BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Wang X, Tian W, Meng A, Li Z, Li S, Wang L, Li G. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Applied Catalysis B: Environmental 2022;303:120933. [DOI: 10.1016/j.apcatb.2021.120933] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 25.0] [Reference Citation Analysis]
Number Citing Articles
1 Jiang L, Wang D, Hu Y, Guo T, Liu C, Liang C, Du W, Li X, Liu W. Surface-iodination-induced efficient charge separation in bismuth oxysulfide crystals for enhanced photocatalytic CO2 conversion. Chemical Engineering Journal 2023;453:139848. [DOI: 10.1016/j.cej.2022.139848] [Reference Citation Analysis]
2 Qin M, Chen L, Zhang H, Humayun M, Fu Y, Xu X, Xue X, Wang C. Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chemical Engineering Journal 2023;454:140230. [DOI: 10.1016/j.cej.2022.140230] [Reference Citation Analysis]
3 Ge W, Liu K, Deng S, Yang P, Shen L. Z-scheme g-C3N4/ZnO heterojunction decorated by Au nanoparticles for enhanced photocatalytic hydrogen production. Applied Surface Science 2023;607:155036. [DOI: 10.1016/j.apsusc.2022.155036] [Reference Citation Analysis]
4 Du J, Shen Y, Yang F, Wei J, Xu K, Li X, An C. In-situ topology synthesis of defective MoN nanosheets/g-C3N4 2D/2D heterojunction photocatalyst for efficient H2 production. Applied Surface Science 2023;608:155199. [DOI: 10.1016/j.apsusc.2022.155199] [Reference Citation Analysis]
5 Guo Q, Wu Y, Xia L, Yu X, Zhang K, Du Y, Zhang L, Tang H, Cheng J, Shang J, Peng Y, Li Z, Man X, Yang X. Stitching electron localized heptazine units with “carbon patches” to regulate exciton dissociation behavior of carbon nitride for photocatalytic elimination of petroleum hydrocarbons. Chemical Engineering Journal 2023;452:139092. [DOI: 10.1016/j.cej.2022.139092] [Reference Citation Analysis]
6 Sun Y, Kumar V, Kim K. The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Separation and Purification Technology 2023;305:122413. [DOI: 10.1016/j.seppur.2022.122413] [Reference Citation Analysis]
7 Song T, Zhang X, Matras-postolek K, Yang P. Cobalt clusters on g-C3N4 nanosheets for enhanced H2/H2O2 generation and NO removal. Journal of Environmental Chemical Engineering 2022;10:108747. [DOI: 10.1016/j.jece.2022.108747] [Reference Citation Analysis]
8 Su F, Wang Z, Xie H, Zhang Y, Ding C, Ye L. Structural Distortion of g-C3N4 Induced by N-Defects for Enhanced Photocatalytic Hydrogen Evolution. Catalysts 2022;12:1496. [DOI: 10.3390/catal12121496] [Reference Citation Analysis]
9 Lv Y, Zhang W, Gu Q, Gao Z. Simultaneous Loading of Ni 2 P Cocatalysts on the Inner and Outer Surfaces of Mesopores P‐Doped Carbon Nitride Hollow Spheres for Enhanced Photocatalytic Water‐Splitting Activity. Chemistry A European J 2022. [DOI: 10.1002/chem.202202678] [Reference Citation Analysis]
10 Zhang Y, Kong L, Konysheva EY, Xu X. Expediting photocarrier separation in Ta3N5@CaTaO2N heterostructures with seamless interfaces for photocatalytic water oxidation under visible light. Applied Catalysis B: Environmental 2022;317:121712. [DOI: 10.1016/j.apcatb.2022.121712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Liu Y, Yue C, Sun F, Bao W, Chen L, Zeb Z, Wang C, Ma S, Zhang C, Sun D, Pan Y, Huang Y, Lu Y, Wei Y. Superhydrophilic Molybdenum Phosphide Quantum Dots on Porous Carbon Matrix for Boosting Hydrogen Evolution Reaction. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140105] [Reference Citation Analysis]
12 Song T, Zhang X, Matras-postolek K, Yang P. Nanoarchitectonics of N-doped carbon layer promoted charge separation/transfer in WP/g-C3N4 heterostructures for efficient H2 evolution and 4-nitrophenol removal. Carbon 2022. [DOI: 10.1016/j.carbon.2022.11.008] [Reference Citation Analysis]
13 Ruan X, Wang Z, Wei Z, Zhang H, Zhang L, Zhao X, Singh DJ, Zhao J, Cui X, Zheng W. Electron cloud density localized graphitic carbon nitride with enhanced optical absorption and carrier separation towards photocatalytic hydrogen evolution. Applied Surface Science 2022;601:154294. [DOI: 10.1016/j.apsusc.2022.154294] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wei Q, Yang H, Li W, Wang T, Hou L, Wu Z, Jiang Y. Efficient photocatalytic H2 production and ofloxacin degradation based on heterodimensional Z-scheme P-C3N4/MIL-88A(Fe) heterojunctions. Journal of Alloys and Compounds 2022;920:165980. [DOI: 10.1016/j.jallcom.2022.165980] [Reference Citation Analysis]
15 Luo J, Han H, Wang X, Lai Y, Liu B, Zhong R, Zhang Y, Zhang S, Wang L. Constructing oxygen absorption and activation sites in Ce-doped g-C3N4 photocatalyst for effective removal of amoxicillin: Performance, mechanism and degradation pathways. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.155808] [Reference Citation Analysis]
16 Ouyang C, Huang W, Tang H, Liu W, Gu X, Hong Z, Zhi M. Hierarchical MoO 2 /ZnIn 2 S 4 Schottky Heterojunction Stimulated Photocatalytic H 2 Evolution under Visible Light. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c02352] [Reference Citation Analysis]
17 Chang F, Wei Z, Zhao Z, Qi Y, Liu D. 2D-2D heterostructured composites Bi4O5Br2-SnS2 with boosted photocatalytic NOx abatement. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.10.015] [Reference Citation Analysis]
18 Kerebo Berekute A, Yu K, Brad Chuang Y, Andrew Lin K. Novel visible-light-induced P-doped g-C3N4/α-Bi2O3 nanocomposite photocatalysts for enhanced degradation of refractory endocrine disruptors—benzophenones. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.154987] [Reference Citation Analysis]
19 Li T, Zhang L, Li Y, Jiang X, Jin Z. Surface-Induced Engineering: Formation of Induced Surface P(δ )-Co/Ni(δ + )-O(δ ) Based on Nickel–Cobalt-Layered Double Hydroxide Nanoflowers for Photocatalytic Hydrogen Evolution. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c01837] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhang G, Zhang H, He J, Jiang Y, Zhang H, Zhou Q, Cao J. Facile construction Z-scheme anatase/rutile TiO2/g-C3N4 hybrid for efficient photocatalytic H2 evolution under visible-light irradiation. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.08.224] [Reference Citation Analysis]
21 Chen I, Zheng M, Liu S. Microwave-assisted hydrothermal synthesis of mesoporous three-dimensional hexagonal graphitic carbon nitride for selective CO2 photoreduction. Journal of Photochemistry and Photobiology A: Chemistry 2022. [DOI: 10.1016/j.jphotochem.2022.114199] [Reference Citation Analysis]
22 Yu J, Xu X. LaNbON2 Mesoporous Single Crystals with Expedited Photocarrier Separation for Efficient Visible-Light-Driven Water Redox Reactions. Journal of Catalysis 2022. [DOI: 10.1016/j.jcat.2022.07.033] [Reference Citation Analysis]
23 Li T, Li Y, Jin Z. Surface-Induced Engineering: P-Induced Formation of Surface Bonding States Based on the ZIF Synthesis Strategy for Photocatalytic Hydrogen Evolution. Inorg Chem 2022. [PMID: 35912911 DOI: 10.1021/acs.inorgchem.2c01909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Zhou A, Yang K, Wu X, Liu G, Zhang TC, Wang Q, Luo F. Functionally-Designed Chitosan-based hydrogel beads for adsorption of sulfamethoxazole with light regeneration. Separation and Purification Technology 2022;293:120973. [DOI: 10.1016/j.seppur.2022.120973] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen I, Zheng M, Pu Y, Liu S. 3D laminated graphitic carbon nitride decorating with 2D / 2D Bi 2 WO 6 / rGO nanosheets for selective photoreduction of CO 2 to CO. Intl J of Energy Research. [DOI: 10.1002/er.8217] [Reference Citation Analysis]
26 Belousov AS, Fukina DG, Koryagin AV. Metal–organic framework‐based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. J of Chemical Tech & Biotech. [DOI: 10.1002/jctb.7091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Li Y, Xu F, Sun L, Xue X, Wang Y, Liao L, Guan Y, Li B, Zhang K, Zou Y, Zhang H. Enhanced visible-light-driven RhB removal with a Mo–Ni bimetallic sulfide/g-C 3 N 4 nanosheet Schottky junction. New J Chem 2022;46:8794-804. [DOI: 10.1039/d2nj01100j] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Song T, Zhang X, Yang P. Interface engineering of W2C/W2N co-catalyst on g-C3N4 nanosheets for boosted H2 evolution and 4-nitrophenol removal. Environ Sci : Nano 2022;9:1888-1899. [DOI: 10.1039/d2en00104g] [Reference Citation Analysis]
29 Ding L, Wang L, Liu R, Li Y, Sun H. Carbon nitride based Schottky junction with a Ni–Mo synergistic interaction for highly efficient photocatalytic hydrogen production. Catal Sci Technol . [DOI: 10.1039/d2cy00792d] [Reference Citation Analysis]
30 He X, Sun H, Li Z, Chen X, Wang Z, Niu Y, Jiang J, Wang C. Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their applications. J Mater Chem A. [DOI: 10.1039/d2ta05742e] [Reference Citation Analysis]