BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Robaszkiewicz K, Dudek E, Kasprzak AA, Moraczewska J. Functional effects of congenital myopathy-related mutations in gamma-tropomyosin gene. Biochim Biophys Acta 2012;1822:1562-9. [PMID: 22749829 DOI: 10.1016/j.bbadis.2012.06.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Moraczewska J, Robaszkiewicz K, Śliwinska M, Czajkowska M, Ly T, Kostyukova A, Wen H, Zheng W. Congenital myopathy-related mutations in tropomyosin disrupt regulatory function through altered actin affinity and tropomodulin binding. FEBS J 2019;286:1877-93. [PMID: 30768849 DOI: 10.1111/febs.14787] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
2 Jurewicz E, Ostrowska Z, Jozwiak J, Redowicz MJ, Lesniak W, Moraczewska J, Filipek A. CacyBP/SIP as a novel modulator of the thin filament. Biochim Biophys Acta. 2013;1833:761-766. [PMID: 23266554 DOI: 10.1016/j.bbamcr.2012.12.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
3 Borovikov YS, Rysev NA, Karpicheva OE, Sirenko VV, Avrova SV, Piers A, Redwood CS. Molecular mechanisms of dysfunction of muscle fibres associated with Glu139 deletion in TPM2 gene. Sci Rep 2017;7:16797. [PMID: 29196649 DOI: 10.1038/s41598-017-17076-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
4 Borovikov YS, Simonyan AO, Karpicheva OE, Avrova SV, Rysev NA, Sirenko VV, Piers A, Redwood CS. The reason for a high Ca2+-sensitivity associated with Arg91Gly substitution in TPM2 gene is the abnormal behavior and high flexibility of tropomyosin during the ATPase cycle. Biochem Biophys Res Commun 2017;494:681-6. [PMID: 29097206 DOI: 10.1016/j.bbrc.2017.10.161] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
5 de Winter JM, Ottenheijm CAC. Sarcomere Dysfunction in Nemaline Myopathy. J Neuromuscul Dis. 2017;4:99-113. [PMID: 28436394 DOI: 10.3233/jnd-160200] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
6 Robaszkiewicz K, Ostrowska Z, Marchlewicz K, Moraczewska J. Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins. FEBS J 2016;283:723-37. [DOI: 10.1111/febs.13626] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
7 Robaszkiewicz K, Ostrowska Z, Cyranka-Czaja A, Moraczewska J. Impaired tropomyosin-troponin interactions reduce activation of the actin thin filament. Biochim Biophys Acta 2015;1854:381-90. [PMID: 25603119 DOI: 10.1016/j.bbapap.2015.01.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
8 Matyushenko AM, Nefedova VV, Shchepkin DV, Kopylova GV, Berg VY, Pivovarova AV, Kleymenov SY, Bershitsky SY, Levitsky DI. Mechanisms of disturbance of the contractile function of slow skeletal muscles induced by myopathic mutations in the tropomyosin TPM3 gene. FASEB J 2020;34:13507-20. [PMID: 32797717 DOI: 10.1096/fj.202001318R] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Matyushenko AM, Levitsky DI. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. Biochemistry (Mosc) 2020;85:S20-33. [PMID: 32087052 DOI: 10.1134/S0006297920140023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Malfatti E, Schaeffer U, Chapon F, Yang Y, Eymard B, Xu R, Laporte J, Romero NB. Combined cap disease and nemaline myopathy in the same patient caused by an autosomal dominant mutation in the TPM3 gene. Neuromuscul Disord 2013;23:992-7. [PMID: 24095155 DOI: 10.1016/j.nmd.2013.07.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
11 Karpicheva OE, Simonyan AO, Rysev NA, Redwood CS, Borovikov YS. Looking for Targets to Restore the Contractile Function in Congenital Myopathy Caused by Gln147Pro Tropomyosin. Int J Mol Sci 2020;21:E7590. [PMID: 33066566 DOI: 10.3390/ijms21207590] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Yuen M, Cooper ST, Marston SB, Nowak KJ, McNamara E, Mokbel N, Ilkovski B, Ravenscroft G, Rendu J, de Winter JM, Klinge L, Beggs AH, North KN, Ottenheijm CA, Clarke NF. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres. Hum Mol Genet 2015;24:6278-92. [PMID: 26307083 DOI: 10.1093/hmg/ddv334] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
13 Moraczewska J. Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil 2020;41:39-53. [PMID: 31270709 DOI: 10.1007/s10974-019-09532-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
14 Ono S, Lewis M, Ono K. Mutual dependence between tropomodulin and tropomyosin in the regulation of sarcomeric actin assembly in Caenorhabditis elegans striated muscle. European Journal of Cell Biology 2022;101:151215. [DOI: 10.1016/j.ejcb.2022.151215] [Reference Citation Analysis]
15 Robaszkiewicz K, Śliwinska M, Moraczewska J. Regulation of Actin Filament Length by Muscle Isoforms of Tropomyosin and Cofilin. Int J Mol Sci 2020;21:E4285. [PMID: 32560136 DOI: 10.3390/ijms21124285] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Simonyan AO, Sirenko VV, Karpicheva OE, Robaszkiewicz K, Śliwinska M, Moraczewska J, Krutetskaya ZI, Borovikov YS. The primary cause of muscle disfunction associated with substitutions E240K and R244G in tropomyosin is aberrant behavior of tropomyosin and response of actin and myosin during ATPase cycle. Arch Biochem Biophys 2018;644:17-28. [PMID: 29510086 DOI: 10.1016/j.abb.2018.03.002] [Reference Citation Analysis]
17 Gonchar AD, Kopylova GV, Kochurova AM, Berg VY, Shchepkin DV, Koubasova NA, Tsaturyan AK, Kleymenov SY, Matyushenko AM, Levitsky DI. Effects of myopathy-causing mutations R91P and R245G in the TPM3 gene on structural and functional properties of slow skeletal muscle tropomyosin. Biochem Biophys Res Commun 2021;534:8-13. [PMID: 33307294 DOI: 10.1016/j.bbrc.2020.11.103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Karpicheva OE, Sirenko VV, Rysev NA, Simonyan AO, Borys D, Moraczewska J, Borovikov YS. Deviations in conformational rearrangements of thin filaments and myosin caused by the Ala155Thr substitution in hydrophobic core of tropomyosin. Biochim Biophys Acta Proteins Proteom 2017;1865:1790-9. [PMID: 28939420 DOI: 10.1016/j.bbapap.2017.09.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
19 He Y, Song M, Zhang Y, Li X, Song J, Zhang Y, Yu Y. Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. BMC Genomics 2016;17:565. [PMID: 27503467 DOI: 10.1186/s12864-016-2947-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
20 Lycans RM, Higgins CB, Tanner MS, Blough ER, Day BS. Plasma treatment of PDMS for applications of in vitro motility assays. Colloids Surf B Biointerfaces 2014;116:687-94. [PMID: 24309136 DOI: 10.1016/j.colsurfb.2013.11.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
21 Śliwinska M, Robaszkiewicz K, Wasąg P, Moraczewska J. Mutations Q93H and E97K in TPM2 Disrupt Ca-Dependent Regulation of Actin Filaments. Int J Mol Sci 2021;22:4036. [PMID: 33919826 DOI: 10.3390/ijms22084036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Śliwinska M, Robaszkiewicz K, Czajkowska M, Zheng W, Moraczewska J. Functional effects of substitutions I92T and V95A in actin-binding period 3 of tropomyosin. Biochim Biophys Acta Proteins Proteom 2018;1866:558-68. [PMID: 29496559 DOI: 10.1016/j.bbapap.2018.02.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Borovikov YS, Karpicheva OE, Simonyan AO, Avrova SV, Rogozovets EA, Sirenko VV, Redwood CS. The Primary Causes of Muscle Dysfunction Associated with the Point Mutations in Tpm3.12; Conformational Analysis of Mutant Proteins as a Tool for Classification of Myopathies. Int J Mol Sci 2018;19:E3975. [PMID: 30544720 DOI: 10.3390/ijms19123975] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
24 Avrova SV, Karpicheva OE, Simonyan AO, Sirenko VV, Redwood CS, Borovikov YS. The molecular mechanisms of a high Ca2+-sensitivity and muscle weakness associated with the Ala155Thr substitution in Tpm3.12. Biochem Biophys Res Commun 2019;515:372-7. [PMID: 31155291 DOI: 10.1016/j.bbrc.2019.05.146] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]