BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021;11:871-85. [PMID: 33996404 DOI: 10.1016/j.apsb.2021.02.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Fornasier M, Murgia S. Non-lamellar lipid liquid crystalline nanoparticles: A smart platform for nanomedicine applications. Front Soft Matter 2023;3. [DOI: 10.3389/frsfm.2023.1109508] [Reference Citation Analysis]
2 Yu H, Dyett BP, Zhai J, Strachan JB, Drummond CJ, Conn CE. Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. J Colloid Interface Sci 2023;634:279-89. [PMID: 36542965 DOI: 10.1016/j.jcis.2022.12.028] [Reference Citation Analysis]
3 Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Adv 2023;5:1527-58. [PMID: 36926556 DOI: 10.1039/d2na00530a] [Reference Citation Analysis]
4 Akanchise T, Angelova A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants (Basel) 2023;12. [PMID: 36829952 DOI: 10.3390/antiox12020393] [Reference Citation Analysis]
5 Kibar G, Dutta S, Rege K, Usta OB. Evaluation of drug carrier hepatotoxicity using primary cell culture models. Nanomedicine 2023;48:102651. [PMID: 36623713 DOI: 10.1016/j.nano.2023.102651] [Reference Citation Analysis]
6 Fu Y, Shi C, Li X, Wen T, Wu Q, Zhang A, Hu P, Wu C, Pan X, Huang Z, Quan G. Demonstrating Biological Fate of Nanoparticle-Loaded Dissolving Microneedles with Aggregation-Caused Quenching Probes: Influence of Application Sites. Pharmaceutics 2023;15. [PMID: 36678798 DOI: 10.3390/pharmaceutics15010169] [Reference Citation Analysis]
7 Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. Viral Infections and Antiviral Therapies 2023. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Reference Citation Analysis]
8 Huang X. Roles of Nanoparticle Properties in Nanotechnology for Medical Therapeutics. HSET 2022;26:474-479. [DOI: 10.54097/hset.v26i.4029] [Reference Citation Analysis]
9 Chen C, Zhong W, Du S, Li Y, Zeng Y, Liu K, Yang J, Guan X, Han X. Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Reference Citation Analysis]
10 Chandrakala V. CUBOSOMES: A BOON FOR COSMECEUTICALS AND TOPICAL DRUG DELIVERY. Int J Pharm Pharm Sci 2022. [DOI: 10.22159/ijpps.2022v14i11.45550] [Reference Citation Analysis]
11 Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.026] [Reference Citation Analysis]
12 He Y, Zhang W, Xiao Q, Fan L, Huang D, Chen W, He W. Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment. Asian J Pharm Sci 2022;17:817-37. [PMID: 36415834 DOI: 10.1016/j.ajps.2022.11.002] [Reference Citation Analysis]
13 Bor G, Lin JH, Lin KY, Chen HC, Prajnamitra RP, Salentinig S, Hsieh PCH, Moghimi SM, Yaghmur A. PEGylation of Phosphatidylglycerol/Docosahexaenoic Acid Hexosomes with d-α-Tocopheryl Succinate Poly(ethylene glycol)2000 Induces Morphological Transformation into Vesicles with Prolonged Circulation Times. ACS Appl Mater Interfaces 2022. [PMID: 36271846 DOI: 10.1021/acsami.2c14375] [Reference Citation Analysis]
14 Rajesh S, Leiske MN, Leitch V, Zhai J, Drummond CJ, Kempe K, Tran N. Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. Journal of Colloid and Interface Science 2022;623:1142-1150. [DOI: 10.1016/j.jcis.2022.04.158] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Rajesh S, Leiske MN, Leitch V, Zhai J, Drummond CJ, Kempe K, Tran N. Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. Journal of Colloid and Interface Science 2022;623:1142-50. [DOI: 10.1016/j.jcis.2022.04.158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022;17:4163-93. [PMID: 36134202 DOI: 10.2147/IJN.S380697] [Reference Citation Analysis]
17 Li S, Ren R, Lyu L, Song J, Wang Y, Lin T, Brun AL, Hsu H, Shen H. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. Membranes 2022;12:906. [DOI: 10.3390/membranes12100906] [Reference Citation Analysis]
18 Sultan AA, El Nashar NF, Ashmawy SM, El Maghraby GM. Cubosomes for Enhancing Intestinal Absorption of Fexofenadine Hydrochloride: In situ and in vivo Investigation. Int J Nanomedicine 2022;17:3543-60. [PMID: 35983479 DOI: 10.2147/IJN.S370235] [Reference Citation Analysis]
19 Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. Journal of Drug Delivery Science and Technology 2022;74:103534. [DOI: 10.1016/j.jddst.2022.103534] [Reference Citation Analysis]
20 Ryan S, Shortall K, Dully M, Djehedar A, Murray D, Butler J, Neilan J, Soulimane T, Hudson SP. Long acting injectables for therapeutic proteins. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112644] [Reference Citation Analysis]
21 Sun R, Dai J, Ling M, Yu L, Yu Z, Tang L. Delivery of triptolide: a combination of traditional Chinese medicine and nanomedicine. J Nanobiotechnology 2022;20:194. [PMID: 35443712 DOI: 10.1186/s12951-022-01389-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Maurya VK, Shakya A, Bashir K, Kushwaha SC, McClements DJ. Vitamin A fortification: Recent advances in encapsulation technologies. Compr Rev Food Sci Food Saf 2022. [PMID: 35384290 DOI: 10.1111/1541-4337.12941] [Reference Citation Analysis]
23 Li Y, Ye Z, Yang H, Xu Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharmaceutica Sinica B 2022;12:2624-39. [DOI: 10.1016/j.apsb.2022.04.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
24 Bazylińska U, Wawrzyńczyk D, Kulbacka J, Picci G, Manni LS, Handschin S, Fornasier M, Caltagirone C, Mezzenga R, Murgia S. Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS Nano 2022. [PMID: 35333516 DOI: 10.1021/acsnano.1c09367] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
25 Cardellini J, Montis C, Barbero F, De Santis I, Caselli L, Berti D. Interaction of Metallic Nanoparticles With Biomimetic Lipid Liquid Crystalline Cubic Interfaces. Front Bioeng Biotechnol 2022;10:848687. [DOI: 10.3389/fbioe.2022.848687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Almoshari Y. Development, Therapeutic Evaluation and Theranostic Applications of Cubosomes on Cancers: An Updated Review. Pharmaceutics 2022;14:600. [DOI: 10.3390/pharmaceutics14030600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Rakotoarisoa M, Angelov B, Drechsler M, Nicolas V, Bizien T, Gorshkova YE, Deng Y, Angelova A. Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: In vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.03.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Khan AS, Shah KU, Mohaini MA, Alsalman AJ, Hawaj MAA, Alhashem YN, Ghazanfar S, Khan KA, Niazi ZR, Farid A. Tacrolimus-Loaded Solid Lipid Nanoparticle Gel: Formulation Development and In Vitro Assessment for Topical Applications. Gels 2022;8:129. [PMID: 35200510 DOI: 10.3390/gels8020129] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
29 Tan C, Hosseini SF, Jafari SM. Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. J Agric Food Chem 2022. [PMID: 35089018 DOI: 10.1021/acs.jafc.1c06747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
30 Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022;14:297. [DOI: 10.3390/pharmaceutics14020297] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
31 Cai X, Zhai J, Tran N, Mulet X, Drummond CJ. Lipid nanoparticle steric stabilization roadmap. Advances in Biomembranes and Lipid Self-Assembly 2022. [DOI: 10.1016/bs.abl.2022.05.003] [Reference Citation Analysis]
32 Rappolt M. The past, present and future of lipid self-assembly nanostructure research. Advances in Biomembranes and Lipid Self-Assembly 2022. [DOI: 10.1016/bs.abl.2022.05.002] [Reference Citation Analysis]
33 Farag DBE, Yousry C, Al-Mahallawi AM, El-Askary HI, Meselhy MR, AbuBakr N. The efficacy of Origanum majorana nanocubosomal systems in ameliorating submandibular salivary gland alterations in streptozotocin-induced diabetic rats. Drug Deliv 2022;29:62-74. [PMID: 34964423 DOI: 10.1080/10717544.2021.2018522] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021;179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Kumar R, Thakur AK, Banerjee N, Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int J Pharm 2021;608:121089. [PMID: 34530097 DOI: 10.1016/j.ijpharm.2021.121089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
36 Rakotoarisoa M, Angelov B, Espinoza S, Khakurel K, Bizien T, Drechsler M, Angelova A. Composition-Switchable Liquid Crystalline Nanostructures as Green Formulations of Curcumin and Fish Oil. ACS Sustainable Chem Eng 2021;9:14821-35. [DOI: 10.1021/acssuschemeng.1c04706] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
37 Alavi M, Nokhodchi A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges. Drug Discov Today 2021:S1359-6446(21)00445-1. [PMID: 34688912 DOI: 10.1016/j.drudis.2021.10.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
38 Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021;:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
39 Zhai J, Yap SL, Drummond CJ, Tran N. Controlling the pH dependent transition between monoolein Fd3m micellar cubosomes and hexosomes using fatty acetate and fatty acid additive mixtures. J Colloid Interface Sci 2022;607:848-56. [PMID: 34536939 DOI: 10.1016/j.jcis.2021.08.173] [Reference Citation Analysis]
40 Waheed A, Aqil M. Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. Journal of Molecular Liquids 2021;338:116919. [DOI: 10.1016/j.molliq.2021.116919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
41 Forys A, Chountoulesi M, Mendrek B, Konieczny T, Sentoukas T, Godzierz M, Kordyka A, Demetzos C, Pispas S, Trzebicka B. The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers (Basel) 2021;13:2607. [PMID: 34451146 DOI: 10.3390/polym13162607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Bor G, Salentinig S, Şahin E, Nur Ödevci B, Roursgaard M, Liccardo L, Hamerlik P, Moghimi SM, Yaghmur A. Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/ω-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. J Colloid Interface Sci 2021;606:464-79. [PMID: 34399363 DOI: 10.1016/j.jcis.2021.07.149] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Mohammad Y, Prentice RN, Boyd BJ, Rizwan SB. Comparison of cubosomes and hexosomes for the delivery of phenytoin to the brain. J Colloid Interface Sci 2021;605:146-54. [PMID: 34311309 DOI: 10.1016/j.jcis.2021.07.070] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021;22:7055. [PMID: 34209023 DOI: 10.3390/ijms22137055] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
45 Zhai J, Fan B, Thang SH, Drummond CJ. Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules 2021;26:3648. [PMID: 34203820 DOI: 10.3390/molecules26123648] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
46 Ilhan-Ayisigi E, Ghazal A, Sartori B, Dimaki M, Svendsen WE, Yesil-Celiktas O, Yaghmur A. Continuous Microfluidic Production of Citrem-Phosphatidylcholine Nano-Self-Assemblies for Thymoquinone Delivery. Nanomaterials (Basel) 2021;11:1510. [PMID: 34200457 DOI: 10.3390/nano11061510] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Wu W, Li T, Zheng Y. Editorial of Special Issue "The Biological Fate of Drug Nanocarriers". Acta Pharm Sin B 2021;11:850-1. [PMID: 33996403 DOI: 10.1016/j.apsb.2021.04.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
48 Zoabi A, Touitou E, Margulis K. Recent Advances in Nanomaterials for Dermal and Transdermal Applications. Colloids and Interfaces 2021;5:18. [DOI: 10.3390/colloids5010018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]