BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Velander P, Wu L, Henderson F, Zhang S, Bevan DR, Xu B. Natural product-based amyloid inhibitors. Biochem Pharmacol 2017;139:40-55. [PMID: 28390938 DOI: 10.1016/j.bcp.2017.04.004] [Cited by in Crossref: 84] [Cited by in F6Publishing: 69] [Article Influence: 16.8] [Reference Citation Analysis]
Number Citing Articles
1 Kundu D, Prerna K, Chaurasia R, Bharty MK, Dubey VK. Advances in protein misfolding, amyloidosis and its correlation with human diseases. 3 Biotech 2020;10:193. [PMID: 32269898 DOI: 10.1007/s13205-020-2166-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
2 Vasarri M, Ramazzotti M, Tiribilli B, Barletta E, Pretti C, Mulinacci N, Degl'Innocenti D. The In Vitro Anti-amyloidogenic Activity of the Mediterranean Red Seaweed Halopithys Incurva. Pharmaceuticals (Basel) 2020;13:E185. [PMID: 32784616 DOI: 10.3390/ph13080185] [Reference Citation Analysis]
3 Ali MS, Al-lohedan HA, Tariq M, Farah MA, Altaf M, Wabaidur S, Shakeel Iqubal S, Tabassum S, Abdullah MM. Modulation of amyloid fibril formation of plasma protein by saffron constituent “safranal”: Spectroscopic and imaging analyses. International Journal of Biological Macromolecules 2019;127:529-35. [DOI: 10.1016/j.ijbiomac.2019.01.052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
4 Terry C. Insights from nature: A review of natural compounds that target protein misfolding in vivo. Current Research in Biotechnology 2020;2:131-44. [DOI: 10.1016/j.crbiot.2020.10.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
5 Nair RV, Padmanabhan P, Gulyás B, Matham MV. Fluorescence Resonance Energy Transfer (FRET)-Based ThT Free Sensing of Beta-Amyloid Fibrillation by Carbon Dot-Ag Composites. Plasmonics 2021;16:863-72. [DOI: 10.1007/s11468-020-01338-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Araújo AR, Reis RL, Pires RA. Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide. Adv Exp Med Biol 2020;1250:159-76. [PMID: 32601944 DOI: 10.1007/978-981-15-3262-7_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022;12:446. [DOI: 10.3390/biom12030446] [Reference Citation Analysis]
8 Freyssin A, Page G, Fauconneau B, Rioux Bilan A. Natural polyphenols effects on protein aggregates in Alzheimer's and Parkinson's prion-like diseases. Neural Regen Res 2018;13:955-61. [PMID: 29926816 DOI: 10.4103/1673-5374.233432] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 12.0] [Reference Citation Analysis]
9 Choi EY, Kang SS, Lee SK, Han BH. Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils. Biomol Ther (Seoul) 2020;28:145-51. [PMID: 31697876 DOI: 10.4062/biomolther.2019.113] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
10 Areche C, Zapata F, González M, Díaz E, Montecinos R, Hernández M, Melo F, Cornejo A. Anthraquinone Derivative Reduces Tau Oligomer Progression by Inhibiting Cysteine-Cysteine Interaction. ChemistryOpen 2019;8:554-9. [PMID: 31065505 DOI: 10.1002/open.201800222] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
11 Wu L, Velander P, Liu D, Xu B. Olive Component Oleuropein Promotes β-Cell Insulin Secretion and Protects β-Cells from Amylin Amyloid-Induced Cytotoxicity. Biochemistry 2017;56:5035-9. [DOI: 10.1021/acs.biochem.7b00199] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
12 Mahapatra A, Sarkar S, Biswas SC, Chattopadhyay K. An aminoglycoside antibiotic inhibits both lipid-induced and solution-phase fibrillation of α-synuclein in vitro. Chem Commun 2019;55:11052-5. [DOI: 10.1039/c9cc04251b] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Yang GX, Ge SL, Wu Y, Huang J, Li SL, Wang R, Ma L. Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem 2018;156:206-15. [PMID: 30006165 DOI: 10.1016/j.ejmech.2018.04.054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
14 Gerszon J, Rodacka A. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase in neurodegenerative processes and the role of low molecular weight compounds in counteracting its aggregation and nuclear translocation. Ageing Res Rev 2018;48:21-31. [PMID: 30254002 DOI: 10.1016/j.arr.2018.09.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
15 Mohapatra S, Viswanathan GKK, Wettstein L, Arad E, Paul A, Kumar V, Jelinek R, Münch J, Segal D. Dual concentration-dependent effect of ascorbic acid on PAP(248-286) amyloid formation and SEVI-mediated HIV infection. RSC Chem Biol 2021;2:1534-45. [PMID: 34704058 DOI: 10.1039/d1cb00084e] [Reference Citation Analysis]
16 Tanaka Iii K, Kobayashi K, Kogen H. Total Synthesis and Amyloid β Aggregation Inhibitory Activity of (−)-L-755,807. J Synth Org Chem Jpn 2019;77:673-83. [DOI: 10.5059/yukigoseikyokaishi.77.673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Gastaldo IP, Himbert S, Ram U, Rheinstädter MC. The Effects of Resveratrol, Caffeine, β-Carotene, and Epigallocatechin Gallate (EGCG) on Amyloid- β 25 -- 35 Aggregation in Synthetic Brain Membranes. Mol Nutr Food Res 2020;64:e2000632. [PMID: 32981185 DOI: 10.1002/mnfr.202000632] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Chernii S, Losytskyy M, Kelm A, Gorski A, Tretyakova I, Yarmoluk S, Chernii V, Kovalska V. Study of tetraphenylporphyrins as modifiers of insulin amyloid aggregation. J Mol Recognit 2020;33:e2811. [PMID: 31497916 DOI: 10.1002/jmr.2811] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
19 Lee YH, Lin Y, Cox SJ, Kinoshita M, Sahoo BR, Ivanova M, Ramamoorthy A. Zinc boosts EGCG's hIAPP amyloid Inhibition both in solution and membrane. Biochim Biophys Acta Proteins Proteom 2019;1867:529-36. [PMID: 30468883 DOI: 10.1016/j.bbapap.2018.11.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
20 Maiti P, Manna J, Thammathong J, Evans B, Dubey KD, Banerjee S, Dunbar GL. Tetrahydrocurcumin Has Similar Anti-Amyloid Properties as Curcumin:  In Vitro Comparative Structure-Activity Studies. Antioxidants (Basel) 2021;10:1592. [PMID: 34679727 DOI: 10.3390/antiox10101592] [Reference Citation Analysis]
21 Agamennone M, Storchi L, Marrone A, Paciotti R. Hampering the early aggregation of PrP-E200K protein by charge-based inhibitors: a computational study. J Comput Aided Mol Des 2021;35:751-70. [PMID: 34110550 DOI: 10.1007/s10822-021-00393-7] [Reference Citation Analysis]
22 Marsh DT, Smid SD. Cannabis Phytochemicals: A Review of Phytocannabinoid Chemistry and Bioactivity as Neuroprotective Agents. Aust J Chem 2021;74:388. [DOI: 10.1071/ch20183] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ramesh M, Acharya A, Murugan NA, Ila H, Govindaraju T. Thiophene-Based Dual Modulators of Aβ and Tau Aggregation. Chembiochem 2021. [PMID: 34546619 DOI: 10.1002/cbic.202100383] [Reference Citation Analysis]
24 Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in Combating Neuronal Dysregulated Signaling Pathways: Recent Approaches to the Nanoformulations of Phytochemicals and Synthetic Drugs Against Neurodegenerative Diseases. IJN 2022;Volume 17:299-331. [DOI: 10.2147/ijn.s347187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen X, Deng X, Han X, Liang Y, Meng Z, Liu R, Su W, Zhu H, Fu T. Inhibition of Lysozyme Amyloid Fibrillation by Silybin Diastereoisomers: The Effects of Stereochemistry. ACS Omega 2021;6:3307-18. [PMID: 33553948 DOI: 10.1021/acsomega.0c05788] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
26 Abe Y, Odawara N, Aeimhirunkailas N, Shibata H, Fujisaki N, Tachibana H, Ueda T. Inhibition of amyloid fibril formation in the variable domain of λ6 light chain mutant Wil caused by the interaction between its unfolded state and epigallocatechin-3-O-gallate. Biochimica et Biophysica Acta (BBA) - General Subjects 2018;1862:2570-8. [DOI: 10.1016/j.bbagen.2018.08.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
27 Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021;12:1211-38. [PMID: 33693510 DOI: 10.1093/advances/nmab007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
28 Singh YP, Kumar N, Priya K, Chauhan BS, Shankar G, Kumar S, Singh GK, Srikrishna S, Garg P, Singh G, Rai G, Modi G. Exploration of Neuroprotective Properties of a Naturally Inspired Multifunctional Molecule (F24) against Oxidative Stress and Amyloid β Induced Neurotoxicity in Alzheimer's Disease Models. ACS Chem Neurosci 2022;13:27-42. [PMID: 34931800 DOI: 10.1021/acschemneuro.1c00443] [Reference Citation Analysis]
29 Tavanti F, Pedone A, Menziani MC. Insights into the Effect of Curcumin and (-)-Epigallocatechin-3-Gallate on the Aggregation of Aβ(1-40) Monomers by Means of Molecular Dynamics. Int J Mol Sci 2020;21:E5462. [PMID: 32751722 DOI: 10.3390/ijms21155462] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Pang B, Bian X, Xing J, Liu S, Liu Z, Song F. Effects of lithospermic acid on hIAPP aggregation and amyloid-induced cytotoxicity by multiple analytical methods. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020;1868:140283. [DOI: 10.1016/j.bbapap.2019.140283] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
31 García-Viñuales S, Ilie IM, Santoro AM, Romanucci V, Zarrelli A, Di Fabio G, Caflisch A, Milardi D. Silybins inhibit human IAPP amyloid growth and toxicity through stereospecific interactions. Biochim Biophys Acta Proteins Proteom 2022;1870:140772. [PMID: 35307557 DOI: 10.1016/j.bbapap.2022.140772] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Honarmand S, Dabirmanesh B, Amanlou M, Khajeh K. The interaction of several herbal extracts with α-synuclein: Fibril formation and surface plasmon resonance analysis. PLoS One 2019;14:e0217801. [PMID: 31185031 DOI: 10.1371/journal.pone.0217801] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
33 Cunningham TJ, Greenstein J, Yao L, Fischer I, Connors T. Heptamer Peptide Disassembles Native Amyloid in Human Plasma Through Heat Shock Protein 70. Rejuvenation Res 2018;21:527-34. [PMID: 29651925 DOI: 10.1089/rej.2017.2049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Abe Y, Shibata H, Oyama K, Ueda T. Effect of O-glycosylation on amyloid fibril formation of the variable domain in the Vλ6 light chain mutant Wil. Int J Biol Macromol 2021;166:342-51. [PMID: 33127550 DOI: 10.1016/j.ijbiomac.2020.10.194] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Panda SS, Jhanji N. Natural Products as Potential Anti-Alzheimer Agents. Curr Med Chem 2020;27:5887-917. [PMID: 31215372 DOI: 10.2174/0929867326666190618113613] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
36 James JE, Willis SM, Nelson PG, Weibel C, Kosinski LJ, Masel J. Universal and taxon-specific trends in protein sequences as a function of age. Elife 2021;10:e57347. [PMID: 33416492 DOI: 10.7554/eLife.57347] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Fujihara K, Shimoyama T, Kawazu R, Sasaki H, Koyama K, Takahashi K, Kinoshita K. Amyloid β aggregation inhibitory activity of triterpene saponins from the cactus Stenocereus pruinosus. J Nat Med 2021;75:284-98. [PMID: 33231837 DOI: 10.1007/s11418-020-01463-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity Via Pro-Oxidant Properties. Int J Mol Sci 2020;21:E3561. [PMID: 32443552 DOI: 10.3390/ijms21103561] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
39 Welc R, Luchowski R, Kłosok K, Gruszecki WI, Nawrocka A. How Do Phenolic Acids Change the Secondary and Tertiary Structure of Gliadin? Studies with an Application of Spectroscopic Techniques. Int J Mol Sci 2022;23:6053. [PMID: 35682729 DOI: 10.3390/ijms23116053] [Reference Citation Analysis]
40 Ochiishi T, Kaku M, Kajsongkram T, Thisayakorn K. Mulberry fruit extract alleviates the intracellular amyloid-β oligomer-induced cognitive disturbance and oxidative stress in Alzheimer's disease model mice. Genes Cells 2021. [PMID: 34387016 DOI: 10.1111/gtc.12889] [Reference Citation Analysis]
41 Stefanescu R, Stanciu GD, Luca A, Paduraru L, Tamba BI. Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer's Disease. Biomolecules 2020;10:E870. [PMID: 32517180 DOI: 10.3390/biom10060870] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
42 Jia L, Wang Y, Sang J, Cui W, Zhao W, Wei W, Chen B, Lu F, Liu F. Dihydromyricetin Inhibits α-Synuclein Aggregation, Disrupts Preformed Fibrils, and Protects Neuronal Cells in Culture against Amyloid-Induced Cytotoxicity. J Agric Food Chem 2019;67:3946-55. [DOI: 10.1021/acs.jafc.9b00922] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
43 Avram S, Mernea M, Limban C, Borcan F, Chifiriuc C. Potential Therapeutic Approaches to Alzheimer's Disease By Bioinformatics, Cheminformatics And Predicted Adme-Tox Tools. Curr Neuropharmacol 2020;18:696-719. [PMID: 31885353 DOI: 10.2174/1570159X18666191230120053] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
44 Ebrahim-Habibi A, Kashani-Amin E, Larijani B. Modeling and simulation in medical sciences: an overview of specific applications based on research experience in EMRI (Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences). J Diabetes Metab Disord 2021;:1-7. [PMID: 33500880 DOI: 10.1007/s40200-020-00706-x] [Reference Citation Analysis]
45 Saini RK, Goyal D, Goyal B. Targeting Human Islet Amyloid Polypeptide Aggregation and Toxicity in Type 2 Diabetes: An Overview of Peptide-Based Inhibitors. Chem Res Toxicol 2020;33:2719-38. [PMID: 33124419 DOI: 10.1021/acs.chemrestox.0c00416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Lo Cascio F, Puangmalai N, Ellsworth A, Bucchieri F, Pace A, Palumbo Piccionello A, Kayed R. Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives. Sci Rep 2019;9:19011. [PMID: 31831807 DOI: 10.1038/s41598-019-55419-w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
47 Scannevin RH. Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Curr Opin Chem Biol 2018;44:66-74. [PMID: 29902695 DOI: 10.1016/j.cbpa.2018.05.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
48 Matilla-Cuenca L, Toledo-Arana A, Valle J. Anti-Biofilm Molecules Targeting Functional Amyloids. Antibiotics (Basel) 2021;10:795. [PMID: 34210036 DOI: 10.3390/antibiotics10070795] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Holland DC, Prebble DW, Er S, Hayton JB, Robertson LP, Avery VM, Domanskyi A, Kiefel MJ, Hooper JNA, Carroll AR. α-Synuclein Aggregation Inhibitory Prunolides and a Dibrominated β-Carboline Sulfamate from the Ascidian Synoicum prunum. J Nat Prod . [DOI: 10.1021/acs.jnatprod.1c01172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Frausto DM, Forsyth CB, Keshavarzian A, Voigt RM. Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Front Neurosci 2021;15:736814. [PMID: 34867153 DOI: 10.3389/fnins.2021.736814] [Reference Citation Analysis]
51 Kamecki F, Knez D, Carvalho D, Marcucci C, Rademacher M, Higgs J, Žakelj S, Marcos A, de Tezanos Pinto F, Abin-Carriquiry JA, Gobec S, Colettis N, Marder M. Multitarget 2'-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities. Neuropharmacology 2021;201:108837. [PMID: 34653442 DOI: 10.1016/j.neuropharm.2021.108837] [Reference Citation Analysis]
52 Xuan Q, Zhou J, Jiang F, Zhang W, Wei A, Zhang W, Zhang Q, Shen H, Li H, Chen C, Wang P. Sappanwood-derived polyphenolic antidote of amyloidal toxins achieved detoxification via inhibition/reversion of amyloidal fibrillation. Int J Biol Macromol 2022;214:446-58. [PMID: 35752334 DOI: 10.1016/j.ijbiomac.2022.06.141] [Reference Citation Analysis]
53 Wang S, Zheng J, Ma L, Petersen RB, Xu L, Huang K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim Biophys Acta Gen Subj 2021;1866:130061. [PMID: 34822925 DOI: 10.1016/j.bbagen.2021.130061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 King KM, Bevan DR, Brown AM. Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP(20-29) Aggregation. ACS Chem Neurosci 2022;13:1615-26. [PMID: 35587203 DOI: 10.1021/acschemneuro.2c00025] [Reference Citation Analysis]
55 Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. Biochim Biophys Acta Biomembr 2018;1860:1876-88. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
56 Chaari A. Inhibition of human islet amyloid polypeptide aggregation and cellular toxicity by oleuropein and derivatives from olive oil. Int J Biol Macromol 2020;162:284-300. [PMID: 32569693 DOI: 10.1016/j.ijbiomac.2020.06.170] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
57 Metkar SK, Girigoswami A, Vijayashree R, Girigoswami K. Attenuation of subcutaneous insulin induced amyloid mass in vivo using Lumbrokinase and Serratiopeptidase. Int J Biol Macromol 2020;163:128-34. [PMID: 32615214 DOI: 10.1016/j.ijbiomac.2020.06.256] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Khan JM, Malik A, Rehman T, Alajmi MF, Alamery SF, Alghamdi OHA, Khan RH, Odeibat HAM, Fatima S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. Journal of Molecular Liquids 2019;289:111090. [DOI: 10.1016/j.molliq.2019.111090] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
59 Ayala S, Genevaux P, Hureau C, Faller P. (Bio)chemical Strategies To Modulate Amyloid-β Self-Assembly. ACS Chem Neurosci 2019;10:3366-74. [PMID: 31265239 DOI: 10.1021/acschemneuro.9b00239] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
60 Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020;21:E6530. [PMID: 32906672 DOI: 10.3390/ijms21186530] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Yokoya M, Nakai K, Kawashima M, Kurakado S, Sirimangkalakitti N, Kino Y, Sugita T, Kimura S, Yamanaka M, Saito N. Inhibition of BACE1 and amyloid β aggregation by polyketide from Streptomyces sp. Chem Biol Drug Des 2021. [PMID: 34757664 DOI: 10.1111/cbdd.13980] [Reference Citation Analysis]
62 Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer's disease. Int J Biol Macromol 2021;183:1184-90. [PMID: 33965487 DOI: 10.1016/j.ijbiomac.2021.05.041] [Reference Citation Analysis]
63 Gancar M, Kurin E, Bednarikova Z, Marek J, Mucaji P, Nagy M, Gazova Z. Amyloid Aggregation of Insulin: An Interaction Study of Green Tea Constituents. Sci Rep 2020;10:9115. [PMID: 32499589 DOI: 10.1038/s41598-020-66033-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
64 Phan HTT, Samarat K, Takamura Y, Azo-Oussou AF, Nakazono Y, Vestergaard MC. Polyphenols Modulate Alzheimer's Amyloid Beta Aggregation in a Structure-Dependent Manner. Nutrients 2019;11:E756. [PMID: 30935135 DOI: 10.3390/nu11040756] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
65 Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2021;375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
66 Abu-Hussien M, Viswanathan GK, Borisover L, Mimouni M, Engel H, Zayit-Soudry S, Gazit E, Segal D. Inhibition of amyloid fibrillation of γD-crystallin model peptide by the cochineal Carmine. Int J Biol Macromol 2021;169:342-51. [PMID: 33347930 DOI: 10.1016/j.ijbiomac.2020.12.106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson's Disease Models. Front Pharmacol 2018;9:1555. [PMID: 30941047 DOI: 10.3389/fphar.2018.01555] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
68 Jia L, Wang W, Yan Y, Hu R, Sang J, Zhao W, Wang Y, Wei W, Cui W, Yang G, Lu F, Zheng J, Liu F. General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein. ACS Appl Mater Interfaces 2020;12:31182-94. [DOI: 10.1021/acsami.0c07745] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
69 Mohammad-Beigi H, Kjaer L, Eskandari H, Aliakbari F, Christiansen G, Ruvo G, Ward JL, Otzen DE. A Possible Connection Between Plant Longevity and the Absence of Protein Fibrillation: Basis for Identifying Aggregation Inhibitors in Plants. Front Plant Sci 2019;10:148. [PMID: 30815009 DOI: 10.3389/fpls.2019.00148] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
70 Viswanathan GK, Shwartz D, Losev Y, Arad E, Shemesh C, Pichinuk E, Engel H, Raveh A, Jelinek R, Cooper I, Gosselet F, Gazit E, Segal D. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model. Cell Mol Life Sci 2020;77:2795-813. [DOI: 10.1007/s00018-019-03312-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
71 Prasanna G, Jing P. Polyphenols redirects the self-assembly of serum albumin into hybrid nanostructures. Int J Biol Macromol 2020;164:3932-42. [PMID: 32898539 DOI: 10.1016/j.ijbiomac.2020.09.005] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Manna S, Karmakar P, Kisan B, Mishra M, Barooah N, Bhasikuttan AC, Mohanty J. Fibril-induced neurodegenerative disorders in an Aβ-mutant Drosophila model: therapeutic targeting using ammonium molybdate. Chem Commun (Camb) 2021;57:8488-91. [PMID: 34350921 DOI: 10.1039/d1cc03752h] [Reference Citation Analysis]
73 Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM. Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food Chem Toxicol 2018;120:183-95. [PMID: 29981370 DOI: 10.1016/j.fct.2018.07.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
74 Xuan Q, He J, Li M, Chai R, Wang C, Wang Y, Wang P. Monomer-targeting affinity peptide inhibitors of amyloid with no self-fibrillation and low cytotoxicity. Chem Commun 2020;56:1633-6. [DOI: 10.1039/c9cc08671d] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
75 Sárkány Z, Rocha F, Damas AM, Macedo-ribeiro S, Martins PM. Chemical Kinetic Strategies for High-Throughput Screening of Protein Aggregation Modulators. Chem Asian J 2019;14:500-8. [DOI: 10.1002/asia.201801703] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
76 Najarzadeh Z, Mohammad-Beigi H, Nedergaard Pedersen J, Christiansen G, Sønderby TV, Shojaosadati SA, Morshedi D, Strømgaard K, Meisl G, Sutherland D, Skov Pedersen J, Otzen DE. Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Pseudomonas Strains by Directing Monomers to Off-Pathway Oligomers. Biomolecules 2019;9:E659. [PMID: 31717821 DOI: 10.3390/biom9110659] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
77 Haghighi-Poodeh S, Navidpour L, Yaghmaei P, Ebrahim-Habibi A. Monocyclic phenolic compounds stabilize human insulin and suppress its amorphous aggregation: In vitro and in vivo study. Biochem Biophys Res Commun 2019;518:362-7. [PMID: 31431258 DOI: 10.1016/j.bbrc.2019.08.064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
78 Tan MA, An SSA. Neuroprotective potential of the oxindole alkaloids isomitraphylline and mitraphylline in human neuroblastoma SH-SY5Y cells. 3 Biotech 2020;10:517. [PMID: 33194521 DOI: 10.1007/s13205-020-02535-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
79 Jesus CSH, Soares HT, Piedade AP, Cortes L, Serpa C. Using amyloid autofluorescence as a biomarker for lysozyme aggregation inhibition. Analyst 2021;146:2383-91. [PMID: 33646214 DOI: 10.1039/d0an02260h] [Reference Citation Analysis]
80 Choudhir G, Sharma S, Hariprasad P. A combinatorial approach to screen structurally diverse acetylcholinesterase inhibitory plant secondary metabolites targeting Alzheimer's disease. J Biomol Struct Dyn 2021;:1-14. [PMID: 34351840 DOI: 10.1080/07391102.2021.1962408] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Takahashi D, Matsunaga E, Yamashita T, Caaveiro JM, Abe Y, Ueda T. Compound screening identified gossypetin and isoquercitrin as novel inhibitors for amyloid fibril formations of Vλ6 proteins associated with AL amyloidosis. Biochemical and Biophysical Research Communications 2022;596:22-8. [DOI: 10.1016/j.bbrc.2022.01.066] [Reference Citation Analysis]
82 Wang Y, Hu T, Wei J, Yin X, Gao Z, Li H. Inhibitory activities of flavonoids from Scutellaria baicalensis Georgi on amyloid aggregation related to type 2 diabetes and the possible structural requirements for polyphenol in inhibiting the nucleation phase of hIAPP aggregation. Int J Biol Macromol 2022:S0141-8130(22)01312-5. [PMID: 35724902 DOI: 10.1016/j.ijbiomac.2022.06.107] [Reference Citation Analysis]
83 Bilia AR, Nardiello P, Piazzini V, Leri M, Bergonzi MC, Bucciantini M, Casamenti F. Successful Brain Delivery of Andrographolide Loaded in Human Albumin Nanoparticles to TgCRND8 Mice, an Alzheimer's Disease Mouse Model. Front Pharmacol 2019;10:910. [PMID: 31507412 DOI: 10.3389/fphar.2019.00910] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
84 Chaari A, Abdellatif B, Nabi F, Khan RH. Date palm (Phoenix dactylifera L.) fruit's polyphenols as potential inhibitors for human amylin fibril formation and toxicity in type 2 diabetes. Int J Biol Macromol 2020;164:1794-808. [PMID: 32795580 DOI: 10.1016/j.ijbiomac.2020.08.080] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
85 Albab ND, Hameed MK, Maresova A, Ahmady IM, Arooj M, Han C, Workie B, Chehimi M, Mohamed AA. Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold-aryl nanoparticles surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;586:124279. [DOI: 10.1016/j.colsurfa.2019.124279] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
86 Wu L, Velander P, Brown AM, Wang Y, Liu D, Bevan DR, Zhang S, Xu B. Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacol Transl Sci 2021;4:1322-37. [PMID: 34423269 DOI: 10.1021/acsptsci.1c00028] [Reference Citation Analysis]
87 Hsu HK, Hsu KH, Cheng YM, Suen HY, Peng SF. Development and In Vitro Evaluation of Linear PEI-Shelled Heparin/Berberine Nanoparticles in Human Osteosarcoma U-2 OS Cells. Molecules 2018;23:E3122. [PMID: 30487471 DOI: 10.3390/molecules23123122] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
88 Matilla-Cuenca L, Gil C, Cuesta S, Rapún-Araiz B, Žiemytė M, Mira A, Lasa I, Valle J. Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Sci Rep 2020;10:18968. [PMID: 33144670 DOI: 10.1038/s41598-020-75929-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
89 Anand BG, Prajapati KP, Purohit S, Ansari M, Panigrahi A, Kaushik B, Behera RK, Kar K. Evidence of Anti-amyloid Characteristics of Plumbagin via Inhibition of Protein Aggregation and Disassembly of Protein Fibrils. Biomacromolecules 2021. [PMID: 34375099 DOI: 10.1021/acs.biomac.1c00344] [Reference Citation Analysis]
90 Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020;192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
91 Yan C, Wang C, Shao X, Shu Q, Hu X, Guan P, Teng Y, Cheng Y. Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer's related amyloid-β aggregation and inhibiting fungal infection. Mater Today Bio 2021;12:100167. [PMID: 34901820 DOI: 10.1016/j.mtbio.2021.100167] [Reference Citation Analysis]
92 Araújo AR, Araújo AC, Reis RL, Pires RA. Vescalagin and Castalagin Present Bactericidal Activity toward Methicillin-Resistant Bacteria. ACS Biomater Sci Eng 2021;7:1022-30. [PMID: 33596039 DOI: 10.1021/acsbiomaterials.0c01698] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]