillus infection. Nucl Med Biol 2015;42:360-8. [PMID: 25583221 DOI: 10.1016/j.nucmedbio.2014.11.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
78 Seo JW, Mahakian LM, Tam S, Qin S, Ingham ES, Meares CF, Ferrara KW. The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model. Nucl Med Biol 2015;42:155-63. [PMID: 25451215 DOI: 10.1016/j.nucmedbio.2014.09.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
79 Lee H, Zheng J, Gaddy D, Orcutt KD, Leonard S, Geretti E, Hesterman J, Harwell C, Hoppin J, Jaffray DA, Wickham T, Hendriks BS, Kirpotin D. A gradient-loadable (64)Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine 2015;11:155-65. [PMID: 25200610 DOI: 10.1016/j.nano.2014.08.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 4.3] [Reference Citation Analysis]
80 Pérez-Medina C, Abdel-Atti D, Zhang Y, Longo VA, Irwin CP, Binderup T, Ruiz-Cabello J, Fayad ZA, Lewis JS, Mulder WJ, Reiner T. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J Nucl Med 2014;55:1706-11. [PMID: 25060196 DOI: 10.2967/jnumed.114.141861] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 7.9] [Reference Citation Analysis]
81 Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 2014;11:3777-97. [PMID: 24865108 DOI: 10.1021/mp500173s] [Cited by in Crossref: 71] [Cited by in F6Publishing: 79] [Article Influence: 7.9] [Reference Citation Analysis]
82 Krajčiová D, Melník M, Havránek E, Forgácsová A, Mikuš P. Copper compounds in nuclear medicine and oncology. Journal of Coordination Chemistry 2014;67:1493-519. [DOI: 10.1080/00958972.2014.915966] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
83 Jensen AI, Binderup T, Kumar Ek P, Kjær A, Rasmussen PH, Andresen TL. Positron Emission Tomography Based Analysis of Long-Circulating Cross-Linked Triblock Polymeric Micelles in a U87MG Mouse Xenograft Model and Comparison of DOTA and CB-TE2A as Chelators of Copper-64. Biomacromolecules 2014;15:1625-33. [DOI: 10.1021/bm401871w] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
84 Fragogeorgi EA, Savina IN, Tsotakos T, Efthimiadou E, Xanthopoulos S, Palamaris L, Psimadas D, Bouziotis P, Kordas G, Mikhalovsky S, Alavijeh M, Loudos G. Comparative in vitro stability and scintigraphic imaging for trafficking and tumor targeting of a directly and a novel 99mTc(I)(CO)3 labeled liposome. International Journal of Pharmaceutics 2014;465:333-46. [DOI: 10.1016/j.ijpharm.2014.01.042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
85 Liu TW, Huynh E, Macdonald TD, Zheng G. Porphyrins for Imaging, Photodynamic Therapy, and Photothermal Therapy. Cancer Theranostics 2014. [DOI: 10.1016/b978-0-12-407722-5.00014-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
86 Singh A, Oka AJ, Pandya P, Amiji MM. Multimodal Nano-Systems for Cancer Diagnosis, Imaging, and Therapy. Nano-Oncologicals 2014. [DOI: 10.1007/978-3-319-08084-0_13] [Reference Citation Analysis]
87 Quintero N, Cohen I, Restrepo G. RADIOLABELED NANOPARTICLES USING _+ RADIONUCLIDES AS DIAGNOSTIC AGENTS. Nanoscience and Computational Chemistry 2013. [DOI: 10.1201/b16368-3] [Reference Citation Analysis]
88 Kang CM, Koo H, Lee S, Lee KC, Oh Y, Choe YS. 64Cu-Labeled tetraiodothyroacetic acid-conjugated liposomes for PET imaging of tumor angiogenesis. Nuclear Medicine and Biology 2013;40:1018-24. [DOI: 10.1016/j.nucmedbio.2013.08.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
89 Phillips WT, Bao A, Sou K, Li S, Goins B. RADIOLABELED LIPOSOMES AS DRUG DELIVERY NANOTHERANOSTICS. Drug Delivery Applications of Noninvasive Imaging 2013. [DOI: 10.1002/9781118356845.ch11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
90 Li V, Chang AY, Williams TJ. A noncovalent, fluoroalkyl coating monomer for phosphonate-covered nanoparticles. Tetrahedron 2013;69:7741-6. [PMID: 23913989 DOI: 10.1016/j.tet.2013.05.092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
91 Luk BT, Fang RH, Zhang L. Lipid- and polymer-based nanostructures for cancer theranostics. Theranostics 2012;2:1117-26. [PMID: 23382770 DOI: 10.7150/thno.4381] [Cited by in Crossref: 98] [Cited by in F6Publishing: 111] [Article Influence: 8.9] [Reference Citation Analysis]
92 Hendriks BS, Reynolds JG, Klinz SG, Geretti E, Lee H, Leonard SC, Gaddy DF, Espelin CW, Nielsen UB, Wickham TJ. Multiscale kinetic modeling of liposomal Doxorubicin delivery quantifies the role of tumor and drug-specific parameters in local delivery to tumors. CPT Pharmacometrics Syst Pharmacol 2012;1:e15. [PMID: 23835797 DOI: 10.1038/psp.2012.16] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 3.4] [Reference Citation Analysis]
93 Liu TW, Macdonald TD, Shi J, Wilson BC, Zheng G. Intrinsically Copper-64-Labeled Organic Nanoparticles as Radiotracers. Angew Chem 2012;124:13305-8. [DOI: 10.1002/ange.201206939] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
94 Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G. Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed Engl 2012;51:13128-31. [PMID: 23154923 DOI: 10.1002/anie.201206939] [Cited by in Crossref: 94] [Cited by in F6Publishing: 99] [Article Influence: 8.5] [Reference Citation Analysis]
95 Mitchell N, Kalber TL, Cooper MS, Sunassee K, Chalker SL, Shaw KP, Ordidge KL, Badar A, Janes SM, Blower PJ, Lythgoe MF, Hailes HC, Tabor AB. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials 2013;34:1179-92. [PMID: 23131536 DOI: 10.1016/j.biomaterials.2012.09.070] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 5.4] [Reference Citation Analysis]
96 Shin J, Shum P, Grey J, Fujiwara S, Malhotra GS, González-Bonet A, Hyun SH, Moase E, Allen TM, Thompson DH. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics. Mol Pharm 2012;9:3266-76. [PMID: 23030381 DOI: 10.1021/mp300326z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
97 Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 2012;64:1417-35. [PMID: 22982406 DOI: 10.1016/j.addr.2012.09.003] [Cited by in Crossref: 118] [Cited by in F6Publishing: 126] [Article Influence: 10.7] [Reference Citation Analysis]
98 Silindir M, Özer AY, Erdoğan S. The use and importance of liposomes in positron emission tomography. Drug Deliv 2012;19:68-80. [PMID: 22211758 DOI: 10.3109/10717544.2011.635721] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
99 Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials 2012;33:7785-93. [PMID: 22840225 DOI: 10.1016/j.biomaterials.2012.07.022] [Cited by in Crossref: 92] [Cited by in F6Publishing: 100] [Article Influence: 8.4] [Reference Citation Analysis]
100 Jensen ATI, Binderup T, Andresen TL, Kjær A, Rasmussen PH. PET imaging of liposomes labeled with an [ 18 F]-fluorocholesteryl ether probe prepared by automated radiosynthesis. Journal of Liposome Research 2012;22:295-305. [DOI: 10.3109/08982104.2012.698418] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
101 de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012;2:39. [PMID: 22809406 DOI: 10.1186/2191-219X-2-39] [Cited by in Crossref: 100] [Cited by in F6Publishing: 106] [Article Influence: 9.1] [Reference Citation Analysis]
102 Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, Hunter AC. Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immun 2012;4:509-28. [PMID: 22722900 DOI: 10.1159/000339153] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 4.1] [Reference Citation Analysis]
103 Petersen AL, Binderup T, Jølck RI, Rasmussen P, Henriksen JR, Pfeifer AK, Kjær A, Andresen TL. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. Journal of Controlled Release 2012;160:254-63. [DOI: 10.1016/j.jconrel.2011.12.038] [Cited by in Crossref: 50] [Cited by in F6Publishing: 56] [Article Influence: 4.5] [Reference Citation Analysis]
104 Li S, Goins B, Zhang L, Bao A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 2012;23:1322-32. [PMID: 22577859 DOI: 10.1021/bc300175d] [Cited by in Crossref: 119] [Cited by in F6Publishing: 130] [Article Influence: 10.8] [Reference Citation Analysis]
105 Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 2012;23:671-82. [PMID: 22242601 DOI: 10.1021/bc200264c] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 8.5] [Reference Citation Analysis]
106 Xiao Y, Hong H, Javadi A, Engle JW, Xu W, Yang Y, Zhang Y, Barnhart TE, Cai W, Gong S. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 2012;33:3071-82. [PMID: 22281424 DOI: 10.1016/j.biomaterials.2011.12.030] [Cited by in Crossref: 189] [Cited by in F6Publishing: 167] [Article Influence: 17.2] [Reference Citation Analysis]
107 Duncan R, Gaspar R. Nanomedicine(s) under the Microscope. Mol Pharmaceutics 2011;8:2101-41. [DOI: 10.1021/mp200394t] [Cited by in Crossref: 696] [Cited by in F6Publishing: 724] [Article Influence: 58.0] [Reference Citation Analysis]
108 Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 2011;23:H217-47. [PMID: 21842473 DOI: 10.1002/adma.201102313] [Cited by in Crossref: 376] [Cited by in F6Publishing: 395] [Article Influence: 31.3] [Reference Citation Analysis]