BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019;144:90-111. [PMID: 31419450 DOI: 10.1016/j.addr.2019.08.004] [Cited by in Crossref: 151] [Cited by in F6Publishing: 155] [Article Influence: 37.8] [Reference Citation Analysis]
Number Citing Articles
1 Cheng R, Wang S, Santos HA. Acid-labile chemical bonds-based nanoparticles for endosome escape and intracellular delivery. Biomedical Technology 2023;3:52-58. [DOI: 10.1016/j.bmt.2023.01.001] [Reference Citation Analysis]
2 Yang W, Cao J, Cheng H, Chen L, Yu M, Chen Y, Cui X. Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioactive Materials 2023;23:438-470. [DOI: 10.1016/j.bioactmat.2022.11.014] [Reference Citation Analysis]
3 Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023;21:105. [PMID: 36964609 DOI: 10.1186/s12951-023-01857-8] [Reference Citation Analysis]
4 Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023;:108130. [PMID: 36933868 DOI: 10.1016/j.biotechadv.2023.108130] [Reference Citation Analysis]
5 Sun Y, Kong J, Ge X, Mao M, Yu H, Wang Y. An Antisense Oligonucleotide-Loaded Blood-Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson's Disease. ACS Nano 2023;17:4414-32. [PMID: 36688425 DOI: 10.1021/acsnano.2c09752] [Reference Citation Analysis]
6 Muchenski F, Gonçalves JP, Ribeiro YC, Franco CRC, de Oliveira CC, Marcon BH, Robert A, de Medeiros LCS, de Oliveira RC, de Oliveira AJA, Mattoso N. Temperature influence on NiFeMo nanoparticles magnetic properties and their viability in biomedical applications. J Biomed Mater Res B Appl Biomater 2023. [PMID: 36880533 DOI: 10.1002/jbm.b.35248] [Reference Citation Analysis]
7 Lee S, Kim S, Kim D, You J, Kim JS, Kim H, Park J, Song J, Choi I. Spatiotemporally Controlled Drug Delivery via Photothermally Driven Conformational Change of Self-integrated Plasmonic Hybrid Nanogels.. [DOI: 10.21203/rs.3.rs-2637008/v1] [Reference Citation Analysis]
8 Kostka K, Hosseini S, Epple M. In-Vitro Cell Response to Strontium/Magnesium-Doped Calcium Phosphate Nanoparticles. Micro 2023;3:156-171. [DOI: 10.3390/micro3010012] [Reference Citation Analysis]
9 Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q, Xing B. Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals. Angew Chem Int Ed Engl 2023;62:e202213336. [PMID: 36218046 DOI: 10.1002/anie.202213336] [Reference Citation Analysis]
10 Wu X, Guo H, Zhao J, Wei Y, Li YX, Pang HB. Identification of an ALK-2 inhibitor as an agonist for intercellular exchange and tumor delivery of nanomaterial. Adv Ther (Weinh) 2023;6:2200173. [PMID: 36818419 DOI: 10.1002/adtp.202200173] [Reference Citation Analysis]
11 Sommonte F, Arduino I, Iacobazzi RM, Tiboni M, Catalano F, Marotta R, Di Francesco M, Casettari L, Decuzzi P, Lopedota AA, Denora N. Microfluidic assembly of "Turtle-Like" shaped solid lipid nanoparticles for lysozyme delivery. Int J Pharm 2023;631:122479. [PMID: 36509224 DOI: 10.1016/j.ijpharm.2022.122479] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ogorodnik E, Wang K, Gilbert B, Liu F, Haudenschild DR, Liu G. Direct Piercing of Ag Nanowires into Living Macrophages: Implications for Nanotoxicity. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.3c00051] [Reference Citation Analysis]
13 Algar WR, Szwarczewski A, Massey M. Are We There Yet? Intracellular Sensing with Luminescent Nanoparticles and FRET. Anal Chem 2023;95:551-9. [PMID: 36595310 DOI: 10.1021/acs.analchem.2c03751] [Reference Citation Analysis]
14 Imangali N, Sokolova V, Kostka K, Epple M, Winkler C. Functionalized calcium phosphate nanoparticles to direct osteoprotegerin to bone lesion sites in a medaka (Oryzias latipes) osteoporosis model. Front Endocrinol (Lausanne) 2023;14:1101758. [PMID: 36909307 DOI: 10.3389/fendo.2023.1101758] [Reference Citation Analysis]
15 Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023;353:518-34. [PMID: 36496051 DOI: 10.1016/j.jconrel.2022.12.008] [Reference Citation Analysis]
16 Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, Gupta M, Acosta C, Stoddard J, Reynaga R, Tschetter W, Jacomino N, Taratula O, Sun C, Lauer AK, Neuringer M, Sahay G. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci Adv 2023;9:eadd4623. [PMID: 36630502 DOI: 10.1126/sciadv.add4623] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023;353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Reference Citation Analysis]
18 Song C, Xu J, Gao C, Zhang W, Fang X, Shang Y. Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Front Immunol 2022;13:1026173. [PMID: 36569932 DOI: 10.3389/fimmu.2022.1026173] [Reference Citation Analysis]
19 Wu Y, Wang W, Chen Y. Positively charged nanocomplex modulates dendritic cell differentiation to enhance Th1 immune response. Materials Today Bio 2022;17:100480. [DOI: 10.1016/j.mtbio.2022.100480] [Reference Citation Analysis]
20 Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, Li Y, Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022;14. [PMID: 36559175 DOI: 10.3390/pharmaceutics14122682] [Reference Citation Analysis]
21 Patel P, Fetse J, Lin CY, Guo Y, Hasan MR, Nakhjiri M, Zhao Z, Jain A, Cheng K. Development of amino acid-modified biodegradable lipid nanoparticles for siRNA delivery. Acta Biomater 2022;154:374-84. [PMID: 36191773 DOI: 10.1016/j.actbio.2022.09.065] [Reference Citation Analysis]
22 Wang X, Du J, Zhou F, Ye Q, Chen Y, Sun D, Chen H, Lv Y, Sun X. Enhanced Nuclear Accumulation of Doxorubicin Delivered by pH-Triggered Polydopamine-Shelled Mesoporous Silica for Chemo-Photothermal Therapy. AAPS PharmSciTech 2022;24:3. [PMID: 36417018 DOI: 10.1208/s12249-022-02469-5] [Reference Citation Analysis]
23 Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. Nat Rev Methods Primers 2022;2:92. [DOI: 10.1038/s43586-022-00170-2] [Reference Citation Analysis]
24 Imtiyaz Z, He J, Leng Q, Agrawal AK, Mixson AJ. pH-Sensitive Targeting of Tumors with Chemotherapy-Laden Nanoparticles: Progress and Challenges. Pharmaceutics 2022;14:2427. [DOI: 10.3390/pharmaceutics14112427] [Reference Citation Analysis]
25 Henderson MI, Eygeris Y, Jozic A, Herrera M, Sahay G. Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles. Mol Pharm 2022;19:4275-85. [PMID: 36129254 DOI: 10.1021/acs.molpharmaceut.2c00587] [Reference Citation Analysis]
26 Białas N, Sokolova V, van der Meer SB, Knuschke T, Ruks T, Klein K, Westendorf AM, Epple M. Bacteria ( E. coli ) take up ultrasmall gold nanoparticles (2 nm) as shown by different optical microscopic techniques (CLSM, SIM, STORM). Nano Select 2022;3:1407-20. [DOI: 10.1002/nano.202200049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: Design and recent applications. Exploration 2022. [DOI: 10.1002/exp.20210217] [Reference Citation Analysis]
28 Liu Y, Luo J, Liu Y, Liu W, Yu G, Huang Y, Yang Y, Chen X, Chen T. Brain-Targeted Biomimetic Nanodecoys with Neuroprotective Effects for Precise Therapy of Parkinson’s Disease. ACS Cent Sci . [DOI: 10.1021/acscentsci.2c00741] [Reference Citation Analysis]
29 Hong K, Zhang Y, Yao L, Zhang J, Sheng X, Song L, Guo Y, Guo Y. Pan-cancer analysis of the angiotensin II receptor-associated protein as a prognostic and immunological gene predicting immunotherapy responses in pan-cancer. Front Cell Dev Biol 2022;10:913684. [DOI: 10.3389/fcell.2022.913684] [Reference Citation Analysis]
30 Sharma P, Kumar A, Agarwal T, Dey AD, Moghaddam FD, Rahimmanesh I, Ghovvati M, Yousefiasl S, Borzacchiello A, Mohammadi A, Yella VR, Moradi O, Sharifi E. Nucleic acid-based therapeutics for dermal wound healing. Int J Biol Macromol 2022;220:920-33. [PMID: 35987365 DOI: 10.1016/j.ijbiomac.2022.08.099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Ganda S, Wong CK, Biazik J, Raveendran R, Zhang L, Chen F, Ariotti N, Stenzel MH. Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS Appl Mater Interfaces 2022. [PMID: 35895018 DOI: 10.1021/acsami.2c06555] [Reference Citation Analysis]
32 Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022;13:644. [PMID: 35871216 DOI: 10.1038/s41419-022-05075-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
33 de la Hoz R, Diban N, Berciano MT, San Emeterio C, Urtiaga A, Lafarga M, Rodríguez-rey JC, Tapia O. Coaxial Synthesis of PEI-Based Nanocarriers of Encapsulated RNA-Therapeutics to Specifically Target Muscle Cells. Biomolecules 2022;12:1012. [DOI: 10.3390/biom12081012] [Reference Citation Analysis]
34 Flores de los Rios PA, Casañas Pimentel RG, San Martín Martínez E. Nanodrugs against cancer: biological considerations in its redesign. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2097680] [Reference Citation Analysis]
35 Bie N, Yong T, Wei Z, Gan L, Yang X. Extracellular vesicles for improved tumor accumulation and penetration. Adv Drug Deliv Rev 2022;188:114450. [PMID: 35841955 DOI: 10.1016/j.addr.2022.114450] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
36 Bagasariya D, Charankumar K, Shah S, Famta P, Khatri D, Singh Raghuvanshi R, Bala Singh S, Srivastava S. Biomimetic Nanotherapeutics: Employing Nanoghosts to fight Melanoma. Eur J Pharm Biopharm 2022:S0939-6411(22)00137-0. [PMID: 35787429 DOI: 10.1016/j.ejpb.2022.06.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Da Silva Sanchez AJ, Dobrowolski C, Cristian A, Echeverri ES, Zhao K, Hatit MZC, Loughrey D, Paunovska K, Dahlman JE. Universal Barcoding Predicts In Vivo ApoE-Independent Lipid Nanoparticle Delivery. Nano Lett 2022. [PMID: 35671473 DOI: 10.1021/acs.nanolett.2c01133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Lin H, Liang T, Chang Y, Liu D, Fan J, Roffler SR, Lin S. Development of Irinotecan Liposome Armed with Dual-Target Anti-Epidermal Growth Factor Receptor and Anti-Fibroblast Activation Protein-Specific Antibody for Pancreatic Cancer Treatment. Pharmaceutics 2022;14:1202. [DOI: 10.3390/pharmaceutics14061202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Zhu X, Chen Q, Xie L, Chen W, Jiang Y, Song E, Song Y. Iron ion and sulfasalazine-loaded polydopamine nanoparticles for Fenton reaction and glutathione peroxidase 4 inactivation for enhanced cancer ferrotherapy. Acta Biomater 2022;145:210-21. [PMID: 35470077 DOI: 10.1016/j.actbio.2022.04.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zhou G, Gu Y, Zhu Z, Zhang H, Liu W, Xu B, Zhou F, Zhang M, Hua K, Wu L, Ding J. Exosome Mediated Cytosolic Cisplatin Delivery Through Clathrin-Independent Endocytosis and Enhanced Anti-cancer Effect via Avoiding Endosome Trapping in Cisplatin-Resistant Ovarian Cancer. Front Med (Lausanne) 2022;9:810761. [PMID: 35592860 DOI: 10.3389/fmed.2022.810761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Zheng L, Bandara SR, Leal C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm.. [DOI: 10.1101/2022.05.20.492895] [Reference Citation Analysis]
42 Olivieri PH Jr, Jesus MB, Nader HB, Justo GZ, Sousa AA. Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles. Nanoscale 2022;14:7350-63. [PMID: 35535683 DOI: 10.1039/d1nr07279j] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Jalili P, Krause BC, Lanceleur R, Burel A, Jungnickel H, Lampen A, Laux P, Luch A, Fessard V, Hogeveen K. Chronic effects of two rutile TiO2 nanomaterials in human intestinal and hepatic cell lines. Part Fibre Toxicol 2022;19:37. [PMID: 35578293 DOI: 10.1186/s12989-022-00470-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Agostinelli D, Elfring GJ, Bacca M. The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis. Soft Matter 2022;18:3531-45. [PMID: 35445221 DOI: 10.1039/d1sm01710a] [Reference Citation Analysis]
45 Barela Hudgell MA, Smith LC. Lipofection mediated transfection fails for sea urchin coelomocytes. PLoS ONE 2022;17:e0267911. [DOI: 10.1371/journal.pone.0267911] [Reference Citation Analysis]
46 Schwartz-Duval AS, Sokolov KV. Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. Adv Sci (Weinh) 2022;:e2105957. [PMID: 35508715 DOI: 10.1002/advs.202105957] [Reference Citation Analysis]
47 Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. Adv Sci (Weinh) 2022;9:e2003699. [PMID: 35150092 DOI: 10.1002/advs.202003699] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
48 Fu L, Kim HN, Sterling JD, Baker SM, Lord MS. The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022;184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Piao Z, Patel M, Park JK, Jeong B. Poly(l-alanine-co-l-lysine)-g-Trehalose as a Biomimetic Cryoprotectant for Stem Cells. Biomacromolecules 2022. [PMID: 35412815 DOI: 10.1021/acs.biomac.1c01701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Fu Y, Zhang X, Liu J, Qian G, Xu ZP, Zhang R. Fluorescence detection and imaging of intracellular sulphite using a remote light activatable photochromic nanoprobe. J Mater Chem B 2022. [PMID: 35383812 DOI: 10.1039/d2tb00021k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 McGraw E, Roberts JD, Kunte N, Westerfield M, Streety X, Held D, Avila LA. Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. ACS Omega 2022;7:10933-43. [PMID: 35415340 DOI: 10.1021/acsomega.1c06638] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Stanciu SG, Tranca DE, Zampini G, Hristu R, Stanciu GA, Chen X, Liu M, Stenmark HA, Latterini L. Scattering-type Scanning Near-Field Optical Microscopy of Polymer-Coated Gold Nanoparticles. ACS Omega 2022;7:11353-62. [PMID: 35415325 DOI: 10.1021/acsomega.2c00410] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Pattipeiluhu R, Arias-Alpizar G, Basha G, Chan KYT, Bussmann J, Sharp TH, Moradi MA, Sommerdijk N, Harris EN, Cullis PR, Kros A, Witzigmann D, Campbell F. Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. Adv Mater 2022;34:e2201095. [PMID: 35218106 DOI: 10.1002/adma.202201095] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
54 Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.120463] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
55 Li Z, Wang J, Wei Q, Qi Z, Zhou L, Li J. In silico insights into the receptor-mediated endocytosis of virus-like nanoparticles. Chemical Physics Letters 2022;790:139360. [DOI: 10.1016/j.cplett.2022.139360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Wu X, Tang T, Wei Y, Cummins KA, Wood DK, Pang HB. Extracellular Vesicles Mediate the Intercellular Exchange of Nanoparticles. Adv Sci (Weinh) 2022;9:e2102441. [PMID: 35243822 DOI: 10.1002/advs.202102441] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Liu X, Wang Y, Effah CY, Wu L, Yu F, Wei J, Mao G, Xiong Y, He L. Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta 2022;243:123377. [DOI: 10.1016/j.talanta.2022.123377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 Kirman DC, Renganathan B, Chui WK, Chen MW, Kaya NA, Ge R. Cell surface nucleolin is a novel ADAMTS5 receptor mediating endothelial cell apoptosis. Cell Death Dis 2022;13:172. [PMID: 35197459 DOI: 10.1038/s41419-022-04618-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
59 Desai J, Thakkar H. Mechanistic evaluation of lymphatic targeting efficiency of Atazanavir sulfate loaded lipid nanocarriers: In-vitro and in-vivo studies. Journal of Drug Delivery Science and Technology 2022;68:103090. [DOI: 10.1016/j.jddst.2021.103090] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022;181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
61 Kapteijn R, Shitut S, Aschmann D, Zhang L, de Beer M, Daviran D, Roverts R, Akiva A, van Wezel GP, Kros A, Claessen D. DNA uptake by cell wall-deficient bacteria reveals a putative ancient macromolecule uptake mechanism.. [DOI: 10.1101/2022.01.27.478057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Lei J, Song Y, Li D, Lei M, Tan R, Liu Y, Zheng H. pH ‐sensitive and charge‐reversal Daunorubicin‐conjugated polymeric micelles for enhanced cancer therapy. J Appl Polym Sci 2022;139:51535. [DOI: 10.1002/app.51535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Noh I, Lee K, Rhee YS. Microneedle systems for delivering nucleic acid drugs. J Pharm Investig 2022;:1-20. [PMID: 35003824 DOI: 10.1007/s40005-021-00558-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Eygeris Y, Gupta M, Kim J, Sahay G. Chemistry of Lipid Nanoparticles for RNA Delivery. Acc Chem Res 2022;55:2-12. [PMID: 34850635 DOI: 10.1021/acs.accounts.1c00544] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 31.0] [Reference Citation Analysis]
65 Tsou H, Chang C, Maeda T, Lin C. Preparation of Messenger RNA-Loaded Nanomedicine Applied on Tissue Engineering and Regenerative Medicine. RNA Technologies 2022. [DOI: 10.1007/978-3-031-08415-7_18] [Reference Citation Analysis]
66 Chen S, Xu X, Li X, Yi N, Li S, Xiang X, Cheng D, Sun T. Recent advances in the intracellular delivery of macromolecule therapeutics. Biomater Sci 2022. [DOI: 10.1039/d2bm01348g] [Reference Citation Analysis]
67 Tyagi A, Pathak A, Pathak YV, Gupta S. In Vivo Fate of Nanoparticles Undergoing Macrophage Targeting. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Castillo R, Wu D, Cao Z, Yan R, Fajardo K, Ren J, Lu Y, Wen J. Real-Time Quantification of Cell Internalization Kinetics by Bioluminescent Probes. Methods Mol Biol 2022;2525:93-107. [PMID: 35836062 DOI: 10.1007/978-1-0716-2473-9_7] [Reference Citation Analysis]
69 Higashi Y, Ma Y, Matsumoto K, Shiro A, Saitoh H, Kawachi T, Tamanoi F. Auger electrons and DNA double-strand breaks studied by using iodine-containing chemicals. The Enzymes 2022. [DOI: 10.1016/bs.enz.2022.08.007] [Reference Citation Analysis]
70 Zeng C, Zhang C, Walker PG, Dong Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr Top Microbiol Immunol 2022;440:71-110. [PMID: 32483657 DOI: 10.1007/82_2020_217] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 64.0] [Reference Citation Analysis]
71 Egloff S, Melnychuk N, Cruz Da Silva E, Reisch A, Martin S, Klymchenko AS. Amplified Fluorescence in Situ Hybridization by Small and Bright Dye-Loaded Polymeric Nanoparticles. ACS Nano 2021. [PMID: 34928570 DOI: 10.1021/acsnano.1c09409] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
72 He Z, Bao K, Jian J, Zhao Y, Jian Z, Hu C, Gao X. Biotin-Targeted Multifunctional Nanoparticles Encapsulating 10-Hydroxycamptothecin and Apoptin Plasmid for Synergistic Hepatocellular Carcinoma Treatment. ACS Appl Polym Mater 2022;4:497-508. [DOI: 10.1021/acsapm.1c01393] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Qi LY, Wang Y, Hu LF, Zhao PS, Yu HY, Xing L, Gao XD, Cao QR, Jiang HL. Enhanced nuclear gene delivery via integrating and streamlining intracellular pathway. J Control Release 2021;341:511-23. [PMID: 34864117 DOI: 10.1016/j.jconrel.2021.11.046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
74 Kong H, Ju E, Yi K, Xu W, Lao YH, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Adv Sci (Weinh) 2021;8:e2102051. [PMID: 34665528 DOI: 10.1002/advs.202102051] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
75 Zhao L, Li H, Huang X, Liu T, Xin Y, Xiao Z, Zhao W, Miao S, Chen J, Li Z, Mi Y. The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomed Pharmacother 2021;144:112360. [PMID: 34794242 DOI: 10.1016/j.biopha.2021.112360] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
76 Tan H, Zhang M, Wang Y, Timashev P, Zhang Y, Zhang S, Liang XJ, Li F. Innovative nanochemotherapy for overcoming cancer multidrug resistance. Nanotechnology 2021;33. [PMID: 34700307 DOI: 10.1088/1361-6528/ac3355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
77 Wu D, Zhu X, Ao J, Song E, Song Y. Delivery of Ultrasmall Nanoparticles to the Cytosolic Compartment of Pyroptotic J774A.1 Macrophages via GSDMDNterm Membrane Pores. ACS Appl Mater Interfaces 2021;13:50823-35. [PMID: 34689556 DOI: 10.1021/acsami.1c17382] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Goda T. Chemically Induced pH Perturbations for Analyzing Biological Barriers Using Ion-Sensitive Field-Effect Transistors. Sensors (Basel) 2021;21:7277. [PMID: 34770587 DOI: 10.3390/s21217277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
79 Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021;178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Cited by in Crossref: 25] [Cited by in F6Publishing: 33] [Article Influence: 12.5] [Reference Citation Analysis]
80 Navarro-Barreda D, Bedrina B, Galindo F, Miravet JF. Glutathione-responsive molecular nanoparticles from a dianionic bolaamphiphile and their use as carriers for targeted delivery. J Colloid Interface Sci 2021;608:2009-17. [PMID: 34752979 DOI: 10.1016/j.jcis.2021.10.142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Feng Q, Xu X, Wei C, Li Y, Wang M, Lv C, Wu J, Dai Y, Han Y, Lesniak MS, Fan H, Zhang L, Cheng Y. The Dynamic Interactions between Nanoparticles and Macrophages Impact Their Fate in Brain Tumors. Small 2021;:e2103600. [PMID: 34643042 DOI: 10.1002/smll.202103600] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
82 Kim HS, Lee DY. Smart engineering of gold nanoparticles to improve intestinal barrier penetration. Journal of Industrial and Engineering Chemistry 2021;102:122-34. [DOI: 10.1016/j.jiec.2021.06.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
83 Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev 2021;177:113847. [PMID: 34182018 DOI: 10.1016/j.addr.2021.113847] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 8.5] [Reference Citation Analysis]
84 Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021;26:5976. [PMID: 34641519 DOI: 10.3390/molecules26195976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
85 Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. Nano Today 2021;40:101279. [PMID: 34518771 DOI: 10.1016/j.nantod.2021.101279] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
86 Sharma S, Pukale S, Sahel DK, Singh P, Mittal A, Chitkara D. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. Mater Sci Eng C Mater Biol Appl 2021;128:112305. [PMID: 34474856 DOI: 10.1016/j.msec.2021.112305] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
87 Yang J, Xu L, Di L, Su Y, Zhu X. Journey of Poly(ethylene Glycol) in Living Cells. ACS Appl Mater Interfaces 2021;13:40267-77. [PMID: 34424662 DOI: 10.1021/acsami.1c09366] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 De Anda-flores Y, Carvajal-millan E, Campa-mada A, Lizardi-mendoza J, Rascon-chu A, Tanori-cordova J, Martínez-lópez AL. Polysaccharide-Based Nanoparticles for Colon-Targeted Drug Delivery Systems. Polysaccharides 2021;2:626-47. [DOI: 10.3390/polysaccharides2030038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
89 Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021;175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
90 Koitabashi K, Nagumo H, Nakao M, Machida T, Yoshida K, Sakai-Kato K. Acidic pH-induced changes in lipid nanoparticle membrane packing. Biochim Biophys Acta Biomembr 2021;1863:183627. [PMID: 33901441 DOI: 10.1016/j.bbamem.2021.183627] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
91 Cortez-Jugo C, Czuba-Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021;10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
92 Higashi Y, Matsumoto K, Saitoh H, Shiro A, Ma Y, Laird M, Chinnathambi S, Birault A, Doan TLH, Yasuda R, Tajima T, Kawachi T, Tamanoi F. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray. Sci Rep 2021;11:14192. [PMID: 34262055 DOI: 10.1038/s41598-021-93429-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
93 Białas N, Müller EK, Epple M, Hilger I. Silica-coated calcium phosphate nanoparticles for gene silencing of NF-κB p65 by siRNA and their impact on cellular players of inflammation. Biomaterials 2021;276:121013. [PMID: 34252802 DOI: 10.1016/j.biomaterials.2021.121013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
94 Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021;174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
95 Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. Biomater Transl 2021;2:91-142. [PMID: 35836965 DOI: 10.12336/biomatertransl.2021.02.003] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
96 Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021;13:945. [PMID: 34202584 DOI: 10.3390/pharmaceutics13070945] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
97 Liufu C, Li Y, Lin Y, Yu J, Du M, Chen Y, Yang Y, Gong X, Chen Z. Synergistic ultrasonic biophysical effect-responsive nanoparticles for enhanced gene delivery to ovarian cancer stem cells. Drug Deliv 2020;27:1018-33. [PMID: 32627597 DOI: 10.1080/10717544.2020.1785583] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
98 Pishavar E, Oroojalian F, Salmasi Z, Hashemi E, Hashemi M. Recent advances of dendrimer in targeted delivery of drugs and genes to stem cells as cellular vehicles. Biotechnol Prog 2021;37:e3174. [PMID: 33987965 DOI: 10.1002/btpr.3174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Zhou D, Chen Y, Bu W, Meng L, Wang C, Jin N, Chen Y, Ren C, Zhang K, Sun H. Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma. J Colloid Interface Sci 2021;601:650-60. [PMID: 34091312 DOI: 10.1016/j.jcis.2021.05.126] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
100 Olejnik M, Breisch M, Sokolova V, Loza K, Prymak O, Rosenkranz N, Westphal G, Bünger J, Köller M, Sengstock C, Epple M. The effect of short silica fibers (0.3 μm 3.2 μm) on macrophages. Sci Total Environ 2021;769:144575. [PMID: 33486165 DOI: 10.1016/j.scitotenv.2020.144575] [Reference Citation Analysis]
101 Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021;9:520. [PMID: 34066608 DOI: 10.3390/biomedicines9050520] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
102 Lan B, Zhang L, Yang L, Wu J, Li N, Pan C, Wang X, Zeng L, Yan L, Yang C, Ren M. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnology 2021;19:130. [PMID: 33952251 DOI: 10.1186/s12951-021-00869-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
103 Pérez-Hernández M, Cuscó C, Benítez-García C, Bonelli J, Nuevo-Fonoll M, Soriano A, Martínez-García D, Arias-Betancur A, García-Valverde M, Segura MF, Quesada R, Rocas J, Soto-Cerrato V, Pérez-Tomás R. Multi-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drug. Biomedicines 2021;9:508. [PMID: 34064518 DOI: 10.3390/biomedicines9050508] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
104 Li C, Zhang Y, Wan Y, Wang J, Lin J, Li Z, Huang P. STING-activating drug delivery systems: Design strategies and biomedical applications. Chinese Chemical Letters 2021;32:1615-25. [DOI: 10.1016/j.cclet.2021.01.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
105 Wang YL, Zheng CM, Lee YH, Cheng YY, Lin YF, Chiu HW. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci 2021;22:4787. [PMID: 33946416 DOI: 10.3390/ijms22094787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
106 Song S, Xia H, Guo M, Wang S, Zhang S, Ma P, Jin Y. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021;28:752-66. [PMID: 33860719 DOI: 10.1080/10717544.2021.1909175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
107 Patel P, Ibrahim NM, Cheng K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021;42:448-60. [PMID: 33875229 DOI: 10.1016/j.tips.2021.03.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
108 Prakash S, Kumbhojkar N, Clegg JR, Mitragotri S. Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Current Opinion in Colloid & Interface Science 2021;52:101408. [DOI: 10.1016/j.cocis.2020.101408] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
109 Zhao J, Du J, Wang J, An N, Zhou K, Hu X, Dong Z, Liu Y. Folic Acid and Poly(ethylene glycol) Decorated Paclitaxel Nanocrystals Exhibit Enhanced Stability and Breast Cancer-Targeting Capability. ACS Appl Mater Interfaces 2021;13:14577-86. [PMID: 33728919 DOI: 10.1021/acsami.1c00184] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
110 Wang W, Zhang Q, Li Z, Zhang J, Pan D, Wang B, Zhu H, Zhang H, Gu Z, Luo K. Dendron-Functionalized Polyglutamate-Pyropheophorbide-a Conjugates as Nanomedicines for Breast Cancer Photodynamic Therapy. Macromol Rapid Commun 2021;42:e2100013. [PMID: 33759304 DOI: 10.1002/marc.202100013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
111 Wang S. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Front Chem 2021;9:645297. [PMID: 33834015 DOI: 10.3389/fchem.2021.645297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
112 Hunt NJ, Lockwood GP, Kang SWS, Westwood LJ, Limantoro C, Chrzanowski W, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS Nano 2021;15:4710-27. [PMID: 33626869 DOI: 10.1021/acsnano.0c09278] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
113 Sokolova V, Epple M. Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chemistry 2021;27:7471-88. [PMID: 33577710 DOI: 10.1002/chem.202005257] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
114 Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. Adv Therap 2021;4:2000285. [DOI: 10.1002/adtp.202000285] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
115 Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021;170:83-112. [PMID: 33400957 DOI: 10.1016/j.addr.2020.12.014] [Cited by in Crossref: 114] [Cited by in F6Publishing: 124] [Article Influence: 57.0] [Reference Citation Analysis]
116 Wu X, Tang T, Wei Y, Cummins KA, Wood DK, Pang H. Extracellular vesicles mediate the intercellular exchange of nanoparticles.. [DOI: 10.1101/2021.02.23.432325] [Reference Citation Analysis]
117 Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021;330:977-91. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
118 Egorova A, Shtykalova S, Selutin A, Shved N, Maretina M, Selkov S, Baranov V, Kiselev A. Development of iRGD-Modified Peptide Carriers for Suicide Gene Therapy of Uterine Leiomyoma. Pharmaceutics 2021;13:202. [PMID: 33540912 DOI: 10.3390/pharmaceutics13020202] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
119 Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem 2021;133:2230-2234. [DOI: 10.1002/ange.202010934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
120 Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines (Basel) 2021;9:65. [PMID: 33478109 DOI: 10.3390/vaccines9010065] [Cited by in Crossref: 155] [Cited by in F6Publishing: 168] [Article Influence: 77.5] [Reference Citation Analysis]
121 Escrivani DO, Mattos GC, Rossi-bergmann B, Sousa-batista AJ. Nano and Microstructured Delivery Systems for Current Antileishmanial Drugs. Topics in Medicinal Chemistry 2021. [DOI: 10.1007/7355_2021_134] [Reference Citation Analysis]
122 Figueiredo P, Santos HA. Requirements and properties of biomaterials for biomedical applications. Lignin-Based Materials for Biomedical Applications 2021. [DOI: 10.1016/b978-0-12-820303-3.00009-6] [Reference Citation Analysis]
123 Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021;10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
124 Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. Nanoscale Adv 2021;3:10-23. [DOI: 10.1039/d0na00454e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
125 Herrera M, Kim J, Eygeris Y, Jozic A, Sahay G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater Sci 2021;9:4289-300. [DOI: 10.1039/d0bm01947j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
126 Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 2021;20:817-38. [PMID: 34433919 DOI: 10.1038/s41573-021-00283-5] [Cited by in Crossref: 258] [Cited by in F6Publishing: 250] [Article Influence: 129.0] [Reference Citation Analysis]
127 Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci 2020;22:E385. [PMID: 33396561 DOI: 10.3390/ijms22010385] [Cited by in Crossref: 58] [Cited by in F6Publishing: 63] [Article Influence: 19.3] [Reference Citation Analysis]
128 Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2021;26:724-39. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
129 Bejgum BC, Donovan MD. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa. Mol Pharm 2021;18:429-40. [PMID: 33346666 DOI: 10.1021/acs.molpharmaceut.0c01074] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
130 Hosseini S, Epple M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. Nano Select 2021;2:561-72. [DOI: 10.1002/nano.202000150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
131 Kersting M, Olejnik M, Rosenkranz N, Loza K, Breisch M, Rostek A, Westphal G, Bünger J, Ziegler N, Ludwig A, Köller M, Sengstock C, Epple M. Subtoxic cell responses to silica particles with different size and shape. Sci Rep 2020;10:21591. [PMID: 33299057 DOI: 10.1038/s41598-020-78550-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
132 Herrera M, Kim J, Eygeris Y, Jozic A, Sahay G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery.. [DOI: 10.1101/2020.12.02.407601] [Reference Citation Analysis]
133 Hoang S, Olivier S, Cuenot S, Montillet A, Bellettre J, Ishow E. Microfluidic Assisted Flash Precipitation of Photocrosslinkable Fluorescent Organic Nanoparticles for Fine Size Tuning and Enhanced Photoinduced Processes. Chemphyschem 2020;21:2502-15. [PMID: 33073929 DOI: 10.1002/cphc.202000633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
134 Wang X, Qiu Y, Wang M, Zhang C, Zhang T, Zhou H, Zhao W, Zhao W, Xia G, Shao R. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int J Nanomedicine 2020;15:9447-67. [PMID: 33268987 DOI: 10.2147/IJN.S274289] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 6.7] [Reference Citation Analysis]
135 DuRoss AN, Landry MR, Thomas CR Jr, Neufeld MJ, Sun C. Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer. Cancer Lett 2021;500:208-19. [PMID: 33232787 DOI: 10.1016/j.canlet.2020.11.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
136 Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed 2021;60:2202-6. [DOI: 10.1002/anie.202010934] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
137 Olejnik M, Kersting M, Rosenkranz N, Loza K, Breisch M, Rostek A, Prymak O, Schürmeyer L, Westphal G, Köller M, Bünger J, Epple M, Sengstock C. Cell-biological effects of zinc oxide spheres and rods from the nano- to the microscale at sub-toxic levels. Cell Biol Toxicol 2021;37:573-93. [PMID: 33205376 DOI: 10.1007/s10565-020-09571-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
138 Tryfonidou MA, de Vries G, Hennink WE, Creemers LB. "Old Drugs, New Tricks" - Local controlled drug release systems for treatment of degenerative joint disease. Adv Drug Deliv Rev 2020;160:170-85. [PMID: 33122086 DOI: 10.1016/j.addr.2020.10.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
139 Clegg JR, Sun JA, Gu J, Venkataraman AK, Peppas NA. Peptide conjugation enhances the cellular co-localization, but not endosomal escape, of modular poly(acrylamide-co-methacrylic acid) nanogels. J Control Release 2021;329:1162-71. [PMID: 33127451 DOI: 10.1016/j.jconrel.2020.10.045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Alshehri S, Fan W, Zhang W, Garrison JC. In Vitro Evaluation and Biodistribution Studies of HPMA Copolymers Targeting the Gastrin Releasing Peptide Receptor in Prostate Cancer. Pharm Res 2020;37:229. [PMID: 33098043 DOI: 10.1007/s11095-020-02952-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
141 Chelobanov B, Poletaeva J, Epanchintseva A, Tupitsyna A, Pyshnaya I, Ryabchikova E. Ultrastructural Features of Gold Nanoparticles Interaction with HepG2 and HEK293 Cells in Monolayer and Spheroids. Nanomaterials (Basel) 2020;10:E2040. [PMID: 33081137 DOI: 10.3390/nano10102040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
142 Zhang Y, Shi M, Yan Z, Zhang S, Wang M, Xu H, Li H, Ying Y, Qiu S, Liu J, Yang H, Chen H, He H, Guo Z. Ultrastable Near-Infrared Nonlinear Organic Chromophore Nanoparticles with Intramolecular Charge Transfer for Dually Photoinduced Tumor Ablation. Adv Healthc Mater 2020;9:e2001042. [PMID: 32935929 DOI: 10.1002/adhm.202001042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
143 Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020;21:E6961. [PMID: 32971917 DOI: 10.3390/ijms21186961] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
144 Shim G, Ko S, Park JY, Suh JH, Le QV, Kim D, Kim YB, Im GH, Kim HN, Choe YS, Cho J, Kim S, Oh YK. Tannic acid-functionalized boron nitride nanosheets for theranostics. J Control Release 2020;327:616-26. [PMID: 32916228 DOI: 10.1016/j.jconrel.2020.09.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
145 Sim T, Lim C, Hoang NH, Shin Y, Kim JC, Park JY, Her J, Lee ES, Youn YS, Oh KT. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics 2020;12:E839. [PMID: 32887273 DOI: 10.3390/pharmaceutics12090839] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
146 Ruolan W, Liangjiao C, Longquan S. The mTOR/ULK1 signaling pathway mediates the autophagy-promoting and osteogenic effects of dicalcium silicate nanoparticles. J Nanobiotechnology 2020;18:119. [PMID: 32867795 DOI: 10.1186/s12951-020-00663-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
147 Hosseini S, Wey K, Epple M. Enteric Coating Systems for the Oral Administration of Bioactive Calcium Phosphate Nanoparticles Carrying Nucleic Acids into the Colon. ChemistrySelect 2020;5:9720-9. [DOI: 10.1002/slct.202002846] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
148 Rojas-sánchez L, Loza K, Epple M. Synthesis and intracellular tracing surface-functionalized calcium phosphate nanoparticles by super-resolution microscopy (STORM). Materialia 2020;12:100773. [DOI: 10.1016/j.mtla.2020.100773] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
149 Goda T, Miyahara Y, Ishihara K. Phospholipid-mimicking cell-penetrating polymers: principles and applications. J Mater Chem B 2020;8:7633-41. [PMID: 32720672 DOI: 10.1039/d0tb01520b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
150 Meng C, Chen Z, Li G, Welte T, Shen H. Nanoplatforms for mRNA Therapeutics. Adv Therap 2021;4:2000099. [DOI: 10.1002/adtp.202000099] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
151 Xu Y, Li X, Gong W, Huang H, Zhu B, Hu J. Construction of Ginsenoside Nanoparticles with pH/Reduction Dual Response for Enhancement of Their Cytotoxicity Toward HepG2 Cells. J Agric Food Chem 2020;68:8545-56. [DOI: 10.1021/acs.jafc.0c03698] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
152 Kollenda S, Kopp M, Wens J, Koch J, Schulze N, Papadopoulos C, Pöhler R, Meyer H, Epple M. A pH-sensitive fluorescent protein sensor to follow the pathway of calcium phosphate nanoparticles into cells. Acta Biomater 2020;111:406-17. [PMID: 32439614 DOI: 10.1016/j.actbio.2020.05.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
153 Tamanoi F, Matsumoto K, Doan TLH, Shiro A, Saitoh H. Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. Nanomaterials (Basel) 2020;10:E1341. [PMID: 32660093 DOI: 10.3390/nano10071341] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
154 Carvalho AM, Cordeiro RA, Faneca H. Silica-Based Gene Delivery Systems: From Design to Therapeutic Applications. Pharmaceutics 2020;12:E649. [PMID: 32660110 DOI: 10.3390/pharmaceutics12070649] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
155 Pang C, Song C, Li Y, Wang Q, Zhu X, Wu J, Tian Y, Fan H, Hu J, Li C, Wang B, Li X, Liu W, Fan L. The Establishment and Application Studies on Precise Lysosome pH Indicator Based on Self-Decomposable Nanoparticles. Nanoscale Res Lett 2020;15:143. [PMID: 32642882 DOI: 10.1186/s11671-020-03367-0] [Reference Citation Analysis]
156 Ashokkumar P, Adarsh N, Klymchenko AS. Ratiometric Nanoparticle Probe Based on FRET‐Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity. Small 2020;16:2002494. [DOI: 10.1002/smll.202002494] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
157 Al-Bari AA. Facts and Myths: Efficacies of Repurposing Chloroquine and Hydroxychloroquine for the Treatment of COVID-19. Curr Drug Targets 2020;21:1703-21. [PMID: 32552642 DOI: 10.2174/1389450121666200617133142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
158 Liu Y, Xie X, Hou X, Shen J, Shi J, Chen H, He Y, Wang Z, Feng N. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J Nanobiotechnology 2020;18:83. [PMID: 32473632 DOI: 10.1186/s12951-020-00638-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
159 Kim J, Jozic A, Sahay G. Naturally Derived Membrane Lipids Impact Nanoparticle-Based Messenger RNA Delivery. Cell Mol Bioeng 2020;:1-12. [PMID: 32837581 DOI: 10.1007/s12195-020-00619-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
160 He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. Adv Funct Mater 2020;30:1910566. [DOI: 10.1002/adfm.201910566] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
161 Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol 2020;177:113959. [PMID: 32272110 DOI: 10.1016/j.bcp.2020.113959] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 15.0] [Reference Citation Analysis]
162 Zhou S, Chen W, Cole J, Zhu G. Delivery of nucleic acid therapeutics for cancer immunotherapy. Med Drug Discov 2020;6:100023. [PMID: 34337382 DOI: 10.1016/j.medidd.2020.100023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
163 Lan B, Wu J, Li N, Pan C, Yan L, Yang C, Zhang L, Yang L, Ren M. Hyperbranched cationic polysaccharide derivatives for efficient siRNA delivery and diabetic wound healing enhancement. Int J Biol Macromol 2020;154:855-65. [PMID: 32198034 DOI: 10.1016/j.ijbiomac.2020.03.164] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
164 Passos Gibson V, Fauquignon M, Ibarboure E, Leblond Chain J, Le Meins JF. Switchable Lipid Provides pH-Sensitive Properties to Lipid and Hybrid Polymer/Lipid Membranes. Polymers (Basel) 2020;12:E637. [PMID: 32168824 DOI: 10.3390/polym12030637] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
165 Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 2020;12:E233. [PMID: 32151052 DOI: 10.3390/pharmaceutics12030233] [Cited by in Crossref: 67] [Cited by in F6Publishing: 72] [Article Influence: 22.3] [Reference Citation Analysis]
166 Hu Q, Su H, Li J, Lyon C, Tang W, Wan M, Hu TY. Clinical applications of exosome membrane proteins. Precis Clin Med 2020;3:54-66. [PMID: 32257533 DOI: 10.1093/pcmedi/pbaa007] [Cited by in Crossref: 76] [Cited by in F6Publishing: 76] [Article Influence: 25.3] [Reference Citation Analysis]
167 Patel S, Ashwanikumar N, Robinson E, Xia Y, Mihai C, Griffith JP 3rd, Hou S, Esposito AA, Ketova T, Welsher K, Joyal JL, Almarsson Ö, Sahay G. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat Commun 2020;11:983. [PMID: 32080183 DOI: 10.1038/s41467-020-14527-2] [Cited by in Crossref: 105] [Cited by in F6Publishing: 115] [Article Influence: 35.0] [Reference Citation Analysis]
168 Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. Beilstein J Nanotechnol 2020;11:338-53. [PMID: 32117671 DOI: 10.3762/bjnano.11.25] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 17.3] [Reference Citation Analysis]
169 Craparo EF, Drago SE, Mauro N, Giammona G, Cavallaro G. Design of New Polyaspartamide Copolymers for siRNA Delivery in Antiasthmatic Therapy. Pharmaceutics 2020;12:E89. [PMID: 31979001 DOI: 10.3390/pharmaceutics12020089] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
170 Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020;159:344-63. [PMID: 32622021 DOI: 10.1016/j.addr.2020.06.026] [Cited by in Crossref: 121] [Cited by in F6Publishing: 119] [Article Influence: 40.3] [Reference Citation Analysis]
171 Guo L, Xiao J, Liu H, Liu H. Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics 2020;12:204-17. [PMID: 31793592 DOI: 10.1039/c9mt00215d] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 9.5] [Reference Citation Analysis]
172 Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2020;317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
173 Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019;24:E3744. [PMID: 31627389 DOI: 10.3390/molecules24203744] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]