BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Eiben S, Koch C, Altintoprak K, Southan A, Tovar G, Laschat S, Weiss IM, Wege C. Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019;145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
Number Citing Articles
1 Debnath S, Seth D, Pramanik S, Adhikari S, Mondal P, Sherpa D, Sen D, Mukherjee D, Bhattacharjee R, Mukerjee N. A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry. Biotechnol Genet Eng Rev 2022;:1-33. [PMID: 36063068 DOI: 10.1080/02648725.2022.2116309] [Reference Citation Analysis]
2 Iravani S, Zolfaghari B. Plant Viruses and Bacteriophages for Eco-friendly Synthesis of Nanoparticles: Recent Trends and Important Challenges. Comments on Inorganic Chemistry. [DOI: 10.1080/02603594.2021.1993837] [Reference Citation Analysis]
3 Li C, Wang L, Seidi F, Sun W, Gu R, Xiao H. Naturally Occurring Exopolysaccharide Nanoparticles for Dye Adsorption. ACS Appl Nano Mater 2021;4:10458-66. [DOI: 10.1021/acsanm.1c01978] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Citiulo F, Crosatti C, Cattivelli L, Biselli C. Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. Plants (Basel) 2021;10:1828. [PMID: 34579360 DOI: 10.3390/plants10091828] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
5 Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021;13:1697. [PMID: 34578279 DOI: 10.3390/v13091697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hou C, Xu H, Jiang X, Li Y, Deng S, Zang M, Xu J, Liu J. Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS Appl Bio Mater 2021;4:5961-74. [PMID: 35006905 DOI: 10.1021/acsabm.1c00633] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021;175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
8 Lumata JL, Ball D, Shahrivarkevishahi A, Luzuriaga MA, Herbert FC, Brohlin O, Lee H, Hagge LM, D'Arcy S, Gassensmith JJ. Identification and physical characterization of a spontaneous mutation of the tobacco mosaic virus in the laboratory environment. Sci Rep 2021;11:15109. [PMID: 34302022 DOI: 10.1038/s41598-021-94561-2] [Reference Citation Analysis]
9 Zhang J, Zhang W, Yang M, Zhu W, Li M, Liang A, Zhang H, Fang T, Zhang XE, Li F. Passive cancer targeting with a viral nanoparticle depends on the stage of tumorigenesis. Nanoscale 2021;13:11334-42. [PMID: 34165123 DOI: 10.1039/d1nr01619a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Brown AD, Chu S, Kappagantu M, Ghodssi R, Culver JN. Reprogramming Virus Coat Protein Carboxylate Interactions for the Patterned Assembly of Hierarchical Nanorods. Biomacromolecules 2021;22:2515-23. [PMID: 33886293 DOI: 10.1021/acs.biomac.1c00258] [Reference Citation Analysis]
11 Jenkins MC, Lutz S. Encapsulin Nanocontainers as Versatile Scaffolds for the Development of Artificial Metabolons. ACS Synth Biol 2021;10:857-69. [PMID: 33769792 DOI: 10.1021/acssynbio.0c00636] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
12 Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021;171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Wang C, Jiao K, Yan J, Wan M, Wan Q, Breschi L, Chen J, Tay FR, Niu L. Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science 2021;116:100712. [DOI: 10.1016/j.pmatsci.2020.100712] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
14 Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021;556:39-61. [PMID: 33545555 DOI: 10.1016/j.virol.2021.01.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Jablonski M, Poghossian A, Severins R, Keusgen M, Wege C, Schöning MJ. Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles. Micromachines (Basel) 2021;12:57. [PMID: 33418949 DOI: 10.3390/mi12010057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
16 Anaya-Plaza E, Shaukat A, Lehtonen I, Kostiainen MA. Biomolecule-Directed Carbon Nanotube Self-Assembly. Adv Healthc Mater 2021;10:e2001162. [PMID: 33124183 DOI: 10.1002/adhm.202001162] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
17 Poghossian A, Jablonski M, Molinnus D, Wege C, Schöning MJ. Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers. Front Plant Sci 2020;11:598103. [PMID: 33329662 DOI: 10.3389/fpls.2020.598103] [Cited by in Crossref: 10] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
18 Lin YY, Schuphan J, Dickmeis C, Buhl EM, Commandeur U, Fischer H. Attachment of Ultralow Amount of Engineered Plant Viral Nanoparticles to Mesenchymal Stem Cells Enhances Osteogenesis and Mineralization. Adv Healthc Mater 2020;9:e2001245. [PMID: 32940006 DOI: 10.1002/adhm.202001245] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Hu H, Steinmetz NF. Doxorubicin-Loaded Physalis Mottle Virus Particles Function as a pH-Responsive Prodrug Enabling Cancer Therapy. Biotechnol J 2020;15:e2000077. [PMID: 32918857 DOI: 10.1002/biot.202000077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
20 Dickmeis C, Kauth L, Commandeur U. From infection to healing: The use of plant viruses in bioactive hydrogels. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1662. [PMID: 32677315 DOI: 10.1002/wnan.1662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Yuste-Calvo C, Ibort P, Sánchez F, Ponz F. Turnip Mosaic Virus Coat Protein Deletion Mutants Allow Defining Dispensable Protein Domains for 'in Planta' eVLP Formation. Viruses 2020;12:E661. [PMID: 32575409 DOI: 10.3390/v12060661] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Saylan Y, Erdem Ö, Inci F, Denizli A. Advances in Biomimetic Systems for Molecular Recognition and Biosensing. Biomimetics (Basel) 2020;5:E20. [PMID: 32408710 DOI: 10.3390/biomimetics5020020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
23 Park J, Chariou PL, Steinmetz NF. Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjug Chem 2020;31:1408-16. [PMID: 32281790 DOI: 10.1021/acs.bioconjchem.0c00118] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
24 Shahgolzari M, Pazhouhandeh M, Milani M, Yari Khosroushahi A, Fiering S. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1629] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
25 Sun X, Cui Z. Virus‐Like Particles as Theranostic Platforms. Adv Therap 2020;3:1900194. [DOI: 10.1002/adtp.201900194] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
26 Balke I, Zeltins A. Recent Advances in the Use of Plant Virus-Like Particles as Vaccines. Viruses 2020;12:E270. [PMID: 32121192 DOI: 10.3390/v12030270] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
27 Dianat-Moghadam H, Heidarifard M, Mahari A, Shahgolzari M, Keshavarz M, Nouri M, Amoozgar Z. TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. Pharmacol Res 2020;155:104716. [PMID: 32084560 DOI: 10.1016/j.phrs.2020.104716] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
28 Hefferon KL. The role of plant expression platforms in biopharmaceutical development: possibilities for the future. Expert Rev Vaccines 2019;18:1301-8. [PMID: 31829081 DOI: 10.1080/14760584.2019.1704264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Cuesta R, Yuste-Calvo C, Gil-Cartón D, Sánchez F, Ponz F, Valle M. Structure of Turnip mosaic virus and its viral-like particles. Sci Rep 2019;9:15396. [PMID: 31659175 DOI: 10.1038/s41598-019-51823-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
30 Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
31 Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1587] [Cited by in Crossref: 26] [Cited by in F6Publishing: 42] [Article Influence: 8.7] [Reference Citation Analysis]
32 Ibrahim A, Odon V, Kormelink R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. Front Plant Sci 2019;10:803. [PMID: 31275344 DOI: 10.3389/fpls.2019.00803] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
33 Atanasova P, Atanasov V, Wittum L, Southan A, Choi E, Wege C, Kerres J, Eiben S, Bill J. Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates. Nanomaterials (Basel) 2019;9:E800. [PMID: 31137720 DOI: 10.3390/nano9050800] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Yang M, Mao C. Biomaterials based on phages and other viruses. Adv Drug Deliv Rev 2019;145:1-3. [PMID: 31703771 DOI: 10.1016/j.addr.2019.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
35 Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018;4:3939-61. [DOI: 10.1021/acsbiomaterials.8b01098] [Cited by in Crossref: 63] [Cited by in F6Publishing: 38] [Article Influence: 15.8] [Reference Citation Analysis]