BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ebadi A, Farshchi Heydari MJ, Toutouni R, Chaichypour B, Fathipour M, Jafari K. Efficient paradigm to enhance particle separation in deterministic lateral displacement arrays. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-1064-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Inglis D, Vernekar R, Krüger T, Feng S. The fluidic resistance of an array of obstacles and a method for improving boundaries in deterministic lateral displacement arrays. Microfluid Nanofluid 2020;24. [DOI: 10.1007/s10404-020-2323-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
2 Aghajanloo B, Inglis DW, Ejeian F, Tehrani AF, Esfahani MHN, Saghafian M, Canavese G, Marasso SL. Effect of process parameters on separation efficiency in a deterministic lateral displacement device. Journal of Chromatography A 2022. [DOI: 10.1016/j.chroma.2022.463295] [Reference Citation Analysis]
3 Hajari M, Ebadi A, Farshchi Heydari MJ, Fathipour M, Soltani M. Dielectrophoresis-based microfluidic platform to sort micro-particles in continuous flow. Microsyst Technol 2020;26:751-63. [DOI: 10.1007/s00542-019-04629-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
4 Hochstetter A, Vernekar R, Austin RH, Becker H, Beech JP, Fedosov DA, Gompper G, Kim SC, Smith JT, Stolovitzky G, Tegenfeldt JO, Wunsch BH, Zeming KK, Krüger T, Inglis DW. Deterministic Lateral Displacement: Challenges and Perspectives. ACS Nano 2020;14:10784-95. [PMID: 32844655 DOI: 10.1021/acsnano.0c05186] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]