BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Beech JP, Ho BD, Garriss G, Oliveira V, Henriques-normark B, Tegenfeldt JO. Separation of pathogenic bacteria by chain length. Analytica Chimica Acta 2018;1000:223-31. [DOI: 10.1016/j.aca.2017.11.050] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Holm SH, Zhang Z, Beech JP, Gompper G, Fedosov DA, Tegenfeldt JO. Microfluidic Particle Sorting in Concentrated Erythrocyte Suspensions. Phys Rev Applied 2019;12. [DOI: 10.1103/physrevapplied.12.014051] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Jusková P, Matthys L, Viovy J, Malaquin L. 3D deterministic lateral displacement (3D-DLD) cartridge system for high throughput particle sorting. Chem Commun 2020;56:5190-3. [DOI: 10.1039/c9cc05858c] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Li L, Tian F, Chang H, Zhang J, Wang C, Rao W, Hu H. Interactions of Bacteria With Monolithic Lateral Silicon Nanospikes Inside a Microfluidic Channel. Front Chem 2019;7:483. [PMID: 31355180 DOI: 10.3389/fchem.2019.00483] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
4 Ho BD, Beech JP, Tegenfeldt JO. Charge-Based Separation of Micro- and Nanoparticles. Micromachines (Basel) 2020;11:E1014. [PMID: 33218201 DOI: 10.3390/mi11111014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Liu P, Liu H, Semenec L, Yuan D, Yan S, Cain AK, Li M. Length-based separation of Bacillus subtilis bacterial populations by viscoelastic microfluidics. Microsyst Nanoeng 2022;8. [DOI: 10.1038/s41378-021-00333-3] [Reference Citation Analysis]
6 Cruz J, Hjort K. High-resolution particle separation by inertial focusing in high aspect ratio curved microfluidics. Sci Rep 2021;11:13959. [PMID: 34230536 DOI: 10.1038/s41598-021-93177-w] [Reference Citation Analysis]
7 Hochstetter A. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. Micromachines (Basel) 2020;11:E468. [PMID: 32365567 DOI: 10.3390/mi11050468] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Salafi T, Zhang Y, Zhang Y. A Review on Deterministic Lateral Displacement for Particle Separation and Detection. Nanomicro Lett 2019;11:77. [PMID: 34138050 DOI: 10.1007/s40820-019-0308-7] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 10.3] [Reference Citation Analysis]
9 Xavier M, Holm SH, Beech JP, Spencer D, Tegenfeldt JO, Oreffo ROC, Morgan H. Label-free enrichment of primary human skeletal progenitor cells using deterministic lateral displacement. Lab Chip 2019;19:513-23. [PMID: 30632599 DOI: 10.1039/c8lc01154k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 8.3] [Reference Citation Analysis]
10 Pariset E, Parent C, Fouillet Y, François B, Verplanck N, Revol-Cavalier F, Thuaire A, Agache V. Separation of Biological Particles in a Modular Platform of Cascaded Deterministic Lateral Displacement Modules. Sci Rep 2018;8:17762. [PMID: 30531826 DOI: 10.1038/s41598-018-34958-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
11 Nasher F, Aguilar F, Aebi S, Hermans PWM, Heller M, Hathaway LJ. Peptide Ligands of AmiA, AliA, and AliB Proteins Determine Pneumococcal Phenotype. Front Microbiol 2018;9:3013. [PMID: 30568648 DOI: 10.3389/fmicb.2018.03013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
12 Ebadi A, Farshchi Heydari MJ, Toutouni R, Chaichypour B, Fathipour M, Jafari K. Efficient paradigm to enhance particle separation in deterministic lateral displacement arrays. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-1064-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zeming KK, Salafi T, Shikha S, Zhang Y. Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array. Nat Commun 2018;9:1254. [PMID: 29593276 DOI: 10.1038/s41467-018-03596-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
14 Ho BD, Beech JP, Tegenfeldt JO. Cell Sorting Using Electrokinetic Deterministic Lateral Displacement. Micromachines (Basel) 2020;12:30. [PMID: 33396630 DOI: 10.3390/mi12010030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bartle L, Mitchell JG, Paterson JS. Evaluating the Cytometric Detection and Enumeration of the Wine Bacterium, Oenococcus oeni. Cytometry A 2021;99:399-406. [PMID: 33140503 DOI: 10.1002/cyto.a.24258] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Månsson LK, de Wild T, Peng F, Holm SH, Tegenfeldt JO, Schurtenberger P. Preparation of colloidal molecules with temperature-tunable interactions from oppositely charged microgel spheres. Soft Matter 2019;15:8512-24. [PMID: 31633148 DOI: 10.1039/c9sm01779h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
17 Tottori N, Nisisako T. Degas-Driven Deterministic Lateral Displacement in Poly(dimethylsiloxane) Microfluidic Devices. Anal Chem 2019;91:3093-100. [PMID: 30672690 DOI: 10.1021/acs.analchem.8b05587] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
18 Zhang Z, Chien W, Henry E, Fedosov DA, Gompper G. Sharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells. Phys Rev Fluids 2019;4. [DOI: 10.1103/physrevfluids.4.024201] [Cited by in Crossref: 14] [Article Influence: 4.7] [Reference Citation Analysis]