BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fu X, Ning JP. Synthesis and biocompatibility of an argatroban-modified polysulfone membrane that directly inhibits thrombosis. J Mater Sci Mater Med 2018;29:66. [PMID: 29744595 DOI: 10.1007/s10856-018-6054-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Liu W, Fu X, Liu YF, Su T, Peng J. Vorapaxar-modified polysulfone membrane with high hemocompatibility inhibits thrombosis. Mater Sci Eng C Mater Biol Appl 2021;118:111508. [PMID: 33255066 DOI: 10.1016/j.msec.2020.111508] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Dai Y, Dai S, Xie X, Ning J. Immobilizing argatroban and mPEG-NH 2 on a polyethersulfone membrane surface to prepare an effective nonthrombogenic biointerface. Journal of Biomaterials Science, Polymer Edition 2019;30:608-28. [DOI: 10.1080/09205063.2019.1595891] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
3 Zhu Y, Liu R, Huang H, Zhu Q. Vinblastine-Loaded Nanoparticles with Enhanced Tumor-Targeting Efficiency and Decreasing Toxicity: Developed by One-Step Molecular Imprinting Process. Mol Pharm 2019;16:2675-89. [PMID: 31050894 DOI: 10.1021/acs.molpharmaceut.9b00243] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
4 Ren Y, Zhou H, Lu J, Huang S, Zhu H, Li L. Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes. Membranes (Basel) 2020;10:E431. [PMID: 33348625 DOI: 10.3390/membranes10120431] [Reference Citation Analysis]
5 Yan S, Tu MM, Qiu YR. The hemocompatibility of the modified polysulfone membrane with 4-(chloromethyl)benzoic acid and sulfonated hydroxypropyl chitosan. Colloids Surf B Biointerfaces 2020;188:110769. [PMID: 31918157 DOI: 10.1016/j.colsurfb.2019.110769] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
6 Nie S, Zeng J, Qin H, Xu X, Zeng J, Yang C, Luo J. Improvement in the blood compatibility of polyvinylidene fluoride membranes via in situ cross-linking polymerization. Polym Adv Technol 2019;30:923-31. [DOI: 10.1002/pat.4525] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wang C, Lin B, Qiu Y. Enhanced hydrophilicity and anticoagulation of polysulfone materials modified via dihydroxypropyl, sulfonic groups and chitosan. Colloids Surf B Biointerfaces 2021;210:112243. [PMID: 34861540 DOI: 10.1016/j.colsurfb.2021.112243] [Reference Citation Analysis]
8 Bellomo TR, Jeakle MA, Meyerhoff ME, Bartlett RH, Major TC. The Effects of the Combined Argatroban/Nitric Oxide-Releasing Polymer on Platelet Microparticle-Induced Thrombogenicity in Coated Extracorporeal Circuits. ASAIO J 2021;67:573-82. [PMID: 33902103 DOI: 10.1097/MAT.0000000000001256] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Roberts TR, Seekell RP, Zang Y, Harea G, Zhang Z, Batchinsky AI. In vitro hemocompatibility screening of a slippery liquid impregnated surface coating for extracorporeal organ support applications. Perfusion 2022;:2676591221095469. [PMID: 35514052 DOI: 10.1177/02676591221095469] [Reference Citation Analysis]
10 Fu X, Lei T, Li S, Liu Y, Peng J, Ning J. Construction of novel antiplatelet modified polyethersulfone membrane and study into its blood compatibility. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112659] [Reference Citation Analysis]