BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 2012;64:1417-35. [PMID: 22982406 DOI: 10.1016/j.addr.2012.09.003] [Cited by in Crossref: 118] [Cited by in F6Publishing: 126] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Priester MI, Ten Hagen TLM. Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023;192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Reference Citation Analysis]
2 Giannetti A, Adinolfi B, Baldini F. Intracellular Biosensing. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00092-3] [Reference Citation Analysis]
3 Ahmed N, Sohail MF, Khurshid Z, Ammar A, Saeed AM, Shazia F, Gul S, Zia M. Synthesis, Characterization, and In Vivo Distribution of 99mTc Radiolabelled Docetaxel Loaded Folic Acid-Thiolated Chitosan Enveloped Liposomes. BioNanoSci 2022. [DOI: 10.1007/s12668-022-01053-2] [Reference Citation Analysis]
4 Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.113002] [Reference Citation Analysis]
5 Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022;348:1066-88. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022;12:925379. [DOI: 10.3389/fonc.2022.925379] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Dennahy IS, Han Z, Maccuaig WM, Chalfant HM, Condacse A, Hagood JM, Claros-sorto JC, Razaq W, Holter-chakrabarty J, Squires R, Edil BH, Jain A, Mcnally LR. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022;14:917. [DOI: 10.3390/pharmaceutics14050917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mukherjee A, Bisht B, Dutta S, Paul MK. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin 2022. [PMID: 35379933 DOI: 10.1038/s41401-022-00902-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
9 Moore TL, Cook AB, Belotti E, Palomba R, Manghnani P, Spanò R, Brahmachari S, Di Francesco M, Palange AL, Di Mascolo D, Decuzzi P. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv and Transl Res . [DOI: 10.1007/s13346-022-01143-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Li Y, VanOsdol J, Ranjan A, Liu C. A multilayer network-enabled ultrasonic image series analysis approach for online cancer drug delivery monitoring. Comput Methods Programs Biomed 2022;213:106505. [PMID: 34800806 DOI: 10.1016/j.cmpb.2021.106505] [Reference Citation Analysis]
11 Albarwary SA, Kibarer AG, Mustapha MT, Hamdan H, Ozsahin DU. The Efficiency of AuNPs in Cancer Cell Targeting Compared to Other Nanomedicine Technologies Using Fuzzy PROMETHEE. J Healthc Eng 2021;2021:1566834. [PMID: 34567477 DOI: 10.1155/2021/1566834] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Entzian K, Aigner A. Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021;13:1135. [PMID: 34452096 DOI: 10.3390/pharmaceutics13081135] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
13 Bukhari SI, Imam SS, Ahmad MZ, Vuddanda PR, Alshehri S, Mahdi WA, Ahmad J. Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges. Pharmaceutics 2021;13:840. [PMID: 34200251 DOI: 10.3390/pharmaceutics13060840] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
14 Felici A, Di Mascolo D, Ferreira M, Lauciello S, Bono L, Armirotti A, Pitchaimani A, Palange AL, Decuzzi P. Vascular-confined multi-passage discoidal nanoconstructs for the low-dose docetaxel inhibition of triple-negative breast cancer growth. Nano Res 2022;15:482-91. [DOI: 10.1007/s12274-021-3507-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hassanzadeh P. The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sci 2021;277:119400. [PMID: 33794255 DOI: 10.1016/j.lfs.2021.119400] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Écija-Arenas Á, Román-Pizarro V, Fernández-Romero JM. Luminescence continuous flow system for monitoring the efficiency of hybrid liposomes separation using multiphase density gradient centrifugation. Talanta 2021;222:121532. [PMID: 33167240 DOI: 10.1016/j.talanta.2020.121532] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Böhmer VI, Szymanski W, Feringa BL, Elsinga PH. Multivalent Probes in Molecular Imaging: Reality or Future? Trends Mol Med 2021;27:379-93. [PMID: 33436332 DOI: 10.1016/j.molmed.2020.12.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
18 Fonseca-santos B, da Silva PB, Eloy JO, Chorilli M. Nanocarriers for the Diagnosis and Treatment of Cancer. Nanocarriers for Drug Delivery 2021. [DOI: 10.1007/978-3-030-63389-9_10] [Reference Citation Analysis]
19 Gopi J, Gopinath M, Banerjee A, Rupert S, Vennila R, Pathak S. Nanomedicines for Solid Tumors: Current Status, Challenges, and Future Prospects. Nanomedicine for Cancer Diagnosis and Therapy 2021. [DOI: 10.1007/978-981-15-7564-8_4] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Leyva-gómez G, Mendoza-muñoz N, Del Prado-audelo ML, Ojeda-piedra SA, Zambrano-zaragoza ML, Quintanar-guerrero D. Natural Polymers in Pharmaceutical Nanotechnology. Nanomaterials and Nanotechnology 2021. [DOI: 10.1007/978-981-33-6056-3_6] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Écija-Arenas Á, Román-Pizarro V, Fernández-Romero JM. Separation and characterization of liposomes using asymmetric flow field-flow fractionation with online multi-angle light scattering detection. J Chromatogr A 2021;1636:461798. [PMID: 33341435 DOI: 10.1016/j.chroma.2020.461798] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
22 Olerile LD. Further Development of Near-Infrared Mediated Quantum Dots and Paclitaxel Co-loaded Nanostructured Lipid Carrier System for Cancer Theragnostic. Technol Cancer Res Treat 2020;19:1533033820914308. [PMID: 32336244 DOI: 10.1177/1533033820914308] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu S, Zhang Y, Li M, Xiong L, Zhang Z, Yang X, He X, Wang K, Liu J, Mann S. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat Chem 2020;12:1165-73. [DOI: 10.1038/s41557-020-00585-y] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]
24 De Negri Atanasio G, Ferrari PF, Campardelli R, Perego P, Palombo D. Poly (Lactic-co-Glycolic Acid) Nanoparticles and Nanoliposomes for Protein Delivery in Targeted Therapy: A Comparative In Vitro Study. Polymers (Basel) 2020;12:E2566. [PMID: 33139610 DOI: 10.3390/polym12112566] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Écija-Arenas Á, Román-Pizarro V, Fernández-Romero JM. Integration of a microfluidic system into a conventional luminescence detector using a 3D printed alignment device. Mikrochim Acta 2020;187:620. [PMID: 33084998 DOI: 10.1007/s00604-020-04597-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Sawant A, Kwak D, Lee I, Chung M, Choi E. Stand-off radiation detection techniques. Review of Scientific Instruments 2020;91:071501. [DOI: 10.1063/1.5134088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Hermal F, Frisch B, Specht A, Bourel-Bonnet L, Heurtault B. Development and characterization of layer-by-layer coated liposomes with poly(L-lysine) and poly(L-glutamic acid) to increase their resistance in biological media. Int J Pharm 2020;586:119568. [PMID: 32592900 DOI: 10.1016/j.ijpharm.2020.119568] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
28 Aranda-Lara L, Morales-Avila E, Luna-Gutiérrez MA, Olivé-Alvarez E, Isaac-Olivé K. Radiolabeled liposomes and lipoproteins as lipidic nanoparticles for imaging and therapy. Chem Phys Lipids 2020;230:104934. [PMID: 32562666 DOI: 10.1016/j.chemphyslip.2020.104934] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
29 Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021;16:24-46. [PMID: 33613728 DOI: 10.1016/j.ajps.2020.03.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 14.7] [Reference Citation Analysis]
30 Pan Q, Yu Y, Chen D, Jiao G, Liu X. Enhanced penetration strategies for transdermal delivery. Front Chem Sci Eng 2020;14:378-88. [DOI: 10.1007/s11705-019-1913-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
31 Borràs J, Mesa V, Suades J, Barnadas-Rodríguez R. Direct Synthesis of Rhenium and Technetium-99m Metallosurfactants by a Transmetallation Reaction of Lipophilic Groups: Potential Applications in the Radiolabeling of Liposomes. Langmuir 2020;36:1993-2002. [PMID: 31995988 DOI: 10.1021/acs.langmuir.9b03231] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
32 Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019;10:1264. [PMID: 31708785 DOI: 10.3389/fphar.2019.01264] [Cited by in Crossref: 90] [Cited by in F6Publishing: 93] [Article Influence: 22.5] [Reference Citation Analysis]
33 Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J Nanobiotechnology 2019;17:90. [PMID: 31434562 DOI: 10.1186/s12951-019-0524-9] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
34 Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y. FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics 2019;138:111314. [DOI: 10.1016/j.bios.2019.05.019] [Cited by in Crossref: 92] [Cited by in F6Publishing: 99] [Article Influence: 23.0] [Reference Citation Analysis]
35 Santos-oliveira R. Application of Technetium 99 Metastable Radioactive Nanosystems: Nanoparticles, Liposomes, and Nanoemulsion for Biomedical Application. Curr Pharmacol Rep 2019;5:281-302. [DOI: 10.1007/s40495-019-00190-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
36 Edelman R, Assaraf YG, Slavkin A, Dolev T, Shahar T, Livney YD. Developing Body-Components-Based Theranostic Nanoparticles for Targeting Ovarian Cancer. Pharmaceutics 2019;11:E216. [PMID: 31060303 DOI: 10.3390/pharmaceutics11050216] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
37 Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opinion on Drug Delivery 2019;16:481-96. [DOI: 10.1080/17425247.2019.1604679] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 8.8] [Reference Citation Analysis]
38 Singh S, Hussain A, Shakeel F, Ahsan MJ, Alshehri S, Webster TJ, Lal UR. Recent insights on nanomedicine for augmented infection control. Int J Nanomedicine 2019;14:2301-25. [PMID: 31114188 DOI: 10.2147/IJN.S170280] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
39 Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019;143:134-60. [PMID: 31170428 DOI: 10.1016/j.addr.2019.05.012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 13.8] [Reference Citation Analysis]
40 Man F, Lammers T, T M de Rosales R. Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies. Mol Imaging Biol 2018;20:683-95. [PMID: 30084044 DOI: 10.1007/s11307-018-1255-2] [Cited by in Crossref: 63] [Cited by in F6Publishing: 71] [Article Influence: 15.8] [Reference Citation Analysis]
41 Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics 2019;11:E22. [PMID: 30625999 DOI: 10.3390/pharmaceutics11010022] [Cited by in Crossref: 98] [Cited by in F6Publishing: 101] [Article Influence: 24.5] [Reference Citation Analysis]
42 Tobias A, Rooke W, Hanks TW. Incorporation of gold nanoparticles into the bilayer of polydiacetylene unilamellar vesicles. Colloid Polym Sci 2019;297:85-93. [DOI: 10.1007/s00396-018-4441-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Jampílek J, Kráľová K. Recent advances in lipid nanocarriers applicable in the fight against cancer. Nanoarchitectonics in Biomedicine 2019. [DOI: 10.1016/b978-0-12-816200-2.00009-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
44 Hajdu I, Makhlouf A, Solomon VR, Michel D, Al-Dulaymi M, Wasan KM, Fonge H, Badea I. A 89Zr-labeled lipoplex nanosystem for image-guided gene delivery: design, evaluation of stability and in vivo behavior. Int J Nanomedicine 2018;13:7801-18. [PMID: 30538460 DOI: 10.2147/IJN.S179806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
45 Christensen E, Henriksen JR, Jørgensen JT, Amitay Y, Shmeeda H, Gabizon AA, Kjær A, Andresen TL, Hansen AE. Folate receptor targeting of radiolabeled liposomes reduces intratumoral liposome accumulation in human KB carcinoma xenografts. Int J Nanomedicine 2018;13:7647-56. [PMID: 30538449 DOI: 10.2147/IJN.S182579] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
46 Gawne P, Man F, Fonslet J, Radia R, Bordoloi J, Cleveland M, Jimenez-Royo P, Gabizon A, Blower PJ, Long N, de Rosales RTM. Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalton Trans 2018;47:9283-93. [PMID: 29796500 DOI: 10.1039/c8dt00100f] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
47 Gómez-Vallejo V, Puigivila M, Plaza-García S, Szczupak B, Piñol R, Murillo JL, Sorribas V, Lou G, Veintemillas S, Ramos-Cabrer P, Llop J, Millán A. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale 2018;10:14153-64. [PMID: 29999506 DOI: 10.1039/c8nr03084g] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
48 Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019;15:1-18. [PMID: 30581608 DOI: 10.1016/j.jare.2018.06.005] [Cited by in Crossref: 418] [Cited by in F6Publishing: 447] [Article Influence: 83.6] [Reference Citation Analysis]
49 Lim J, Son SU, Lim E. Recent Advances in Bioimaging for Cancer Research. State of the Art in Nano-bioimaging 2018. [DOI: 10.5772/intechopen.72725] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
50 Hassanzadeh P, Atyabi F, Dinarvand R. Ignoring the modeling approaches: Towards the shadowy paths in nanomedicine. Journal of Controlled Release 2018;280:58-75. [DOI: 10.1016/j.jconrel.2018.04.042] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
51 Charron DM, Zheng G. Nanomedicine development guided by FRET imaging. Nano Today 2018;18:124-36. [DOI: 10.1016/j.nantod.2017.12.006] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
52 Raghavendra P, Pullaiah T. Future of Cellular and Molecular Diagnostics. Advances in Cell and Molecular Diagnostics 2018. [DOI: 10.1016/b978-0-12-813679-9.00008-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
53 Kang KW, Song MG. Organic Nanomaterials: Liposomes, Albumin, Dendrimer, Polymeric Nanoparticles. Radionanomedicine 2018. [DOI: 10.1007/978-3-319-67720-0_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
54 Santos SND, Bernardes ES, Santos-oliveira R. Nanoradiopharmaceuticals in current molecular medicine. Fundamentals of Nanoparticles 2018. [DOI: 10.1016/b978-0-323-51255-8.00018-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
55 Jensen AI, Severin GW, Hansen AE, Fliedner FP, Eliasen R, Parhamifar L, Kjær A, Andresen TL, Henriksen JR. Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. Journal of Controlled Release 2018;269:100-9. [DOI: 10.1016/j.jconrel.2017.11.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
56 Hansen AE, Fliedner FP, Henriksen JR, Jørgensen JT, Clemmensen AE, Børresen B, Elema DR, Kjær A, Andresen TL. Liposome accumulation in irradiated tumors display important tumor and dose dependent differences. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14:27-34. [DOI: 10.1016/j.nano.2017.08.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
57 Børresen B, Hansen AE, Kjaer A, Andresen TL, Kristensen AT. Liposome-encapsulated chemotherapy: Current evidence for its use in companion animals. Vet Comp Oncol 2018;16:E1-E15. [PMID: 29027350 DOI: 10.1111/vco.12342] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
58 Papagiannopoulou D. Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Comp Radiopharm 2017;60:502-20. [PMID: 28618064 DOI: 10.1002/jlcr.3531] [Cited by in Crossref: 72] [Cited by in F6Publishing: 75] [Article Influence: 12.0] [Reference Citation Analysis]
59 Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017;22:E1350. [PMID: 28841180 DOI: 10.3390/molecules22091350] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
60 Brand C, Iacono P, Pérez-Medina C, Mulder WJM, Kircher MF, Reiner T. Specific Binding of Liposomal Nanoparticles through Inverse Electron-Demand Diels-Alder Click Chemistry. ChemistryOpen 2017;6:615-9. [PMID: 29046855 DOI: 10.1002/open.201700105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
61 Zhang W, Zhao Q, Deng J, Hu Y, Wang Y, Ouyang D. Big data analysis of global advances in pharmaceutics and drug delivery 1980-2014. Drug Discov Today 2017;22:1201-8. [PMID: 28627386 DOI: 10.1016/j.drudis.2017.05.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
62 Stelmashchuk O, Zherebtsov E, Zherebtsova A, Kuznetsova E, Vinokurov A, Dunaev A, Mamoshin A, Snimshchikova I, Borsukov A, Bykov A, Meglinski I. Noninvasive control of the transport function of fluorescent coloured liposomal nanoparticles. Laser Phys Lett 2017;14:065603. [DOI: 10.1088/1612-202x/aa6ef5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
63 Park SM, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater 2017;2:17014. [PMID: 29876137 DOI: 10.1038/natrevmats.2017.14] [Cited by in Crossref: 180] [Cited by in F6Publishing: 193] [Article Influence: 30.0] [Reference Citation Analysis]
64 La-Beck NM, Gabizon AA. Nanoparticle Interactions with the Immune System: Clinical Implications for Liposome-Based Cancer Chemotherapy. Front Immunol 2017;8:416. [PMID: 28428790 DOI: 10.3389/fimmu.2017.00416] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 8.3] [Reference Citation Analysis]
65 Román-pizarro V, Fernández-romero JM, Gómez-hens A. Automatic determination of coenzyme Q10 in food using cresyl violet encapsulated into magnetoliposomes. Food Chemistry 2017;221:864-70. [DOI: 10.1016/j.foodchem.2016.11.085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
66 Pietrzak M, Jędrzejewska B, Mądrzejewska D, Bajorek A. Convenient Synthesis of p -Aminobenzoic Acids and their Methyl Esters. Organic Preparations and Procedures International 2017;49:45-52. [DOI: 10.1080/00304948.2017.1260396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Smith BR, Gambhir SS. Nanomaterials for In Vivo Imaging. Chem Rev 2017;117:901-86. [PMID: 28045253 DOI: 10.1021/acs.chemrev.6b00073] [Cited by in Crossref: 687] [Cited by in F6Publishing: 715] [Article Influence: 114.5] [Reference Citation Analysis]
68 Guler E, Demir B, Guler B, Demirkol DO, Timur S. BiofuNctionalized nanomaterials for targeting cancer cells. Nanostructures for Cancer Therapy 2017. [DOI: 10.1016/b978-0-323-46144-3.00003-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
69 Giuliani A, Chianella I, Gumina S. The Impact of Nanomedicine on Rotator Cuff Lesions: A Future Outlook. Rotator Cuff Tear 2017. [DOI: 10.1007/978-3-319-33355-7_44] [Reference Citation Analysis]
70 Leriche G, Cifelli JL, Sibucao KC, Patterson JP, Koyanagi T, Gianneschi NC, Yang J. Characterization of drug encapsulation and retention in archaea-inspired tetraether liposomes. Org Biomol Chem 2017;15:2157-62. [DOI: 10.1039/c6ob02832b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
71 Jain A, Jain SK. Application Potential of Engineered Liposomes in Tumor Targeting. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics 2017. [DOI: 10.1016/b978-0-323-52725-5.00009-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
72 Marciello M, Pellico J, Fernandez-Barahona I, Herranz F, Ruiz-Cabello J, Filice M. Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus 2016;6:20160055. [PMID: 27920894 DOI: 10.1098/rsfs.2016.0055] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
73 Edmonds S, Volpe A, Shmeeda H, Parente-Pereira AC, Radia R, Baguña-Torres J, Szanda I, Severin GW, Livieratos L, Blower PJ, Maher J, Fruhwirth GO, Gabizon A, T M de Rosales R. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines. ACS Nano 2016;10:10294-307. [PMID: 27781436 DOI: 10.1021/acsnano.6b05935] [Cited by in Crossref: 58] [Cited by in F6Publishing: 64] [Article Influence: 8.3] [Reference Citation Analysis]
74 Gabizon AA, Patil Y, La-beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resistance Updates 2016;29:90-106. [DOI: 10.1016/j.drup.2016.10.003] [Cited by in Crossref: 137] [Cited by in F6Publishing: 148] [Article Influence: 19.6] [Reference Citation Analysis]
75 Fülöp A, Sammour DA, Erich K, von Gerichten J, van Hoogevest P, Sandhoff R, Hopf C. Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry. Sci Rep 2016;6:33791. [PMID: 27650487 DOI: 10.1038/srep33791] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
76 van der Geest T, Laverman P, Metselaar JM, Storm G, Boerman OC. Radionuclide imaging of liposomal drug delivery. Expert Opin Drug Deliv 2016;13:1231-42. [PMID: 27351233 DOI: 10.1080/17425247.2016.1205584] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
77 Valic MS, Zheng G. Rethinking translational nanomedicine: insights from the 'bottom-up' design of the Porphysome for guiding the clinical development of imageable nanomaterials. Curr Opin Chem Biol 2016;33:126-34. [PMID: 27352246 DOI: 10.1016/j.cbpa.2016.06.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
78 Guliani A, Singla R, Kumari A, Yadav SK. Liposomal and Phytosomal Formulations. Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration 2016. [DOI: 10.1007/978-981-10-0818-4_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
79 Keservani RK, Kesharwani RK, Sharma AK. Nanobiomaterials involved in medical imaging technologies. Nanobiomaterials in Medical Imaging 2016. [DOI: 10.1016/b978-0-323-41736-5.00010-8] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
80 Akagi T, Akashi M. Nanomedicine and Infection. Methods in Pharmacology and Toxicology 2016. [DOI: 10.1007/978-1-4939-3121-7_22] [Reference Citation Analysis]
81 References. Radioactivity 2016. [DOI: 10.1016/b978-0-444-63489-4.16001-0] [Reference Citation Analysis]
82 Yue X, Dai Z. Multifunctional Liposomes for Imaging-Guided Therapy. Springer Series in Biomaterials Science and Engineering 2016. [DOI: 10.1007/978-3-662-48544-6_10] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
83 Ito K, Hamamichi S, Asano M, Hori Y, Matsui J, Iwata M, Funahashi Y, Umeda IO, Fujii H. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci 2016;107:60-7. [PMID: 26509883 DOI: 10.1111/cas.12841] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
84 Henriksen JR, Petersen AL, Hansen AE, Frankær CG, Harris P, Elema DR, Kristensen AT, Kjær A, Andresen TL. Remote Loading of 64 Cu 2+ into Liposomes without the Use of Ion Transport Enhancers. ACS Appl Mater Interfaces 2015;7:22796-806. [DOI: 10.1021/acsami.5b04612] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
85 Cserép GB, Herner A, Kele P. Bioorthogonal fluorescent labels: a review on combined forces. Methods Appl Fluoresc 2015;3:042001. [DOI: 10.1088/2050-6120/3/4/042001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
86 Hsu W, Chiang I, Chen L, Chiu S, Lee T, Hwang J. Liposomes labeled with Indium-111 by a novel surface labeling method exhibits good biodistribution in vivo. 2015 IEEE International Conference on Imaging Systems and Techniques (IST) 2015. [DOI: 10.1109/ist.2015.7294527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
87 Reibel AT, Müller SS, Pektor S, Bausbacher N, Miederer M, Frey H, Rösch F. Fate of Linear and Branched Polyether-Lipids In Vivo in Comparison to Their Liposomal Formulations by 18 F-Radiolabeling and Positron Emission Tomography. Biomacromolecules 2015;16:842-51. [DOI: 10.1021/bm5017332] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
88 Calle D, Negri V, Ballesteros P, Cerdán S. Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics 2015;5:489-503. [PMID: 25767616 DOI: 10.7150/thno.10069] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
89 Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids and Surfaces B: Biointerfaces 2015;126:631-48. [DOI: 10.1016/j.colsurfb.2014.12.041] [Cited by in Crossref: 174] [Cited by in F6Publishing: 149] [Article Influence: 21.8] [Reference Citation Analysis]
90 Janjic JM, Bai M. Design and Development of Theranostic Nanomedicines. Nanotechnology for Biomedical Imaging and Diagnostics 2015. [DOI: 10.1002/9781118873151.ch15] [Reference Citation Analysis]
91 Teo BM, Lynge ME, Hosta-rigau L, Städler B. Subcompartmentalized Surface-Adhering Polymer Thin Films Toward Drug Delivery Applications. Layer-by-Layer Films for Biomedical Applications 2015. [DOI: 10.1002/9783527675869.ch10] [Reference Citation Analysis]
92 Tila D, Yazdani-Arazi SN, Ghanbarzadeh S, Arami S, Pourmoazzen Z. pH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs. EXCLI J 2015;14:21-32. [PMID: 26417350 DOI: 10.17179/excli2013-609] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
93 Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 2015;37:415-24. [DOI: 10.1016/j.biomaterials.2014.10.014] [Cited by in Crossref: 134] [Cited by in F6Publishing: 145] [Article Influence: 16.8] [Reference Citation Analysis]
94 Dong AW, Fong C, Waddington LJ, Hill AJ, Boyd BJ, Drummond CJ. Packing and mobility of hydrocarbon chains in phospholipid lyotropic liquid crystalline lamellar phases and liposomes: characterisation by positron annihilation lifetime spectroscopy (PALS). Phys Chem Chem Phys 2015;17:276-86. [DOI: 10.1039/c4cp03822c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
95 Charron DM, Chen J, Zheng G. Theranostic lipid nanoparticles for cancer medicine. Cancer Treat Res 2015;166:103-27. [PMID: 25895866 DOI: 10.1007/978-3-319-16555-4_5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
96 Bai RG, Muthoosamy K, Manickam S. Nanomedicine in Theranostics. Nanotechnology Applications for Tissue Engineering 2015. [DOI: 10.1016/b978-0-323-32889-0.00012-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
97 Gabizon A, Bradbury M, Prabhakar U, Zamboni W, Libutti S, Grodzinski P. Cancer nanomedicines: closing the translational gap. Lancet 2014;384:2175-6. [PMID: 25625382 DOI: 10.1016/S0140-6736(14)61457-4] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 5.7] [Reference Citation Analysis]
98 Miki K, Inoue T, Kobayashi Y, Nakano K, Matsuoka H, Yamauchi F, Yano T, Ohe K. Near-Infrared Dye-Conjugated Amphiphilic Hyaluronic Acid Derivatives as a Dual Contrast Agent for In Vivo Optical and Photoacoustic Tumor Imaging. Biomacromolecules 2015;16:219-27. [DOI: 10.1021/bm501438e] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 4.6] [Reference Citation Analysis]
99 Engelberth SA, Hempel N, Bergkvist M. Development of nanoscale approaches for ovarian cancer therapeutics and diagnostics. Crit Rev Oncog 2014;19:281-315. [PMID: 25271436 DOI: 10.1615/critrevoncog.2014011455] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
100 Dubey R, Kushal S, Mollard A, Vojtovich L, Oh P, Levin MD, Schnitzer JE, Zharov I, Olenyuk BZ. Tumor targeting, trifunctional dendritic wedge. Bioconjug Chem 2015;26:78-89. [PMID: 25350602 DOI: 10.1021/bc500436b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
101 Hsu W, Liu S, Chang Y, Chang C, Ting G, Lee T. The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model. Nuclear Medicine and Biology 2014;41:765-71. [DOI: 10.1016/j.nucmedbio.2014.05.142] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
102 Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E. Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 2014;76:79-97. [PMID: 25116445 DOI: 10.1016/j.addr.2014.08.002] [Cited by in Crossref: 124] [Cited by in F6Publishing: 102] [Article Influence: 13.8] [Reference Citation Analysis]
103 Azhdarinia A, Ghosh S. Nuclear Imaging with Nanoparticles. Nanomedicine 2014. [DOI: 10.1201/b17246-3] [Reference Citation Analysis]
104 Marqués-Gallego P, de Kroon AI. Ligation strategies for targeting liposomal nanocarriers. Biomed Res Int 2014;2014:129458. [PMID: 25126543 DOI: 10.1155/2014/129458] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 8.1] [Reference Citation Analysis]
105 Cabral H, Miyata K, Kishimura A. Nanodevices for studying nano-pathophysiology. Adv Drug Deliv Rev 2014;74:35-52. [PMID: 24993612 DOI: 10.1016/j.addr.2014.06.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
106 Doan B, Crauste-manciet S, Bourgaux C, Dhotel H, Jugé L, Brossard D, Scherman D, Bessodes M, Cuenod C, Mignet N. Lipidic spherulites as magnetic resonance imaging contrast agents. New J Chem 2014;38:5190-7. [DOI: 10.1039/c4nj00571f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
107 Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 2014;11:3777-97. [PMID: 24865108 DOI: 10.1021/mp500173s] [Cited by in Crossref: 71] [Cited by in F6Publishing: 79] [Article Influence: 7.9] [Reference Citation Analysis]
108 Han HD, Byeon Y, Jeon HN, Shin BC. Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes. Nanoscale Res Lett 2014;9:209. [PMID: 24855464 DOI: 10.1186/1556-276X-9-209] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
109 Miki K, Hashimoto H, Inoue T, Matsuoka H, Harada H, Hiraoka M, Ohe K. Sonication-Induced Formation of Size-Controlled Self-Assemblies of Amphiphilic Janus-Type Polymers as Optical Tumor-Imaging Agents. Small 2014;10:3119-30. [DOI: 10.1002/smll.201400358] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
110 Fragogeorgi EA, Savina IN, Tsotakos T, Efthimiadou E, Xanthopoulos S, Palamaris L, Psimadas D, Bouziotis P, Kordas G, Mikhalovsky S, Alavijeh M, Loudos G. Comparative in vitro stability and scintigraphic imaging for trafficking and tumor targeting of a directly and a novel 99mTc(I)(CO)3 labeled liposome. International Journal of Pharmaceutics 2014;465:333-46. [DOI: 10.1016/j.ijpharm.2014.01.042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
111 Smith CE, Kong H. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener. Langmuir 2014;30:3697-704. [PMID: 24635565 DOI: 10.1021/la500412r] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
112 Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos 2014;42:623-31. [PMID: 24492893 DOI: 10.1124/dmd.113.056176] [Cited by in Crossref: 251] [Cited by in F6Publishing: 259] [Article Influence: 27.9] [Reference Citation Analysis]
113 Srivatsan A, Chen X. Recent advances in nanoparticle-based nuclear imaging of cancers. Adv Cancer Res 2014;124:83-129. [PMID: 25287687 DOI: 10.1016/B978-0-12-411638-2.00003-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 2.4] [Reference Citation Analysis]
114 Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 2014;43:4243-68. [DOI: 10.1039/c3cs60433k] [Cited by in Crossref: 218] [Cited by in F6Publishing: 222] [Article Influence: 24.2] [Reference Citation Analysis]
115 Salim M, Minamikawa H, Sugimura A, Hashim R. Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics. Med Chem Commun 2014;5:1602-18. [DOI: 10.1039/c4md00085d] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
116 Almer G, Opriessnig P, Prassl R, Mangge H. Anti-inflammatory mediators for molecular imaging of atherosclerosis. European Journal of Nanomedicine 2014;6. [DOI: 10.1515/ejnm-2014-0011] [Reference Citation Analysis]
117 Kensova R, Blazkova I, Konecna M, Kopel P, Chudobova D, Zitka O, Vaculovicova M, Hynek D, Adam V, Beklova M, Kizek R. Lead ions encapsulated in liposomes and their effect on Staphylococcus aureus. Int J Environ Res Public Health 2013;10:6687-700. [PMID: 24317385 DOI: 10.3390/ijerph10126687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
118 Emmetiere F, Irwin C, Viola-Villegas NT, Longo V, Cheal SM, Zanzonico P, Pillarsetty N, Weber WA, Lewis JS, Reiner T. (18)F-labeled-bioorthogonal liposomes for in vivo targeting. Bioconjug Chem 2013;24:1784-9. [PMID: 24180480 DOI: 10.1021/bc400322h] [Cited by in Crossref: 62] [Cited by in F6Publishing: 66] [Article Influence: 6.2] [Reference Citation Analysis]
119 Angelova A, Angelov B, Drechsler M, Garamus VM, Lesieur S. Protein entrapment in PEGylated lipid nanoparticles. International Journal of Pharmaceutics 2013;454:625-32. [DOI: 10.1016/j.ijpharm.2013.06.006] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 5.5] [Reference Citation Analysis]
120 Nejdl L, Merlos Rodrigo MA, Kudr J, Ruttkay-nedecky B, Konecna M, Kopel P, Zitka O, Hubalek J, Kizek R, Adam V. Liposomal nanotransporter for targeted binding based on nucleic acid anchor system: Microfluidics and Miniaturization. ELECTROPHORESIS 2014;35:393-404. [DOI: 10.1002/elps.201300197] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
121 Nilsson C, Barrios-Lopez B, Kallinen A, Laurinmäki P, Butcher SJ, Raki M, Weisell J, Bergström K, Larsen SW, Østergaard J, Larsen C, Urtti A, Airaksinen AJ, Yaghmur A. SPECT/CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications. Biomaterials 2013;34:8491-503. [PMID: 23932247 DOI: 10.1016/j.biomaterials.2013.07.055] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 6.3] [Reference Citation Analysis]
122 Alves NJ, Cusick W, Stefanick JF, Ashley JD, Handlogten MW, Bilgicer B. Functionalized liposome purification via Liposome Extruder Purification (LEP). Analyst 2013;138:4746-51. [PMID: 23841107 DOI: 10.1039/c3an00680h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
123 Key J, Aryal S, Gentile F, Ananta JS, Zhong M, Landis MD, Decuzzi P. Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials 2013;34:5402-10. [DOI: 10.1016/j.biomaterials.2013.03.078] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
124 Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013;2013:705265. [PMID: 23533772 DOI: 10.1155/2013/705265] [Cited by in Crossref: 139] [Cited by in F6Publishing: 152] [Article Influence: 13.9] [Reference Citation Analysis]
125 Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73:2412-2417. [PMID: 23423979 DOI: 10.1158/0008-5472.can-12-4561] [Cited by in Crossref: 1006] [Cited by in F6Publishing: 1079] [Article Influence: 100.6] [Reference Citation Analysis]
126 Feldborg LN, Jølck RI, Andresen TL. Quantitative Evaluation of Bioorthogonal Chemistries for Surface Functionalization of Nanoparticles. Bioconjugate Chem 2012;23:2444-50. [DOI: 10.1021/bc3005057] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]