BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Salafi T, Zhang Y, Zhang Y. A Review on Deterministic Lateral Displacement for Particle Separation and Detection. Nanomicro Lett 2019;11:77. [PMID: 34138050 DOI: 10.1007/s40820-019-0308-7] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Brooks JT, Cribb J, Falvo MR, Superfine R. Lithographically Defined Micropost Arrays for Programmable Actuation and Interfacial Hydrodynamics. ACS Appl Polym Mater 2021;3:6608-17. [DOI: 10.1021/acsapm.1c01133] [Reference Citation Analysis]
2 Liang W, Austin RH, Sturm JC. Scaling of deterministic lateral displacement devices to a single column of bumping obstacles. Lab Chip 2020;20:3461-7. [PMID: 32930700 DOI: 10.1039/d0lc00570c] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Xie Y, Xu X, Lin J, Xu Y, Wang J, Ren Y, Wu A. Effective Separation of Cancer‐Derived Exosomes in Biological Samples for Liquid Biopsy: Classic Strategies and Innovative Development. Global Challenges. [DOI: 10.1002/gch2.202100131] [Reference Citation Analysis]
4 Zhu S, Jiang F, Han Y, Xiang N, Ni Z. Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 2020;145:7103-24. [DOI: 10.1039/d0an01148g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
5 Zhang S, Wang Y, Onck P, den Toonder J. A concise review of microfluidic particle manipulation methods. Microfluid Nanofluid 2020;24. [DOI: 10.1007/s10404-020-2328-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
6 Rahmati M, Chen X. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation. Biomed Microdevices 2021;23:49. [PMID: 34581876 DOI: 10.1007/s10544-021-00587-8] [Reference Citation Analysis]
7 Huang L, Wang G, Zhan G, Pei P. A microfluidic chip integrated with 3D sidewall electrodes and wavy microchannel for cell focusing and separation. J Micromech Microeng 2021;31:125011. [DOI: 10.1088/1361-6439/ac333e] [Reference Citation Analysis]
8 Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. Lab Chip 2022. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Calero V, García-sánchez P, Ramos A, Morgan H. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations. Journal of Chromatography A 2020;1623:461151. [DOI: 10.1016/j.chroma.2020.461151] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Ashkezari AHK, Dizani M, Shamloo A. Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: a numerical analysis. Acta Mech 2022;233:1881-94. [DOI: 10.1007/s00707-022-03206-6] [Reference Citation Analysis]
11 Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-Free Isolation of Exosomes Using Microfluidic Technologies. ACS Nano 2021. [PMID: 34723478 DOI: 10.1021/acsnano.1c03469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021;93:4739-74. [DOI: 10.1021/acs.analchem.1c00693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
13 Khan M, Chen X. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation. Electrophoresis 2022;43:879-91. [PMID: 35015306 DOI: 10.1002/elps.202100187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Modani S, Tomar D, Tangirala S, Sriram A, Mehra NK, Kumar R, Khatri DK, Singh PK. An updated review on exosomes: biosynthesis to clinical applications. J Drug Target 2021;:1-16. [PMID: 33709876 DOI: 10.1080/1061186X.2021.1894436] [Reference Citation Analysis]
15 Lu X, Chow JJM, Koo SH, Tan TY, Jiang B, Ai Y. Enhanced Molecular Diagnosis of Bloodstream Candida Infection with Size-Based Inertial Sorting at Submicron Resolution. Anal Chem 2020;92:15579-86. [DOI: 10.1021/acs.analchem.0c03718] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Zhang S, Zhang R, Wang Y, Onck PR, den Toonder JMJ. Controlled Multidirectional Particle Transportation by Magnetic Artificial Cilia. ACS Nano 2020;14:10313-23. [PMID: 32806065 DOI: 10.1021/acsnano.0c03801] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
17 Bordhan P, Razavi Bazaz S, Jin D, Ebrahimi Warkiani M. Advances and enabling technologies for phase-specific cell cycle synchronisation. Lab Chip. [DOI: 10.1039/d1lc00724f] [Reference Citation Analysis]
18 Cheng S, Li Y, Yan H, Wen Y, Zhou X, Friedman L, Zeng Y. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics. Lab Chip 2021. [PMID: 34352059 DOI: 10.1039/d1lc00443c] [Reference Citation Analysis]
19 Lee K, Lee J, Ha D, Kim M, Kim T. Low-electric-potential-assisted diffusiophoresis for continuous separation of nanoparticles on a chip. Lab Chip 2020;20:2735-47. [DOI: 10.1039/d0lc00196a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv 2021;:107814. [PMID: 34389465 DOI: 10.1016/j.biotechadv.2021.107814] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
21 Hochstetter A, Vernekar R, Austin RH, Becker H, Beech JP, Fedosov DA, Gompper G, Kim SC, Smith JT, Stolovitzky G, Tegenfeldt JO, Wunsch BH, Zeming KK, Krüger T, Inglis DW. Deterministic Lateral Displacement: Challenges and Perspectives. ACS Nano 2020;14:10784-95. [PMID: 32844655 DOI: 10.1021/acsnano.0c05186] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
22 Kashyap A, Rapsomaniki MA, Barros V, Fomitcheva-Khartchenko A, Martinelli AL, Rodriguez AF, Gabrani M, Rosen-Zvi M, Kaigala G. Quantification of tumor heterogeneity: from data acquisition to metric generation. Trends Biotechnol 2021:S0167-7799(21)00267-5. [PMID: 34972597 DOI: 10.1016/j.tibtech.2021.11.006] [Reference Citation Analysis]
23 Yu Z, Yang Y, Lin J. Lubrication Force Saturation Matters for the Critical Separation Size of the Non-Colloidal Spherical Particle in the Deterministic Lateral Displacement Device. Applied Sciences 2022;12:2733. [DOI: 10.3390/app12052733] [Reference Citation Analysis]
24 Ren H, Zhu Z, Xiang N, Wang H, Zheng T, An H, Nguyen N, Zhang J. Multiplexed serpentine microchannels for high-throughput sorting of disseminated tumor cells from malignant pleural effusion. Sensors and Actuators B: Chemical 2021;337:129758. [DOI: 10.1016/j.snb.2021.129758] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Wunsch BH, Hsieh KY, Kim S, Pereira M, Lukashov S, Scerbo C, Papalia JM, Duch EA, Stolovitzky G, Gifford SM, Smith JT. Advancements in Throughput, Lifetime, Purification, and Workflow for Integrated Nanoscale Deterministic Lateral Displacement. Adv Mater Technol 2021;6:2001083. [DOI: 10.1002/admt.202001083] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Sherbaz A, Konak BMK, Pezeshkpour P, Di Ventura B, Rapp BE. Deterministic Lateral Displacement Microfluidic Chip for Minicell Purification. Micromachines 2022;13:365. [DOI: 10.3390/mi13030365] [Reference Citation Analysis]
27 Holcar M, Kandušer M, Lenassi M. Blood Nanoparticles - Influence on Extracellular Vesicle Isolation and Characterization. Front Pharmacol 2021;12:773844. [PMID: 34867406 DOI: 10.3389/fphar.2021.773844] [Reference Citation Analysis]
28 Al-ali A, Waheed W, Abu-nada E, Alazzam A. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. Journal of Chromatography A 2022;1676:463268. [DOI: 10.1016/j.chroma.2022.463268] [Reference Citation Analysis]
29 Xie Y, Rufo J, Zhong R, Rich J, Li P, Leong KW, Huang TJ. Microfluidic Isolation and Enrichment of Nanoparticles. ACS Nano 2020. [PMID: 33252215 DOI: 10.1021/acsnano.0c06336] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
30 Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. Adv Mater 2021;33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
31 Choe SW, Kim B, Kim M. Progress of Microfluidic Continuous Separation Techniques for Micro-/Nanoscale Bioparticles. Biosensors (Basel) 2021;11:464. [PMID: 34821680 DOI: 10.3390/bios11110464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wang C, Ma Y, Pei Z, Song F, Zhong J, Wang Y, Yan X, Dai P, Jiang Y, Qiu J, Shi M, Wu X. Sheathless acoustic based flow cell sorter for enrichment of rare cells. Cytometry A 2021. [PMID: 34806837 DOI: 10.1002/cyto.a.24521] [Reference Citation Analysis]
33 Tottori N, Nisisako T. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input. Lab Chip 2020;20:1999-2008. [DOI: 10.1039/d0lc00354a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Vaz R, Serrano VM, Castaño-guerrero Y, Cardoso AR, Frasco MF, Sales MGF. Breaking the classics: Next-generation biosensors for the isolation, profiling and detection of extracellular vesicles. Biosensors and Bioelectronics: X 2022. [DOI: 10.1016/j.biosx.2022.100115] [Reference Citation Analysis]
35 Bhattacharjee R, Kumar R, Al-turjman F. A Novel Approach for Tuning of Fluidic Resistance in Deterministic Lateral Displacement Array for Enhanced Separation of Circulating Tumor Cells. Cogn Comput. [DOI: 10.1007/s12559-021-09904-y] [Reference Citation Analysis]
36 Inglis D, Vernekar R, Krüger T, Feng S. The fluidic resistance of an array of obstacles and a method for improving boundaries in deterministic lateral displacement arrays. Microfluid Nanofluid 2020;24. [DOI: 10.1007/s10404-020-2323-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
37 Wang N, Yuan S, Fang C, Hu X, Zhang YS, Zhang LL, Zeng XT. Nanomaterials-Based Urinary Extracellular Vesicles Isolation and Detection for Non-invasive Auxiliary Diagnosis of Prostate Cancer. Front Med (Lausanne) 2021;8:800889. [PMID: 35096890 DOI: 10.3389/fmed.2021.800889] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]